
Received January 21, 2020, accepted February 14, 2020, date of publication February 27, 2020, date of current version March 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976575

A Fast and Efficient CAD System for Improving
the Performance of Malignancy Level
Classification on Lung Nodules
BIN WANG 1, SHUAIZONG SI 1, ENUO CUI 1,2, HAI ZHAO 1, DONGXIANG YANG 3,
SHENGCHANG DOU 1, AND JIAN ZHU 1
1Engineering Research Center of Security Technology of Complex Network System, School of Computer Science and Engineering, Northeastern University,
Shenyang 110169, China
2School of Information Science and Engineering, Shenyang University, Shenyang 110044, China
3Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China

Corresponding authors: Shuaizong Si (sishuaizong@gmail.com) and Enuo Cui (cuienuo@163.com)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant N161608001 and Grant
N180716019.

ABSTRACT Accurate malignancy level classification of lung nodules can reduce lung cancer mortality
rate effectively. In this study, we present a fast and efficient CAD system to improve the performance
of nodules malignancy level classification. Firstly, to reduce false positives (FPs), we propose a novel
vessel segmentation method which measures vessel likelihood by tubular-like structures discriminating from
multiple views. The method can recognize irregular vascular structures robustly and sensitively, and achieve
fast vessel segmentation. In addition, a mathematical description for 3D pulmonary entities using neighbor
centroids clustering is provided as a fundamental condition for spatial feature extraction. To optimize features
extraction, we formulate a gray values cumulative function and a patches selection function based on the
mathematical description, to generate axial spatial outline and spatial density distribution samples of the
entities, respectively. Then, we use Edge Orientation Histogram (EOH) to extract edge features from the
spatial outline and propose a multi-scale path LBP (MSPLBP) to extract the texture feature of the density
distribution samples. Finally, the fused EOH and MSPLBP are classified into 6 malignancy levels by three
state-of-the-art classifiers. The experimental results show that the vessel segmentation method achieves an
average F1_Score of 78.14% and AUC value under PR curves of 0.8149. Moreover, our system reaches an
average accuracy of 95.88% and consumes average 176.26 seconds for evaluating a CT set on malignancy
level classification. These results indicate that the system can segment vessels exactly, and classify the
malignancy level of nodules efficiently. Our system is the potential to be a powerful tool for early diagnosis
of lung cancer.

INDEX TERMS Lung nodule, malignancy level classification, computer-aided diagnosis, vessels segmen-
tation, Frangi filter, feature extraction.

I. INTRODUCTION
Cancer is defined as a relentless growth of abnormal cells
in a specific tissue that can spread from the primary neo-
plasm to distant organs [1]. Lung cancer causes 1.3 million
deaths annually and has the highest mortality rate among
all cancer-related diseases [2], [3]. A statistic from CA :
A Cancer Journal for Clinicians reveals that a total number
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of 234,030 new cases of lung cancer occurred in 2018 and
66% of these patients died [3]. Actually, 80% of lung cancer
patients are diagnosed in the advanced stages which results
in the 5-year survival rate falling from 70% to 18% [4]–[6].
To solve this problem, classifying the malignancy level of
lung nodules is clinically important because they are the
crucial manifestations of lung cancer at an early stage.

Lung nodule is a rounded opacity whose maximum diam-
eter is less than 3 cm [5]. A diversity of radiographic
characteristics of lung nodule e.g., size, margin, nodular
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calcification, and nodular cavitation, can be used to dif-
ferentiate malignancy levels of lung nodule [7], [8]. How-
ever, radiologists have to check a large number of CT slices
to analyze lung nodule, and this work is burdensome and
time-consuming [9], [10]. Therefore, computer-aided diagno-
sis (CAD) systems have arisen to assist them and potentially
enhance evaluation efficiency.

In general, there are four main stages in a CAD system for
lung cancer including image preprocessing, nodule candidate
detection, false positives (FPs) reduction and malignancy
level classification [11], [12]. In the stage of nodule candidate
detection, a considerable number of suspicious nodules are
marked out from lung parenchyma of the thorax. It should be
noted thatmost of the nodule candidates are FPs, and theywill
reduce both the accuracy of malignancy level classification
and the efficiency of the CAD system [13]. Thus, the FPs
reduction is often regarded as the prerequisite for malignancy
level classification. Preliminary results show that the usage of
vessel segmentation approach can eliminate approximately
38% of the FPs [14], [15]. Unfortunately, accurate vessel
detection in CT images still remains a problem because of
the geometrical complexity in vascular structures e.g., vessel
branches, bifurcations and small vessels [16].

In recent years, considerable research efforts have been
devoted to solving this problem. Among these works, 3D
image-based vessel segmentation has been intensively inves-
tigated for its advantages in generating 2D vessel slices at
arbitrary views, which can significantly increase the accu-
racy of vessel detection. Existing 3D vessel segmentation
methods can be divided into two categories: learning-based
and model-based. The learning-based vessels segmentation
methods can describe vascular feature comprehensively and
offer exciting opportunities for detecting more general vessel
structures [17], [18]. The recent experimental results suggest
that such approaches can achieve great results in terms of
sensitivity, specificity, and accuracy, especially in 3D neu-
ron [19] and retinal vessel segmentation applications [20].
However, the training stage in such methods requires large
number of vessel labeling information which is extremely
rare in chest CT dataset. In addition, the model-based meth-
ods e.g., Hessian-based model [19], multi-scale models [20],
centerline extraction model [21], have emerged as a powerful
and efficient tool on vessel segmentation for decades years.
Among these methods, the Hessian-based model like the
Frangi filter [22] is thought of as a key approach and has been
widely used in many applications including lung vessel seg-
mentation [23], cerebral vascular structure segmentation [24],
and color fundus retinal vessel segmentation [25]. For exam-
ple, in the work developed by Forkert et al. [24], the authors
use the Hessian matrix to enhance tubular-like structures in
the time-of-flight image sequence. This effort plays a vital
role in this method for achieving an exact segmentation of
malformed as well as small vessels from TOF magnetic
resonance angiography dataset. Similarly, Zhang et al. [26]
adopt the Hessian matrix to find a locally adaptive deriva-
tive (LAD) from retinal fundus images in their method. The

experimental results show that the method by using LAD can
deal with typically difficult cases like crossings, central arte-
rial reflex, closely parallel and tiny vessels. However, when
processing the vessels in chest CT images, some problematic
disadvantages of the Hessian-based model in the previous
3D vessel segmentation methods mentioned above cannot be
overlooked. One challenge is the detection of complex vascu-
lar structures, such as junction suppression, varying diameter,
endpoint or bifurcation, because they usually contain many
local blob-like structures which have low response to the Hes-
sian filter, and thus the morphological characteristics of the
vessels are broken seriously. Additionally, 3D Hessian-based
model are computationally expensive since their processing
of each voxel and its neighborhood in the image at several
scales.

In this work, we propose a novel multi-view vessel seg-
mentation method by detecting tubular-like structures infor-
mation to solve the above problems. It is noteworthy that
the tubular-like structure is the decisive characteristic to rec-
ognize various types of vessels. Specifically, the input CT
images set is first reconstructed into three slices sequences
along the normal directions of three orthogonal planes
i.e., sagittal plane, coronal plane and transverse plane, and
we can obtain the cross-sections of each lung vessel from
multi-view. This scheme drastically reduces the computa-
tional complexity of our method comparing with voxel calcu-
lation. In addition, it also ensures the available differentiation
between vessels and nodules, and increases the sensitivity of
detecting vessels by utilizing three orthogonal views. Then,
in each view, the connected regions are enhanced by Frangi
filter and the response results are employed by our proposed
structure discriminating model, to identify the tubular-like
structures. This model considers the drawback of Frangi filter
that has low response on complex vascular structures locally,
and thus uses the overall response ratio to determine vessels.
Finally, wemeasure the vessel likelihood of each pixel relying
on their structure discriminant results in three orthogonal
views. The experimental results show that our method can
recognize more general vascular structures robustly and sen-
sitively, and achieve fast vessel segmentation.

Besides, after the process of vessel segmentation, classify-
ing the remaining connected regions, including nodules and
lung tissues, into their malignancy levels is another concern
in our system. Focusing on this problem, feature extraction
is an effective approach that can describe the relevant image
information contained in a pattern [1]. To improve the gener-
alization performance, data fusion has become an emerging
direction in feature extraction since this method can learn
multiple features from objects [27]. In particular, fusing edge
features and texture features for the malignancy level classi-
fication of lung nodule has been mentioned in a number of
studies, because the morphological characteristics of nodules
are sophisticated and single feature set can’t comprehensively
describe their information. One of the critical contributions
for the issue should be mentioned, for instance, is the work
of Li et al. [28] that proves texture features and edge features
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are helpful in differentiating malignant nodules from benign
nodules. Moreover, to improve the description of lung nod-
ules, Zhang et al. [29] design a multiple features descriptor
that fuses texture and edge information of image patches
in their study. The results from their experiments clearly
demonstrate the promising classification performance of the
method.

It should be pointed out that data fusion has two major
problems that one is optimizing the description and the other
is reducing dimension. Fusing more features is definitely
better for optimizing description. But considering most of the
popular single feature descriptors, such as HOG [30], MS-
LBP [31] or SIFT [32], have already suffered the problem of
high dimension, fusing these features will make this problem
more serious. Furthermore, 3D feature is often adopted for
optimizing lung nodule description, and this may further
increase the dimensions. Therefore, to realize a better feature
extraction of lung nodules for malignancy levels classifica-
tion, optimizing description and reducing dimension should
be considered, simultaneously.

In response to these challenges, this work presents an
efficient malignancy level classificationmethod by extracting
spatial edge features and spatial texture features from the
result of vessel segmentation. Our method comprises four
main steps. Before the feature extraction, we design a mathe-
matical description for the remaining connected regions that
uses neighbor-centroids clustering to obtain spatial associa-
tion information between these regions. This mathematical
description is the fundamental condition for extracting spa-
tial features in the subsequent steps. Moreover, we present
an approach for extracting spatial edge features based on
the mathematical description. In this approach, we formu-
late a gray values cumulative function that combines all
patches of an entity into one image. The function can both
improve the outline completeness of the entities and reduce
the computational complexity of spatial edge feature extrac-
tion. From the combined image produced by the function,
we use Edge Orientation Histograms (EOH) [33] to extract
edge features. EOH is a simple and efficient edge feature
descriptor, which is suitable for our work. Furthermore, a spa-
tial texture feature extraction approach is proposed in this
work. To simplify the density distribution representation of
the entities, we formulate a patches selection function in this
approach. The function selects three samples discretely from
each patches sequence. For optimizing the texture feature
extraction from the samples, we propose a multi-scale path
LBP (MSPLBP) based on path integral Local Binary Patterns
(pi-LBP) operator [34]. Pi-LBP can effectively encode the
cross-scale correlation and reduce the sensitivity to noise.
However, this method has poor performance in describing
the texture size and texture structure, and its dimension is
very high. Considering this problem, MSPLBP expands the
lateral scale to improve the description of the texture size
and the texture structure, and merges the paths to reduce the
feature dimensions. Finally, three state-of-the-art classifiers
i.e., NNCS [35], MWLSTSVH [36], and DLSR [37] are used

to classify the fused spatial edge and texture feature of the 3D
lung entities into 6 malignancy levels.

In general, our contributions can be summarized as
follows:

1. We propose a multi-view vessel segmentation method to
reduce FPs of lung nodule candidates. The method can recog-
nizemore general vascular structures robustly and sensitively,
and achieve fast vessel segmentation.

2. We design a mathematical description for 3D lung enti-
ties with the results of vessel segmentation to provide the
fundamental conditions for spatial feature extraction.

3. We formulate a gray values cumulative function to
improve the outline completeness of the entities and simplify
the spatial edge feature extraction using EOH.

4.We formulate a patches selection function for the entities
to reduce redundant information of density distribution rep-
resentation. And a texture feature descriptor i.e., MSPLBP,
is proposed to extract texture features from the function
results, which can improve the texture feature description and
lower feature dimensions.

The rest of this paper is organized as follows.
Section 2 presents the detailed design on vessel segmentation,
spatial edge and texture feature extraction, and three state-of-
the-art classifiers used in our work. Experimental results and
discussion are reported in Section 3. Finally, the conclusion
of this paper is in Section 4.

II. MATERIALS AND METHODS
The overview schema of this work is depicted in Fig. 1. The
proposed method depends on four modules: (1) Initialization:
the pixels whose intensities are below to a given threshold
are set to 0. As the intensity of both the lung nodule and the
vessel are usually high, we can effectively eliminate the noise
having low intensity in the CT image; (2) Vessels Segmen-
tation: CT images are reconstructed into 3 slice sequences at
3 orthogonal views. In each sequence, we compute the overall
response ratio of each connected region in all the slices to
judge tubular-like structure. With this result, we discriminate
a voxel in the CT set as vessel if it belongs to a tubular-like
structure region in any view; (3) Spatial feature extraction:
the spatial edge feature and the spatial texture feature are
extracted to improve the feature description of our system;
(4) Classification: the fused edge and texture feature vector is
classified into 6 malignancy levels. The detailed description
of these modules is introduced in the following section.

A. IMAGE ACQUISITION
The chest CT databases used in this work are provided by
the LIDC and our co-operator LNUTCM. As we all know,
LIDC is a publicly available reference database of low-dose
helical CT imageswhich consists of 1018 cases [38]. Notably,
the Affiliated Hospital of LNUTCM is a grade-A hospital
and national TCM model hospital granted by the National
Traditional Chinese Medicine Administrative Bureau [39].
It is one of the best models of the Chinese health system,
being appraised as the state standard-setter for reliability in
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FIGURE 1. General schema used in this work: (1) Binarization; (2) Vessels
Segmentation; (3) Spatial Edge and Texture Extraction; (4) Classification.

public treatment and service [39]. Our CT database supplied
from LNUTCM contains 382 cases.

To quantitatively evaluate our vessel segmentationmethod,
the data of CT images with vascular labels is required in this
work. But no gold standard exists in advance for labeling ves-
sels in chest CT images. Hence, artificially defined vascular
labels for both LIDC and LNUTCM are used in our valida-
tions. These labels in our work are provided by 16 radiologists
fromLNUTCMwith 8-10 years of experience in general radi-
ology and then a thorax surgeon with 30 years of experience
is enquired for further verification. In addition, considering
that manual segmentation is extremely tedious and time-
consuming, we select 158 CT sets to label vessels for the
quantitative evaluations of our vessel segmentation method
in the experiment. The selection standard of these data sets
mainly includes two aspects. The first one is that the CT sets
should contain lung nodules with various shape character-
istics. This is because the goal of our vessel segmentation
method is to optimize the malignancy level classification of
lung nodules, and thus the data is required to evaluate not only
the performance of our method on segmenting vessels, but
also excluding lung nodules. It must also be mentioned that
there are 6 cases having no pathology contained in the 158 CT
sets to improve the diversity of the data. Moreover, the CT
slice spacing is also the important standard for selecting the
CT sets. As the slices spacing will influence the imaging
quality of sagittal plane and the coronal plane, and thinner
slice spacing can present better morphological characteristic,
we only select the CT sets having slice spacing less than 2mm.

Unlike the labeled vessel data, both LIDC and LNUTCM
contain detailed annotations about subjective nodule malig-
nancy levels. Four specialists set an integer value from 1 to
5 to evaluate each nodule’s likelihood of malignancy for
LIDC: 1 is highly unlikely for cancer, 2 ismoderately unlikely
for cancer, 3 is indeterminate likelihood, 4 is moderately
suspicious for cancer and 5 is highly suspicious for can-
cer [38]. Here, considering non-nodule may also involve in
the stage of classification, we add 0 to denote impossible for

FIGURE 2. 3D nodule and vessel mapping on the sagittal section, coronal
section, and transverses section. (a) shows a 3D nodule model, whose
imaging on three mapping planes all present blob-like structures.
In contrast, (b) displays a 3D vessel model that only the mapping plane
on the z-axis presents blob-like structures, whereas both the other two
mapping planes on the x-axis and y-axis present tubular-like structures.
It can be found from (a) and (b), the most significant difference of vessels
and nodules is the appearance of tubular-like structures in some certain
mapping planes.Thus, we can detect tubular-like structures from multiple
views to recognize vessels, especially to distinguish them from nodules.

cancer. Therefore, a total of 6 levels are used to evaluate the
malignancy of a lung nodule candidate. For the data from
LNUTCM, an experienced specialist was asked to set an
integer value for each nodule with the same standard as LIDC,
and we also add level 0 to this database.

B. VESSEL SEGMENTATION METHODOLOGY
Vessel segmentation is a necessary prerequisite for accurate
malignancy level classification of lung nodules because ves-
sels often produce ambiguity in lung nodules detection. In this
subsection, we propose a vessel segmentation method that
detects tubular-like structures from multiple views.

1) MULTI-VIEW VESSEL SCHEME
It is commonly known that vessel is a kind of tube that usually
exhibits tubular-like structures in images. However, in many
cases, vessels may present blob-like structures that are similar
to lung nodules in the single view, especially when they
are perpendicular to the images. Thus, using a single view
method to segment vessels is confusing, and this is one of the
main reasons for the high FPs rate in lung nodules detection.
To solve this problem, we adopt a multi-view vessel recon-
struction scheme to increase the probability of the appearing
tubular-like structures which can help to distinguish vessels
from nodules.

To illustrate the difference between vessel and nodule in
multiple views, we exhibit the mapping results of a nod-
ule model and a vessel model in Fig. 2. From the fig-
ure, we notice that mapping a vessel onto three orthog-
onal planes can obviously increase the probability of the
appearance of tubular-like structures. Thus, we restructure
CT images set of lung nodules candidates into three orthog-
onal planes sequence i.e., sagittal plane, coronal plane, and
transverse plane. Each of these reconstructive planes contains
the cross-sections of lung entities in its view. It should be
pointed out that the smaller intersection angle of a vessel with
the planes is more helpful for the cross-sections to present
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FIGURE 3. Relationship between intersection angle and length of
projection. (a): line segment ab is the centerline of a vessel V , line
segment AB is the cross-section of a vessel intercepted by x-axis, line
segment CD is the cross-section of the vessel intercepted by the y-axis.
θ1, θ2 denote the intersection angles of ab with the x-axis and y-axis,
respectively. The intersection angle θ1 is smaller than θ2, and this leads to
AB is longer than CD; (b): α, β, γ represent the intersection angles
between a vessel and x-y plane, y-z plane, x-z plane, respectively, and it
is impossible to make them greater than 45◦, simultaneously.

a tubular-like structure and we utilize Fig. 3(a) to present
this issue. Corresponding to Fig. 3(a) in practical application,
AB representing vascular cross-section is more similar to a
tubular-like structure than CD. In addition, we find that at
least one of the angles between vessels and the reconstructive
planes is not greater than 45◦ that is shown in Fig. 3(b).
This ensures the length of the cross-sections on reconstruc-
tive planes is larger than 1.4 times of the vascular diameter.
Moreover, the intersection angles are even smaller in practical
application because vessels are not absolutely straight. There-
fore, multi-view CT images reconstruction greatly improved
the probability of appearing tubular-like structures.

With the description above, our multi-view reconstruction
scheme mainly reveals three advantages for vessel detection.
As it promotes the tubular-like structure to appear, the dif-
ference between vessels and nodules becomes more obvi-
ously and thus the performance of distinguishing them is
improved. Furthermore, the sensitivity of detecting vessels is
also increased due to we have a greater probability to find
a tubular-like structure. This effectively reduces the interfer-
ence structures for the next stage. Finally, the scheme trans-
forms the 3D CT images set into three groups of 2D images.
This process drastically reduces the computational complex-
ity comparing to other 3D vessel modelings. Therefore, this
scheme can optimize our vessel segmentation method com-
prehensively.

It must also be mentioned that our method may produce
incorrect segmentation in some cases. In general, the lungs
within chest CT images can be grouped into sets of lung
tissues, nodules, and vessels. Except for vessels, a small num-
ber of lung tissues like trachea can also present tubular-like
structure in the reconstructive plane which may result in lung
tissue segmented incorrectly by our method. But it does not
affect the lung nodule malignancy level classification in our
system for the following two reasons. The first reason is that
the removal of tubular-like lung tissue does not break the
lung nodule area used in feature extraction. Besides, although
this problem may cause a drop in the accuracy of vessel

segmentation, sensitivity is improved in our system and this
is more important because removing more interference struc-
tures is helpful to malignancy level classification of nodules.

2) TUBULAR-LIKE STRUCTURE DETECTION
Through the process of our multi-view vessel reconstruction
scheme depicted above, we have improved the probability of
the appearance of tubular-like structures. In this subsection,
we aim to detect the tubular-like structure in each view and
thus propose a structure discriminating model based on the
response result of the Frangi filter. Frangi filter has an advan-
tage in distinguishing tubular-like structures and blob-like
structures by using the ratio of Hessian eigenvalues. This
is extremely suitable for vessel segmentation in the nodule
detection system. However, this method suffers some chal-
lenges, especially when detecting junction, endpoint, bifur-
cation, or some irregular vessel structures. Considering these
problems, our structure discriminating model calculates the
overall response ratio of a connected region to measure
its likelihood of tubular-like structure which improves the
robustness of detecting more general tubular-like structures.
The details of this model will be further described below.

Frangi filter uses the second-order derivatives of image
intensities to distinguish tubular-like structures from
blob-like structures. In this method, the second derivatives of
the Hessian matrix are calculated using the concepts of linear
scale-space theory.With these concepts, the interference from
local noise in images can reduce effectively. Specifically,
the second derivative of a pixel (x, y) is defined as a con-
volution with derivatives of Gaussian calculated in (1) -(3):

Ixx(x, y, s) = Gxx(s) ∗ Is(x, y). (1)

Iyy(x, y, s) = Gyy(s) ∗ Is(x, y). (2)

Ixy(x, y, s) = Gxy(s) ∗ Is(x, y). (3)

where I s(x, y) is a (2s + 1) × (2s + 1) image block with the
center pixel (x, y); Gxx(s), Gyy(s) and Gxy(s) are the second
derivatives of Gaussian filter at scale s as shown in (4) - (9):

Gxx(s) =
[
aij
]
(2s+1)×(2s+1) (i, j = 0, . . . , 2s), (4)

aij =

 0, if i, j = s,
∂2G(x, y)
∂x2

∣∣∣x=|i−s|,y=|j−s|, otherwise.
(5)

Gyy(s) =
[
bij
]
(2s+1)×(2s+1) (i, j = 0, . . . , 2s), (6)

bij =

 0, if i, j = s,
∂2G(x, y)
∂y2

∣∣∣x=|i−s|,y=|j−s|, otherwise.
(7)

Gxy(s) =
[
cij
]
(2s+1)×(2s+1) (i, j = 0, . . . , 2s), (8)

cij =

 0, if i, j = s,
∂2G(x, y)
∂x∂y

∣∣∣x=|i−s|,y=|j−s|, otherwise.
(9)

where G(x, y) is a two-dimensional Gaussian function. Then
the Hessian matrix of the pixel (x, y) with the Gaussian filter
at scale s is shown in (10) and a function is defined using the
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eigenvalues of the Hessian matrix for measuring vesselness
shown in (11):

H (x, y, s) =
[
Ixx(x, y, s) Ixy(x, y, s)
Ixy(x, y, s) Iyy(x, y, s)

]
, (10)

V0(x, y, s) =


0, if λ2 > 0,

exp(−
R2B
2β2

)(1− exp(−
R2A
2c2

)), otherwise.

(11)

RA =
√∑
j=1,2

λ2j (12)

RB =
λ1

λ2
(13)

where V0(x, y, s) denotes the response of the filter to pixel
(x, y) at scale s; λi (i = 1, 2) are the eigenvalues ofH (x, y, s);
RA in (12) is the measure of second-order structures and
RB in (13) is the 2D blobness measure accounting for the
eccentricity of the second-order ellipse; β and c in (11) are
thresholds that control the sensitivity of the vessel filter to
the measures RA and RB. The method uses the maximum of
filter responses V0(x, y, s) at all scales to be the vesselness
measure:

Vmax(x, y) = max
smin≤s≤smax

V0(x, y, s) (14)

where smin and smax are the maximum and minimum scales
at relevant structures for covering the range of vessel widths.

The enhancement results of Frangi filter for different situ-
ations are shown in Fig. 4, where (a), (b), (c), (d) are vessel
models and (e) is a nodule model. In each group, the left is
original image and the right is enhancement result.

As can be seen from Fig. 4, although the areas having low
response to Frangi filter exist in both the vessels and the nod-
ule, the ratios of these areas in the vessels are far less than the
nodule. Fig. 4 (b), (c) and (d) display some complex vascular
structures including endpoints, junction points, and varying
diameter, all of which have low response results to the filter.
Through analysis, we find that the low response areas usually
have smooth edges enclosing them and this makes them
form blob-like structures locally. In these areas, their second
derivatives in vertical or horizontal directions decrease dra-
matically, which leads to the low response result for the filter
finally. In contrast, Fig. 4(a) has a well enhancement result
because the edge of its endpoint is sharp. Considering the
areas enclosed by smooth edges in tubular-like structure are
far less than the blob-like structures as is shown in Fig. 4(e),
we find that the overall response ratio to the Frangi filter can
be used to distinguish them. Therefore, we present a structure
discriminating model of (15) that uses the conjunction of
response ratio and axis lengths ratio:

Tubular(CR) =


1, if TRF > RspFgi(CR)∪

TRL > OtlinLth(CR),
0, otherwise.

(15)

FIGURE 4. Enhancement results of Frangi filter to blob-like structure and
tubular-like structure: (a) small vessel; (b) bifurcation; (c) varying
diameter vessel; (d) curved vessel; (e) lung nodule, respectively.

where CR is a connected region, threshold TRF is set for
RspFgi() in (16) which is the overall response ratio of a
connected region to Frangi filter, and threshold TRL is set for
OtlinLth() in (17) that is the length ratio between the major
axis and theminor axis of the ellipse having the same standard
second-order central moment as CR. In (16), I (x, y) is the
gray value of pixel (x, y) in CR.

RspFgi(CR) =

∑
Vmax(x, y)∑
I (x, y)

, (x, y) ∈ CR (16)

In (17), MajLength() and MinLength() are the lengths of
the major axis and the minor axis, respectively. This function
can ensure the overall outline of CR presenting tubular-like
structure, which is important for small regions.

OtlinLth(CR) =
MajLength(CR)
MinLength(CR)

, (x, y) ∈ CR (17)

Finally, the discriminant result of (15) is used in (18)-(21),
where (18)-(20) can determine whether a pixel belongs to the
tubular-like structure region in a view, and (21) takes the final
decision with the results from all the views. The (18)-(21) are
shown as below:

gxi (y, z) =

{
1, if Tubular(CRx) = 1,
0, otherwise.

(18)

gyi (x, z) =

{
1, if Tubular(CRy) = 1,
0, otherwise.

(19)

gzi (x, y) =

{
1, if Tubular(CRz) = 1,
0, otherwise.

(20)

g(xi, yi, zi) = gxi (y, z) ∪ gyi (x, z) ∪ gzi (x, y). (21)
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where gxi (y, z) is the decision result of a pixel at the position
(y, z) in the reconstructive plane xi whose normal direction is
parallel to x-axis; gyi (x, z) is the decision result of a pixel at
the position (x, z) in the reconstructive plane yi whose normal
direction is parallel to y-axis; gzi (x, y) is the decision result
of a pixel at the position (x, y) in the reconstructive plane zi
whose normal direction is parallel to z-axis. CRx , CRy and
CRz are connected regions in the corresponding views that
contain pixels (y, z), (x, z) and (x, y), respectively.

The gxi (y, z), gyi (x, z) and gzi (x, y) will be marked as 1 if
the connected regions containing them are judged as vessels,
otherwise they will be marked as 0. The g(xi, yi, zi) denotes
the final decision result of the pixel at position (xi, yi) in zith
slice of CT sequence. This method utilizes global characteris-
tics of enhancement result that can avoid the influence of the
low response in endpoints, vascular junctions, and irregular
cross-sections which improves the robustness of detecting
tubular-like structures.

C. FEATURE EXTRACTION
After the vessels are segmented, we aim to extract spatial
edge features and spatial texture features from the remaining
connected regions for classifying malignancy levels in this
subsection. It consists of three main parts. Firstly, we design a
mathematical description for the connected regions to obtain
spatial association information between them that provides a
fundamental condition for feature extraction. Then the spatial
edge feature and spatial texture feature are extracted in the
following two parts, respectively.

1) REGIONS OF INTEREST (ROIs) CLUSTERING
The spatial association information between the remaining
connected regions is essential for spatial feature extraction.
To obtain the information, we should divide these connected
regions into patches sequences corresponding to the entities
they belong to. As the vessels have been removed by our ves-
sel segmentation method, the number of connected regions
is significantly reduced and this is helpful to cluster these
regions. With the characteristic, we design a mathematical
description using neighbor-centroids clustering to divide the
connected regions. All of the feature extraction processes in
the subsequent steps are based on this description.

Firstly, it must be declared that all the remaining connected
regions in the CT slices are regarded as ROIs in this subsec-
tion. And then we divide these ROIs by slice into N sets that
defined in (22):

SetROI = {SlcROI1, SlcROI2, . . . , SlcROIN } (22)

where SliceROIi is the set of ROIs in the ith slice and N is the
number of all CT slices. We use Pini to denote ROI that is the
first cross-section of an entity satisfying the conditions: (23)
or (24).

Pini ∈ SlcROI1 (23)

Pini ∈ SlcROIr ∧ @Ps
(Ps ∈ SlcROIr−1 ∧ f (Ps,Pini) < Tcen) (24)

where Ps is a ROI, f (X ,Y ) is a function that calculates the
distance between the centroid coordinates of X and Y with
the L2 norm and Tcen is the threshold for the determination
of ROIs clustering. The model of ROIs clustering is shown
in (25)-(27):

A1 = {P|P = Pini} (25)

Ai = {P|∀P(P ∈ SlcROIK+i−1 ∧ ∃P′(P′ ∈ Ai−1
∧f (P,P′) < Tcen))} (1 < i ≤ N − k + 1) (26)

ETI lK = A1 ∪ A2 ∪ . . . ∪ AN−K+1 (27)

where P and P′ are ROIs and ETI lK denotes a complete ROIs
set of an entity that starts from lth ROI in K th CT slice. With
this description, all the ROIs in the CT slices are divided into
patches sequence corresponding to entities and we can extract
spatial edge and texture feature from these entities.

2) EDGE FEATURE EXTRACTION
In this subsection, we design an approach for extracting spa-
tial edge features from the patches sequence. Edge features
including shape features, such as lobulation, spiculation and
roundness [40], are the significant characteristics for cancer.
However, as some lung tissue regions were broken in the
process of vessel segmentation, these characteristics may be
changed, and this may interfere with the precision of the edge
feature description. To solve the problem,we formulate a gray
values cumulative function that can integrate all patches of an
entity in one image. This function can not only improve the
completeness of the outline in each entity, but also reduce the
computational complexity of spatial edge feature extraction.
Then, considering gradient distribution provides powerful
edge information for discriminating various anatomical struc-
tures of nodule in CT images, we utilize EOH to extract edge
features from the function result.

To illustrate the characteristics of lung tissue and nodule,
we exhibit two patches sequences in Fig. 5. It can be found
from Fig. 5(a) that the lung tissue regions in each patch
are the different parts of the same entity actually, and they
are separated due to the vessel segmentation in the previous
stage. This means the spatial structure of the lung tissue is
broken and extracting spatial edge features in this situation
is inaccurate. On the contrary, in Fig. 5(b), the lung nodule
regions are reserved completely and their relative positions in
each patch are similar. Through these characteristics, we find
that overlapping all patches of an entity can enhance its edge
feature. With this approach, the dispersed tissue regions are
combined in one image and thus the complete edge feature
is generated. In addition, for the nodule, the most distinctive
patches can be outstood which is a benefit for classification.
On the basis of these findings, we formulate a gray values
cumulative function as follows to integrates all patches of an
entity in one image where Grayi is the gray value of ith CT
patch in an entity and n is the number of the CT patches.

Grayeti =

∑n
i=1Grayi
n

(28)
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FIGURE 5. Patches sequence of lung tissue and nodule. The centroid distribution in (a) is dispersed and disorderly, and the edge
features of these regions have big differences. In contrast, the centroid distribution of nodule regions in (b) is stable, and the edge
features of the nodule regions are similar and changing gradually.

FIGURE 6. Results of gray values cumulative function. (a) Cumulated lung
tissue. (b) Binary lung tissue. (c) Cumulated lung nodule. (d) Binary lung
nodule.

Fig. 6 shows the results of (28) in (a) and (c). For further
enhancing the edge feature, we have a binary process before
extracting edge feature and the binary images are shown
in Fig. 6 (b) and (d). With this function, the spatial edge
feature of the entities, especially the lung tissue, is enhanced.
Moreover, the computational complexity of the spatial edge
feature extraction is sharply reduced.

After the process of the gray values cumulative function,
we use EOH to extract the edge feature. EOH is a simple and
efficient edge feature descriptor that computes a histogram
of gradient magnitude corresponding to gradient orientation.
The drawbacks of EOH is sensitive to noise and illumination,
and performing badly on the rotation component. As the inte-
grated image in this stage has a simple background, the draw-
backs mentioned above are not referred in our approach and
thus EOH is suitable for our approach.

Specifically, EOH is adoptedwith horizontal gradient com-
ponent Gx and vertical gradient component Gy generated
from the convolution between an image block and two 3 ×
3 special matrixes. The Gx and Gy are calculated in (29)
and (30):

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ A (29)

Gy =

 1 2 1
0 0 0
−1 −2 1

 ∗ A (30)

FIGURE 7. ROI is divided into 4 blocks.

where A is an image block. Then the image gradient
[Gx(x, y),Gy(x, y)]T is converted into the polar coordinate
[m(x, y), θ(x, y)]T, wherem(x, y) is the magnitude and θ (x, y)
is the orientation of the image gradient, calculated by (31)
and (32):

m(x, y) =
√
Gx(x, y)2 + Gy(x, y)2 (31)

θ (x, y) =
π

2
+ arctan(Gx(x, y)/Gy(x, y)) (32)

where π
2 in (32) is used to map the orientation θ into

[0◦, 180◦] for avoiding directional symbol. We divide
[0◦, 180◦] into σ bins and the magnitude Ek is accumulated
by (33) when belongs to the kth bin, where binl denotes the
lth bin in direction range.

θ (x, y) =
∑

m(x, y), θ(x, y) ∈ binl (33)

As original EOH loses location information of the parts
in an object, we divide the ROI into 2 × 2 = 4 blocks and
extract EOH from each block, respectively. Thus, the EOH in
our method comes from the 4 blocks, as is shown in Fig. 7.
We evenly divide the gradient orientation into σ = 18
bins over 0◦ to 180◦ in the application and there are totally
18× 4 = 72 dimensions emerged in the EOH feature vector.

3) TEXTURE FEATURE EXTRACTION
In addition to the edge feature, texture feature is also an
important factor for the malignancy levels classification of
lung nodules because it can describe density, and especially,
distinguish ground-glass opacity (GGO) types of nodules.
As the density of 3D nodule is no uniform, obtaining spatial
density distribution is necessary to improve the accuracy of
nodule description. To abstract the spatial density distribution
representation of lung nodule and reduce redundant infor-
mation of patches sequence, we formulate a patch samples
selection function based on the mathematical description in
Section II-C-1. The function selects three samples discretely
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FIGURE 8. Diverse density distributions in cross-sections generated from
the patches at different positions in the same lung nodule. (a) shows the
simulated transverse planes of three mixed GGO. (b) and (c) are the
patches at different positions of the nodules. (d) shows the density
distributions in cross-sections corresponding to (b) and (c), respectively.

from each patches sequence. Moreover, to optimize the tex-
ture feature description, we propose MSPLBP to extract tex-
ture features from these selected samples in this subsection.

As can be seen from Fig. 8, the patches at different posi-
tions of the same lung nodule may generate different density
distributions and thus single patch usually can’t reflected the
real density distribution of the lung nodule. For example, to
(d) of the first row in Fig. 8, this nodule can be judged as
a pure GGO on the basis of the density distribution in the
patch from (b), whereas from the second patch in (c), it can
be seen as a mixed GGO. Moreover, the density distribu-
tions in neighboring lung nodule patches are similar. This
means that a large amount of redundant density distribution
information exists in these patches. Considering the above
problems, we design a patches selection function that selects
three samples from a lung nodule patch sequence to represent
the density distribution of this nodule. The function is shown
in (34) -(36):

Tex1 = argmax
Pi∈ETI lk

Area(Pi), (1 ≤ i < round(
n
3
)) (34)

Tex2 = argmax
Pi∈ETI lk

Area(Pi), (round(
n
3
) ≤ i ≤ round(

2n
3
))

(35)

Tex3 = argmax
Pi∈ETI lk

Area(Pi), (round(
2n
3
) < i ≤ n) (36)

where n is the numbers of patches in the entity ETI lk , Area(P)
is the function for calculating the area of ROI in patch P, and
Round(x) rounds the elements of x to the nearest integers.
Then, Texi (i = 1, 2, 3) are used together for texture extrac-
tion in the subsequent steps. It can be seen from the (34)-(36)
that Tex1, Tex2, and Tex3 are indexes of the patches having
the largest area in the front, middle and back parts of the
sequence, respectively. This ensures these patches contain-
ing identifiable texture information and we can obtain the
density distribution from them. In this function, we ignore

FIGURE 9. Comparison between LBP and pi-LBP for multi-scale detection.
(a) Multi-scale in LBP. (b) Multi-scale in pi-LBP.

other patches to reduce the redundant density distribution
information and improve the efficiency of texture feature
extraction.

To optimize the texture feature extraction from the selected
patches, we propose MSPLBP based on pi-LBP. LBP is
vastly used for texture description in various applications, and
pi-LBP proposed by Lin and Qi [34] is based on LBP that can
fully utilize the cross-scale correlation. The results indicate
that pi-LBP can improve the robustness of LBP obviously.
However, pi-LBP can’t describe the texture size and the
texture structure very well. These texture characteristics are
helpful to improve the precision of texture feature description
and optimize the malignance levels classification. Moreover,
pi-LBP has high dimensions and is designed only for a 2D
image. This not only affects the efficiency of the method, but
also limits the expansion in spatial texture feature description.
To solve these problems, MSPLBP expands the lateral scale
to improve the description of the texture size and the texture
structure, and merges the paths to reduce feature dimensions.
The details of MSPLBP will be shown below.

The main difference between pi-LBP and LBP is shown
in Fig. 9 that (a) presents the conventional multi-scale
description of MS-LBP with a circle-like structure and (b) is
pi-LBP using paths to combine neighborhood pixels across
different scales. The code model of pi-LBP is generated
by (37):

pi_LBPP,f =
P−1∑
j=0

s(
KN∑
i=1

f (i)gj,i)2j (37)

where P is the number of bits in LBP code, KN is the number
of nodes in a path, f = (f (1), . . . , f (KN )) is a filter satisfying∑KN

i=1 f (i) = 0, gj,i is the grey value of the ith node in the
jth path, the function s(x) is defined as 1 if x ≥ 0 and
0 otherwise. Additionally, pi-LBP also has rotation invariant
with the following equation:

pi_LBPriu2P,f =


∑P−1

j=0
s(
∑KN

i=1
f (i)gj,i),

if U (pi_LBPP,f ) ≤ 2,
P+ 1, otherwise.

(38)

where U (pi_LBPP,f ) denotes the number of bitwise transi-
tions from 0 to 1, or 1 to 0 in the binary form of pi_LBPP,f .
The path in pi-LBP is a gray value set of the nodes from each
scale, which impacts the texture feature of the center pixel.
There are 7 paths designed in pi-LBP as shown in Fig. 10.
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FIGURE 10. Paths of pi-LBP in different scales. (a) KN = 2. (b) KN = 3.
(c) KN = 4.

FIGURE 11. Paths of MSPLBP in different scales. (a) KN = 2. (b) KN = 4.
(c) KN = 6.

FIGURE 12. Merged paths in MSPLBP. (a) KN = 2. (b) KN = 4. (c) KN = 6.

As can be seen from Fig. 10, pi-LBP expands the paths
into three scales vertically. But there is only one scale
expended in the horizontal direction i.e., the leaf nodes 2 and
4 in (b), and the leaf nodes 3 and 5 in (c). The structure
loses the texture width information which is important for
describing texture structure and texture size. This affects the
evaluation of ground glass degree and leads to inaccurate
results in the malignancy level classification of lung nod-
ule. Considering this problem, we design a path structure
that expands the horizontal scale of leaf nodes as is shown
in Fig. 11. With this structure, we can describe larger and
more complex texture feature, and thus the precision of the
GGO texture feature is improved in our method.

Besides, high dimension is also a problem in pi-LBP.
As the dimension of pi-LBP is 680, the length of our texture
feature vector will be 680 × 3 = 2040 if we use pi-LBP in
spatial texture extraction. It will seriously affect the efficiency
of our method. To solve this problem, we merge the paths at
the same scale to reduce the number of paths becausemultiple
paths is the main reason for high dimensions. The merged
paths in MSPLBP are shown in Fig. 12.

As can be found from Fig.12, all of the merged parts are
overlapping in pi-LBP and thus our approach can reserve the
correlations between the nodes as pi-LBP. To further reduce
the dimensions in ourmethod, we design a set of filter weights

shown in Table 1 where the node index is corresponding to
the number in Fig. 12. Considering the central pixel tends to
integrate with surrounding pixels when the scale is expand-
ing, we regard all none-leaf nodes as a whole and set them
to the same weight. In contrast, the weights of leaf nodes
are set with the range [2, 0]. With this set of filter weights,
the dimension of the MSPLBP feature vector is dropped to
(1+3+3)×10 = 70 and thus the computational complexity
is greatly reduced.

D. CLASSIFICATION
In this work, we select three classification methods
i.e., NNCS [35], MWLSTSVH [36] and DLSR [37], to divide
the joint feature vector of EOH and MSPLBP. These classi-
fication results are used to evaluate the performance of our
system. As there are 6 levels in the result of a nodule malig-
nancy classification, all the selected classifiers are proposed
for the multi-classification problem.

NNCS is an improved neural network classifier utilizing
the composite stumps to share features, and it adopts an
adaptive stage-wise iterative method to generate network.
NNCS consists of the input layer, one hidden layer, and the
output layer. The parameters between the input layer and the
hidden layer are estimated by a weighted linear regression
with sparsity constraints, and other parameters are calculated
by weighted least squares. NNCS simplifies the structure
of the neural network which can improve the efficiency of
computation with higher accuracy.

MWLSTSVH aims to solve multi-classification prob-
lems in SVM frameworks with the one-versus-rest method.
This method introduces local density information into the
LS-TSVH to reduce the impact of noisy samples and uses
the Newton downhill algorithm to improve the efficiency.
The results of computational comparisons with other classical
multi-class classification algorithms show that MWLSTSVH
achieves a better classification performance than the com-
pared algorithms.

DLSR is proposed for multi-classification by enlarging
the distance between different classes under the conceptual
framework of LSR. In this approach, the Hadamard product
of matrices is introduced to organize the ε-draggings for a
compact model form, which translates well the one-versus-
rest training rule for multi-classification. As only a group
of linear equations that needs to be solved in each itera-
tion, DLSR has low time complexity in applications. Exper-
iments show that this algorithm is comparable to classical
algorithms.

In our training process, we adopt stratified 5-fold cross
validation that divides the selected dataset into 5 groups
corresponding to the stratified result of each malignancy
level [41], and uses the 4 groups to train the system and
the one group left to validate the system. It must also be
mentioned that, to further reduce generalization error of the
trained system, we divide the GGO samples in each malig-
nancy into 3 categories i.e., pure GGO, mixed GGO, or solid
opacity, and evenly distributed each category to the 5 groups.
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TABLE 1. Filters of MSPLBP.

III. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents and analyzes the experimental results
of our system for evaluating the performance of nodule
malignancy classification. The experiment consists of two
parts: (i) the evaluation of the proposed vessel segmenta-
tion method, and (ii) the comparative experiment among
different malignancy level classification methods. In the first
experiment, we aim at comparing the accuracy and the effi-
ciency of our vessel segmentation method with the other
related methods. And the goal of the second experiment is to
investigate the performance of our joint EOH and MSPLBP
descriptor for nodule malignancy classification by applying
the NNCS, MWLSTSVH and DLSR classifiers. In addition,
the improvement of malignancy classification after using our
vessel segmentation method is exhibited in the second exper-
iment. All experiments are conducted on 8GB RAM, Intel
Core i7 processor with 3.60 GHz, and Windows 10 operating
system. The method is implemented using the MATLAB
R2018b Win64.

A. LUNG VESSEL SEGMENTATION EXPERIMENT
In this subsection, we present the process and the results of
our method in vessel segmentation. Fig. 13 shows the whole
process of our vessel segmentation method in three views.
The first column in this figure shows the images generated
by the threshold method. This method can suppress the noise
and low-intensity areas in original CT images, and espe-
cially, separate weak connections between the vessels and
juxta-vascular nodules (JVN) to restore the real lung nodules.
It must also be mentioned that a low threshold is helpful to
improve the completeness of vessels and nodules, but it may
lead to the noise enhanced. Therefore, an appropriate gray
threshold is important in our method, and in this experiment,
we set it to 130.

Besides, the images in the second column display the
response results of the Frangi filter. In these images, we can
observe that the overall response ratio of tubular-like structure
regions is obviously higher than blob-like structure regions
i.e., partial vessels and nodules. Moreover, unlike the smooth
margin nodules, the lobulated nodules have higher response
in central regions, whereas lower response in each lobula-
tion subregion. Although the overall response ratio of the
lobulated nodules may be higher than the smooth margin
nodules, it’s still much lower than the typical tubular-like
structure. Therefore, we can find from the images in this
column that high overall response ratio is a remarkable char-
acteristic of tubular-like structure comparing to blob-like
structure.

Furthermore, the third column is the heat maps of the over-
all response ratio of Frangi filter in each connected region.
From these images, we can find that the vessels with blob-like
structure have the lowest response and the tubular-like struc-
ture vessels have the highest response. Notably, the heat
of nodules is between these two kinds of vessels. The
reason for that is nodules have irregular appearance. In gen-
eral, the |RB| (0 < |RB| ≤ 1) in tubular-like structure
is close to 0. The blob-like structure vessels are very sim-
ilar to typical circle regions and their eigenvalues of the
Hessian matrix are approximate, which makes their |RB|
close to 1. Considering the nodules are irregular, their |RB|
may be close to 0 in some subregions and this makes the
whole nodule region tend to present more tubular-like struc-
ture than blob-like structure vessels. Therefore, the value
of threshold TRF is critical for distinguishing vessels and
nodules.

The fourth column shows the discriminating results of
tubular-like structure with the threshold TRF = 0.92.
The detected vessels are labeled red in the images. With
this threshold, our method can separate tubular-like struc-
ture vessels from nodules and blob-like structure ves-
sels accurately. Finally, the segmentation results are shown
in the fifth column. It can be seen that the num-
bers of the detected vessels in each view are approxi-
mate and this means our multi-view vessel discriminating
method can effectively improve the sensitivity of vessel
segmentation.

Figure. 14 illustrates 6 examples of vessel segmenta-
tion results. These results show that our method has high
sensitivity for most vessel structures including bifurcation,
junction suppression, and varying diameter. Recognizing vas-
cular bifurcation is challenging, because this structure has
diversity appearances, such as different intersection angles,
branch quantity, and branch length. In our method, vascular
bifurcation can be seen as a combination of many tubular-like
structure regions. The Frangi filter can highly respond to
each of these regions separately. Thus, the overall response
ratio of the bifurcation will be very high. Similarly, junction
suppression may disconnect the vascular branches from the
main vessel at weak connection points, and this will reduce
the sensitivity and accuracy of other vascular structure extrac-
tion methods. But it will not affect our method because we
calculate the overall response ratio of each vessel segment
separately. Additionally, the vessel with varying diameter,
especially the small vessel which has weak structure charac-
teristic, is difficult to be detected in many methods. As Frangi
filter can enhance vessels at multi-scale and obtain local
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FIGURE 13. Illustrative vessel segmentation results using the proposed method in each view. Each group contains three images sequences
that display the whole vessel segmentation results in three orthogonal views, respectively. From top to bottom: transverse plane, sagittal
plane, and coronal plane. From left to right: original example images, response result images to Frangi filter, the likelihood heat maps of
tubular-like structures, determination results with a given threshold, and segmentation results by the proposed method.It should be
pointed out that, in the heat map, the range of response ratio i.e., the likelihood of tubular-like structure, from 0 to 100 corresponds to the
cool color i.e., blue, to the warm color i.e., red, in heat color bar.

maximum response from each scale, our method can perform
well on the vessels with varying diameters including the small
vessels.

However, it should be pointed out that our method
misses many low-intensity vessels because these vessels are

eliminated in the threshold method. Even so, we still can’t
reduce the threshold to improve the sensitivity of detecting
these vessels due to this will increase the interference of
noise. Moreover, some tubular-like lung tissue, such as tra-
chea, are also segmented by our method. Although this may
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FIGURE 14. Illustrative segmentation results using the proposed method on 6 example images, respectively. From top to bottom: original
example images, manual segmentation results, and segmentation results by the proposed method.

decrease the accuracy of vessel segmentation, it doesn’t affect
the classification of the malignancy level.

Fig. 15 shows the results of applying different vessel seg-
mentation methods to 2 examples with representative patches
containing vascular bifurcations, small vessels, and JVN.
In Fig.15, three other state-of-the-art vessel segmentation
methods are selected for comparison: Ring Pattern Detector
(RPD) [42], Centerline Extraction Method (CE) [21], and
Weighted Symmetry Filter (WSF) [20]. Among them, RPD
and WSF are proposed focusing on tubular-like structure
enhancement. In RPD, ring-like patterns are sought in the
local orientation distribution of the gradient to compute struc-
turedness, evenness, and uniformness of vesselness which are
used for enhancing tubular structures. To compare the perfor-
mance of this vesselness filter with our method, the threshold
method is used to segment vessels after filtering by RPD.
Moreover, WSF uses a symmetry filter to enhance tubular
structures in the given image and employs a graph-cut-based
model for the enhanced vessel map to segment the vessels.
Except for RPD and WSF, we also select a circle enhance-
ment filter i.e., CE in our experiment. CE is a vessel segmen-
tation method based on centerline extraction that tracks the
vessel tree from a user-initiated seed pointing to the ends of
the vessel tree. Comparing with the methods, we can evaluate
the performance of our methods more comprehensively.

For a fair comparison, the parameters of these methods
are optimized for the best performance as follows: RPD is
set as a single scale of 1.2 mm, CE is involved with a scale
parameter σ = 5, and WSF has two orientation parameters
and we set them as θ1 ∈ { π16 ,

2π
16 ,

3π
16 , . . . ,

15π
16 , π} and θ2 ∈

{
2π
16 ,

4π
16 ,

6π
16 , . . . ,

30π
16 , 2π}. Our proposed method has four

parameters. Among them, θ , c are referred to Frangi filter and

we set β = 0.50 and c = 15. The parameter TRF is set as a
boundary between tubular-like structure regions and blob-like
structure regions. Lower TRF tends to lose the restriction
of blob-like deformations and make the FPs ratio increase,
whereas upper TRF will rise the false negatives (FNs) ratio
for tubular-like structure regions. TRL is used to ensure the
overall outline of regions presenting a tubular-like structure.
In this experiment, we have found that the best performance
can be obtained if TRF = 0.92 and TRL = 2.
Fig. 15(a) shows the vessel segmentation results of these

related methods. It can be seen from that the RPD can detect
the disconnected vessel segments and high-intensity regions
in vessel confluence. But thismethodmisses the low-intensity
parts of a vascular cross-section which corrodes vessel tree
and produces small fragments that affect nodules evaluation.
CE can also detect vessels in confluence, and obtain complete
vessel main tree. The drawback of this method is that it
affected by vascular junction suppression seriously. This may
cause small vessels and endpoints of the vessel tree to be
missed. WSP has better performance on vascular junction
suppression and bifurcations. However, similar to RPD and
CE, it yields relatively low responses to the irregular weak
vascular branches as shown in patch 2.

In sharp contrast, the proposed method can not only have
better responses to bifurcations, and vessels confluences with
both high and low intensities, but also recognize small vessels
and disconnected vessel segments. The reason is that our
method focuses on the local tubular-like structures and thus
is less affected by the global irregular vascular deformation.
This embodies the robustness and sensitivity of our method.

Besides, Fig. 15(b) shows the results of these methods
on the vessels close to JVN. As can be seen from these
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FIGURE 15. Illustrative vessel segmentation results on two images, (a) and (b), chosen from the LIDC dataset. From left to right: original
images, manual segmentation results, the results of RPD, CE, WSF, and our proposed method, respectively. Top: original CT images. Bottom:
selected regions including vascular bifurcation, weak vessels, and JVN.

images, the nodule in our method is the most complete, and
all of the other methods break the morphological charac-
teristic of the nodule. The vessels contained in the nodules
are helpful to maintain the completeness of the nodules and
can improve the accuracy of malignancy level classification.
Thus, they should not be removed together with other ves-
sels and our method is more suitable for vessel segmen-
tation in this CAD system than the other methods in this
experiment.

In Fig. 16, we choose three CT sets for building 3D
models to illustrate the results of vessel segmentation. This
figure displays the whole vessel trees which are segmented
by the proposed method, including junction suppression,
small vessels, endpoints or bifurcations, and the nodules
are reserved for malignancy level classification. As can
be found from the figure, a large number of endpoints
are disconnected from the main vessel trees. It is one of
the most challenging in lung vessel segmentation. With
the proposed method, these regions can be detected sensi-
tively, and this can reduce FPs significantly for the subse-
quent stage. Moreover, the nodules are well extracted by
the proposed method, and the nodular features are reserved
completely.

To quantitatively evaluate the performance of our vessels
segmentation method, we use the Precision − Recall (PR)
curve in our experiment because the PR curve performs
better than the Receiver Operator Characteristic (ROC)

FIGURE 16. 3D modeling for vessel segmentation by our proposed
method. (a) shows the 3D lung model which is built from the image
processed by the threshold method. (b) displays the vessel segmentation
results that the red parts are vessels and the green parts are suspected
nodules. (c) extracts these suspected nodules separately to the
subsequent stage of spatial edge and texture feature extraction for
malignancy level classification.

curve when the number of negative samples, such as the
background, is uncertain and greatly exceeds the positive
samples [23]. Moreover, the F1_score is introduced to mea-
sure the comprehensive results of precision and recall under
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FIGURE 17. PR curves for the vessel segmentation methods. The numbers
inside the brackets of legend are AUC values.

a certain threshold. The Recall (True Positive Rate, TPR),
Precision, and F1_score are defined in (39)-(41).

Recall =
TP

TP+ FN
(39)

Precision =
TP

TP+ FP
(40)

F1_score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(41)

where TP, FN , TN , FP are true positive, false negative,
true negative and false positive number of lung nodules,
respectively. The computed PR curves of the 4 methods are
presented in Fig. 17.

As can be seen from the PR curves in Fig. 17, our proposed
method takes the maximum AUC of the three methods, espe-
cially obvious with the CE. The reason is that our method
recognizes vessels when tubular-like structures appear in
any of the three orthogonal planes. This scheme not only
improves the sensitivity, but also increases the robustness for
detecting various vessel structures including ordinary vessel,
bifurcation, segmental vessel or varying diameters vessels.
Note that the precision of our method is lower than WSF
when the recall is greater than 0.93. The reason is our method
uses a single characteristic i.e., the overall response ratio to
Frangi filter, to determine vessel. This means that if we lower
the threshold TRF to improve the sensitivity for the vessel
regions with inapparent tubular-like structures, other regions
with important pathological features such as nodule, patch
shadow or calcification, may be also segmented by mistake.
Considering the purpose of our system is malignancy level
classification for lung nodules, higher TRF is practicable to
our system.

The average recall, average precision and average
F1_score of these methods are shown in Table 2. For present-
ing the validity of our scheme that uses 3 orthogonal views for
determining a vessel, we add other schemes that use different
numbers of views to detect a vessel in our experiment. Two

TABLE 2. Comparison of the algorithm with published studies of Recall,
Precision, F1_score and Runtime. The results of proposed methods are in
bold.

new views are involved with the experiment, namely normal
direction of x + y + z = 0 and x + y − z = 0, where the
x-axis is the normal direction of the transverse plane, the y-
axis is the normal direction of the sagittal plane and the z-
axis is the normal direction of the coronal plane. Thus, our
experiment contains 5 situations that the number of views
ranges from 1 to 5, and 3 views is the scheme of our method.
As there are multiple choices in the cases of 2 views scheme
and 4 views scheme, we use the maximum average F1_score
of all the choices as the final result in the corresponding
case.

As can be seen from Table 2, compared with the other
three methods i.e., RPD, CE and WSP, our method has the
highest average recall and this proves the effectiveness of
our method to detect more general lung vessel structures.
For the average precision, the proposed method is 1.75%
higher than CE, whereas it is 2.25% and 2.80% lower than
RPD and WSP, respectively. The main reason for this is
the interference from the thick tracheal wall. They usually
present ring-tubular structure and thus have a high overall
response ratio like vessels. Moreover, the average recall of
our method is 29.51% and 8.06% higher than the methods
with 1 view and 2 views and is 1.3% and 3.43% lower than
4 views and 5 views. We can find that the growth of average
recall falls sharply when the number of views is bigger than
3. This means that 3 views is the demarcation point of average
recall growth in vessel detection. In contrast, the average
precision is approximate between the methods with different
numbers of views. Therefore, it can be demonstrated that
the effect of our multiple views scheme mainly embodies in
average recall, while the average precision mostly depends
on our structure discriminating model.

In order to evaluate the computation performance of our
method quantitatively, we also present the runtime of each
method in Table 2. In our experiment, the runtime is the
average elapsed time of the processing of the methods on
50 CT sets. As can be seen fromTable 2, the proposedmethod
achieves the shortest runtime compared with RPD, CE and
WSP. It is worthwhile mentioning that the runtimes of RPD
and WSP are 2.28 times and 2.55 times of the proposed
method, respectively. Considering all indicators comprehen-
sively, the proposed method has better performance because
it sacrifices a small percentage of precision to exchange for
a great improvement in runtime. Similarly, 3 views is the
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optimal balance of the average recall and the runtime among
all the alternatives.

B. MALIGNANCY LEVEL CLASSIFICATION OF LUNG
NODULE EXPERIMENT
The quantitative evaluation of our method for malig-
nancy level classification is presented in this subsection.
In order to ensure the objectivity of this experiment, all
multi-classification problems are applied to the NNCS,
MWLSTSVH and DLSR classifiers. Furthermore, this exper-
iment is tested on 580 CT studies with 673 lung nodules,
among which 220 CT studies and 360 CT studies are selected
randomly from LIDC and LNUTCM, respectively.

Aiming to show the performance of our proposed
MSPLBP, we select HOG [30], texture and edge descriptor
(TED) [43], pi-LBP [34] and the combination of shape dia-
grams, proportion measurements and cylinder-based analysis
(SPC) [44] for comparison that HOG is an edge feature
descriptor, SPC is a shape feature descriptor, pi-LBP is a
texture feature descriptor, and TED is a joint edge and texture
feature descriptor. Additionally, we use accuracy (ACC),
sensitivity (TPR), and specificity (SP) as shown in (42)-(44)
to evaluate our method:

Sensitivity =
TP

TP+ FP
(42)

Specificity =
TN

FP+ TN
(43)

Accuracy =
TP+ TN

TP+ TN + FN + FP
(44)

Due to ACC, TPR, and SP only can be used in binary
classification problems, and our work in this subsection is
a multi-classification problem, we take the average value of
each indicator in all malignancy levels as the final result.
Besides, in this experiment, the parameter σ of NNCS is set
to be 0.5, two penalty parameters of MWLSTSVH are set as
c = 0.01, v = 0.01 and the kernel parameter ofMWLSTSVH
is set as σ = 0.5, and the only one parameter λ in DLSR
classifier is set to 0.1. The experimental results are presented
in Table 3.

Through Table 3, it can be observed that our feature
descriptor outperforms all the other related methods. We also
notice that among the five comparison methods, only TED
can extract both texture and edge feature and, its perfor-
mance is obviously better than the single feature descriptors
i.e., HOG, pi-LBP, EOH, SPC and MSPLBP. This proves
the effectiveness of data fusion used in malignancy levels
classification of lung nodules. Moreover, concerning the edge
feature descriptors, the average ACC of HOG in the three
classifiers is 2.87% higher than EOH. The reason is that HOG
makes finer blocks and normalized gradient histogram in each
block, and thus it can describe more subtle edge features and
insensitive to light changes. However, as the CT images in
this stage have uniform illumination and simple background,
the advantage of HOG is not obvious. The performance SPC
is better than HOG and pi-LBP because it uses the shape

TABLE 3. Comparison of the algorithm with published studies of
Accuracy, Sensitivity, and Specificity. The results of proposed methods are
in bold.

diagrams and proportionmeasurements to represent the exter-
nal 3D characteristics of nodules like lobulation and spic-
ulation, and this description has high accuracy. However,
the SPC uses single feature leading to the generalization not
well, thus its accuracy is lower than the fusion feature descrip-
tor. Furthermore, comparing to pi-LBP, MSPLBP increases
the averageACC by 6.13%. This means that our improvement
in pi-LBP is effective.

The runtime of these methods in training and testing is
shown in Table 4. EOH takes the least time of all the meth-
ods while HOG is the most time-consuming method that
takes average more 144.31 seconds at the training stage and
0.220 seconds at the testing stage than EOH. Considering
the advantage of HOG in the average ACC of Table 3 is not
obvious, EOH is more appropriate for our work to extract the
edge feature. On the other hand, MSPLBP takes less average
56.23 seconds at the training stage and 0.234 seconds at the
testing stage than pi-LBP. As one can see, MSPLBP achieves
not only higher ACC, but also less runtime than pi-LBP.
Additionally, TED consumes more average 7.82 seconds at
the training stage and 0.0137 seconds at the testing stage than
the joint EOH and MSPLBP which means our descriptor has
excellent performance on efficiency.

In order to demonstrate the superiority of our method
for lung nodule malignancy level classification, we select
three related methods for comparison i.e., 3D Texture Fea-
tures and 3D Margin Sharpness (TF&MSF) [45], Multi-crop
Convolutional Neural Network (MC-CNN) [6] and Hybrid
model [46]. Moreover, to display the contribution of our ves-
sel segmentation process, we add a method in the experiment
that extracts features using joint EOH and MSPLBP without
the vessel segmentation process. Thus, our connected region
clustering method is not applicable in this situation due to
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FIGURE 18. ROC curves for the lung nodule malignancy level classification methods. The numbers inside the brackets of legend are AUC values.
(a) pure GGO. (b) mixed GGO. (c) solid opacity.

TABLE 4. Comparison of the algorithm with published studies of Training
time and Testing time. The results of proposed methods are in bold.

the number of vessel areas is large. In order to evaluate our
method more accurately, we divide all lung nodules into pure
GGO, mixed GGO, or solid opacity, and use ROC curves to
show the performance of the methods on each kind of nodule.
In this experiment, all the methods use the MWLSTSVH for
classification and the results are shown in Fig. 18.

It can be observed from the results presented in Fig.18 that
our proposed method takes the maximum AUC for the three
kinds of nodules, especially obvious with the mixed GGO.
Note that the worst performance of our method appears on
pure GGO that is only 0.0007 more than the Hybrid model.
This may be ascribed to the fact that many pure GGOs have
extremely low intensities in CT slices which makes them
removed at the stage of threshold processing, and thus the
sensitivity of our method decreases. But the ground-glass
part in mixed GGO usually has higher intensities than pure
GGO and they can be retained more completely. In addition,
as the texture feature of mixed GGO is significantly different

TABLE 5. Comparison of the algorithm with published studies of
Accuracy, Sensitivity, and Specificity. The results of our system are in bold.

from lung tissue, the false positive ratio of mixed GGO is
lower than solid opacity. Notably, Fig.18 also shows that
our method without the vessel segmentation process has the
minimum AUC on each kind of nodules. The main reason is
the similarity between solid nodules and blob-like vessels in
edge feature and texture feature, will decrease the specificity
of our feature descriptor. This means that vessel areas can
seriously affect our feature descriptor.

To reveal the overall evaluation of our method, we present
the average ACC, TPR, and SP of the related methods
in Table 5. In order to optimize the comparison methods,
we select the classifiers corresponding to the original articles
that MLP Multilayer Perceptron (MLP) is used in TF&MSF,
SVM is used in the Hybrid model. As can be observed, our
system obtained an ACC of 95.88% which is higher than the
values reported in other related works. Obviously, the ves-
sel segmentation process improves our method by 7.54% in
ACC.

Table. 6 presents the runtime of the training and testing
stage in each method. To ensure the objectivity of the exper-
iment, all the methods in this experiment use MWLSTSVH
to be the classifier. It should be pointed out that the testing
time is the average time consumed on each CT set for the
methods. As can be observed, our system takes the least time
at the training stage and testing stage. One of the reasons
for that is the length of our feature vector is very low that
reduces the time spent in the classifier. The other reason is
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TABLE 6. Comparison of the algorithm with previously published studies
of elapsed time. The results of our system are in bold.

our system segments a large number of vessel regions with
low computational complexity at the testing stage and thus
only a few ROIs need to extract feature.

The encouraging results of experiments with the same
database show the effectiveness of our system on lung nod-
ule malignancy level classification. Furthermore, the per-
formance of the proposed vessel segmentation method
demonstrates great potential for our system.

IV. CONCLUSION
This work presents a fast and efficient system to evaluate the
malignancy level of lung nodules. As a large number of FP
nodule regions will decrease the accuracy and efficiency of
feature classification in malignancy evaluation, we propose
a novel vessel segmentation method to reduce the FPs. The
method can remove vessels fast, sensitively and robustly by
using a multi-view discriminating scheme. And the usage of
the enhancement result of Frangi filter in thismethod to detect
tubular-like structures is helpful to ensure the completeness of
lung nodule regions. Furthermore, we optimize spatial edge
features and spatial texture features extraction of lung nodule
to improve malignancy level classification. In this method,
much redundant feature information is reduced, and thus the
efficiency of the system can be promoted greatly.

The performance of our method is demonstrated in two
aspects: vessel segmentation and malignancy level classifi-
cation. In the experiment of vessel segmentation, the pro-
posed method achieves promising results in average recall
(84.78%), average precision (72.46%), average F1_score
(78.14%) and AUC value (0.8149). The experimental results
prove the robustness of the usage of the overall response
ratio of Frangi filter to detect more general vessel structures,
such as junction suppression, varying diameter, endpoint or
bifurcation. Moreover, the results also demonstrate that our
multi-view scheme can improve the accuracy of differen-
tiating between vessels and nodules. Besides, the average
elapsed time of our vessel segmentation method for a CT set
is 171.6 seconds which is less than the other related methods.
This indicates that our multi-view scheme with the overall
response calculation is less time-consuming and can save
time for our CAD system.

For the experiment of malignancy level classification,
we compare the proposed joint EOH and MSPLBP with
the other feature descriptor including single feature meth-
ods and multiple features methods. The experimental results
show that MSPLBP increases the ACC by average 6.13%

and reduce the average testing time by 0.234 comparing to
pi-LBP. Finally, comparing with other CAD systems of
malignancy level classification for lung nodules, our system
obtains the best accuracy of 95.88% and the least time-
consuming. Although some methods based on deep learning
model [47] have achieved higher accuracy in the classifica-
tion of lung nodule malignancy, we still solve the problem
from the traditional perspective in the system because this
method has its own advantages. Firstly, compared with deep
learning, the traditional machine learning requires smaller
data volume and shorter training cycle. In addition, the tradi-
tional machine learning method is easier to adjust the model
by using the prior knowledge of doctors and thus the whole
training process can be controlled.

In summary, by using the proposed methods, the CAD sys-
tem achieves fast and efficient classification of malignancy
level for lung nodules. Our system is still under development
and future works should be directed at improving the speci-
ficity of vessel segmentation and reducing the influence of
binarization.
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