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ABSTRACT Z-coordinate is an important structural feature of α-helical transmembrane proteins
(α-TMPs), which is defined as the distance from a residue to the center of the biological membrane. Since
the α-TMP structures from both experimental solved and computational predicted approaches still cannot
cover the requirements in relevant research fields, z-coordinate prediction provides an opportunity to partly
descript α-TMP structures based on their sequences, further contributes to function annotation and drug
target discovery. For the purpose of improving the prediction accuracy and providing a convenient tool,
we proposed a deep learning-based predictor (TM-ZC) for the z-coordinate of residues in α-TMPs. TM-ZC
used the one-hot code and the PSSM as input features for a convolutional neural network (CNN) regression
model. The experimental results demonstrated that TM-ZC was a powerful predictor, which is simple and
fast, and achieved a considerable performance: the average error was 1.958, the percent of prediction
error within 3Å was 77.461%, and the correlation coefficient (CC) was 0.922. We further discussed the
usefulness of TM-ZC predicted z-coordinate and found its high consistency with topology structure and the
enhancement of the surface accessibility prediction.

INDEX TERMS α-helical transmembrane protein, convolutional neural network (CNN), regression,
Z-coordinate of residues.

I. INTRODUCTION
α-helical transmembrane proteins (α-TMPs) are the major
category of transmembrane proteins (TMPs). According to
the statistics of the Universal Protein Resource (UniProt) [1],
α-TMPs account for more than 98% of the TMPs. α-TMPs
play numerous roles in basic physiology and pathophysi-
ology, including signal transduction [2], nutrients or drugs
reception [3], immune response [4], and enzyme activa-
tion [5]. Malfunction of α-TMP may cause many diseases,
such as autism [6], epilepsy [7], and cancer [8]–[11]. Con-
sequently, α-TMPs are the major targets for more than half
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of known drugs, the detailed structure of them would be
paramount to the success of drug discovery [12], [13]. Unfor-
tunately, despite their important biological functions, deter-
mination of high-resolution structures of α-TMPs persist
technical difficulties, only approximately 5% of them are
determined.

For this reason, the TMP relevant researches are promoted
currently by means of many structural descriptors abstracted
from primary sequences. Beyond high-resolution struc-
tural information, some low-resolution structural descrip-
tors, such as topology structure, surface accessibility, and
z-coordinate, can also provide valuable information about
α-TMPs. In recent years, a lot of illuminating methods have
been proposed and accessed great achievements. Such as the
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topology structure prediction methods of α-TMPs [14], [15],
especially, S. H. Feng et al. firstly developed a multiscale
deep learning protocol (MemBrain 3.0) that includes two
submodules: transmembrane helix prediction and orienta-
tion prediction [16]. Likewise, several methods have been
developed to predict the surface accessibility of α-TMPs and
achieved considerable performance [17], [18]. For example,
our previous work [19] presented a deep learning-based pre-
dictor (TMP-SSurface), which combined the Inception and
the CapsuleNet by using one-hot code and PSSM as input
features.

Z-coordinate of a residue in α-TMP is defined as the
distance from the residue to the center of the membrane [20].
Similar to the topology structure, z-coordinate also reflect
the relationship between the residue and the membrane, but
by continuous numerical measurement. The z-coordinate is
highly correlated with the ligand-binding and the protein-
protein binding regions because these binding regions are
always specifically located on transmembrane, water-soluble,
or junction regions. The predicted z-coordinate is helpful for
the topology prediction [21], structural classification [22],
burial status prediction [23], and many other research fields
[24], [25]. Accurate predicting the z-coordinate of residues in
α-TMPs by computational methods is not only an intermedi-
ate step towards structure determination, but also a potential
property that may assist the function annotation, drug target
discovery, and other associated problems [21], [26], [27].

However, the z-coordinate study has not received as much
attention as the study of topology structure and surface acces-
sibility. ZPRED [20], only one z-coordinate predictor pub-
lished more than a decade, where Artificial Neural Network
(ANN) and Hidden Markov Model (HMM) were combined,
and sequential features were used as inputs. ZPRED is the
pioneering work on the z-coordinate prediction, but its web-
server is no longer available. To further support α-TMP
research, a z-coordinate predictor is surely needed, which
should be more reliable and with high accuracy and perfor-
mance. In the past 15 years, the number of α-TMPs’ struc-
tures has increasedmore than 10 times.More data can be used
to improve this research, and deep learning method provides
a novel opportunity to construct a more powerful predictor
that is simpler and faster, and achieve higher performance at
the same time.

In this work, we proposed a deep learning-based predictor
(TM-ZC) for the z-coordinate of residues in α-TMPs. TM-
ZC used the one-hot code and the PSSM as input features
for a convolutional neural network (CNN) regression model.
The experimental result proved a considerable performance
of TM-ZC. The average error was 1.865Å, the present of
prediction error within 3Å was 76.703%, and the correla-
tion coefficient (CC) was 0.917. Besides, We also tested
the usefulness of TM-ZC predicted z-coordinate on the
problems of surface accessibility prediction and topology
structure prediction. We tried to distinguish the transmem-
brane residues from non-transmembrane residues by limit-
ing the threshold of the z-coordinate predicted by TM-ZC.

The experimental result demonstrated that there exists a
strong correlation between the topology structure and TM-ZC
predicted z-coordinate. For surface accessibility prediction,
we added the TM-ZC predicted z-coordinate as an addi-
tional feature of our previous work to predict the surface
accessibility of α-TMPs. The experimental result proved that
TM-ZC predicted z-coordinate could enhance the predic-
tion performance. A stable webserver is accessible freely in
http://icdtools.nenu.edu.cn/TM-ZC.

II. MATERIALS AND METHODS
A. BENCHMARK DATASETS
A dataset used by ZPRED was constructed in 2005 that
consisted of 101 non-homologous chains from 46 complexes.
We believe that a more comprehensive benchmark dataset is
urged. The Protein Data Bank of Transmembrane Proteins
(PDBTM) [28] is the most widely used comprehensive data
bank for transmembrane proteins. It was created by scanning
all PDB entries with the TMDET algorithm [29]. According
to the statistics of PDBTM, the number of α-TMPs has
increased more than 10 times in the past 15 years. We down-
loaded 3820 complexes with 13,209 α-TMP sequences from
PDBTM (version: 2019-05-10). Removing the sequences that
contain residues other than 20 standard amino acids. Remov-
ing the short sequences with residues less than 30 because
they are always considered as peptides. To reduce the neg-
ative effect of homology bias [30], we clustered the rest
of the proteins by running CD-HIT with a 0.3 sequence
identity cut-off, and the longest sequences in each clus-
ter were collected. After pre-processing, 851 α-TMPs with
223,310 residues were left. Among them, 50 sequences
were randomly selected as the independent testing dataset
(ZC-test50) for the independent test to verified the robust-
ness of TM-ZC. The remaining 801 sequences were used
for training and tuning the prediction model, among them,
50 sequenceswere randomly selected as the validation dataset
(ZC-valid50), and the remaining 751 sequences were built
as the training dataset (ZC-train751). The process of select-
ing the validation dataset were performed for ten times for
ten-fold cross validation. The performance reported in this
work when training the models was the average perfor-
mance of sub-models in ten-fold cross validation. All the
datasets that used in this work can be found in Supplementary
Materials.

B. CALCULATION OF Z-COORDINATE
The original coordinates of residues recorded in the PDB
files need to be rotated and moved according to the relative
positions of the protein and the membrane. The observed
z-coordinate value can be calculated by using Formula 1:[

x
′

i , y
′

i, z
′

i

]
= [xi, yi, zi]A−1 +

[
bx , by, bz

]
, (1)

where [xi, yi, zi] represents the original coordinate of the
alpha-carbon atom of the ith residue recorded in the PDBfiles
obtained fromPDBTM,A is thematrix that rotated the protein
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perpendicular to the membrane.
[
bx , by, bz

]
is a vector that

moved the protein to the right place related to the membrane.
BothA and

[
bx , by, bz

]
were obtained fromTMDET [29]. The

z-coordinate of the membrane center is 0.
Then, as the same process of ZPRED, two steps of thresh-

old cutting was performed:
Step 1: We took the absolute value of z

′

i that limiting
the threshold from (−∞,+∞) to [0,+∞), considering
only the distance between the residues and the membrane
center without the orientation. The absolute value can be
calculated as:

zi[0,+∞) =

∣∣∣z′i∣∣∣ , (2)

Step 2: Limiting
∣∣z′i∣∣ in range [5, 25] so that all the residues

with
∣∣z′i∣∣ between 0 and 5 were defined to be in a cen-

tral hydrophobic region and the z-coordinate values were
set to 5, all the values above 25 were set to 25 because
they were considered as non-transmembrane residues. The
z-coordinate values within the range [5, 25] were considered
as the observed z-coordinate labels of TM-ZC. It can be
calculated as:

zi[5,25] =


5,

∣∣∣z′i∣∣∣≤ 5∣∣∣z′i∣∣∣ , 5 <
∣∣∣z′i∣∣∣< 25

25, 25 ≤
∣∣∣z′i∣∣∣ ,

(3)

C. ENCODING OF PROTEIN FRAGMENTS
1) EVOLUTIONARY CONSERVATION (PSSM)
In the process of evolution, certain genetic characteristics of
proteins have become increasingly prominent among homol-
ogous proteins. It has been proved that fragments with
high evolutionary conservation always related to the struc-
tural or functional needs of the proteins [31], [32]. The
position-specific score matrix (PSSM) is an effective descrip-
tor extracted from the result of multiple sequence alignment
[33]. The PSSM of a given protein was calculated by running
PSI-BLAST [34] against the UniRef50 database (released on
October 16, 2019) with e-value threshold 0.001 and 3 iter-
ations. The PSSM of a protein can be defined as a 20× L
matrix:

PSSM =


P1,AA1 P1,AA2 . . . P1,AA20
P2,AA1 P2,AA2 . . . P2,AA20
...

...
...

...

PL,AA1 PL,AA2 . . . PL,AA20

 , (4)

where Pi,AAj represent the element’s value of PSSM, which
represents the occurrence frequency of AAj at the i-th position
of the given protein in the result of multiple sequence align-
ment. L represents the length of the protein. Then, we used
the logistic function to normalized each element of PSSM
into [0, 1]:

P
′

i,AAj =
1

1+ e−Pi,AAj
, (5)

2) ONE-HOT CODE
One-hot coding is a sparse coding method used to represents
the type of each residue in a protein sequence. It is the most
direct way to describe the protein sequence, reflecting the
most primitive arrangement information of 20 standard amino
acids. It proved to be a valid feature for deep learning-based
protein function predictors [35]–[39]. The one-hot code of a
protein can be defined as a 20× L matrix:

one−hot=


OR1,AA1 OR1,AA2 . . . OR1,AA20
OR2,AA1 OR2,AA2 . . . OR2,AA20

...
...

...
...

ORL ,AA1 ORL ,AA2 . . . ORL ,AA20

 , (6)

whereORi,AAj represents the element’s value of one-hot code.
Ri is the type of residue on position i. AAj is the type
of 20 standard amino acids. ORi,AAj = 1 if Ri = AAj;
ORi,AAj = 0 if Ri 6= AAj. L represents the length of the
protein.

3) SLIDING WINDOW
Residues are not isolated in the protein sequence but are
arranged in a certain order [40], [41]. The position and func-
tion of a target residue are greatly affected by its adjacent
residues. Hence, we employed a sliding window scheme
that presents the target residue by a protein fragment. Here,
we set the window size to 25: target residue with 12 residues
from upstream and 12 residues from downstream. The target
residue was the center of the protein fragment. At the terminal
of the sequence, the features’ values of the overflow part of
the slidingwindowwere filled with 0. At last, we got a 40×25
matrix as the feature of each residue.

D. MODEL DESIGN
The convolutional neural network (CNN) is a kind of feed-
forward neural network, in which the neurons can reflect the
surrounding information within the coverage of the convo-
lution kernel. The training dataset was used to training the
network in each iteration, and the validation dataset was used
to validate the performance of this iteration and feedback to
the next iteration. It solves the problem of traditional machine
learning’s dependence on manual features and can learn use-
ful features directly from primitive data. CNN performs great
in the field of image and video recognition [42], natural
language processing [43], and medical diagnosis [44]. Due
to its effectiveness, CNN has been widely used in the field of
bioinformatics, such as super-enhancer prediction [45] and
drug-disease association prediction [46]. In this work, our
goal was to make the prediction model as simple as possible.
So we constructed a small network architecture. The design
of the prediction model is shown in Fig. 1. All the convo-
lution layers contained 256 kernels with the size of 3× 3
and the stride of 1, and the activation function was ReLU.
All the pooling layers were max pooling with 256 kernels
with the size of 2× 2 and the stride of 2. In this model,
one convolution layer was first performed to extract features
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FIGURE 1. The structure of TM-ZC.

from the original encoded feature matrix. Then, one max
pooling layer was performed. After that, two convolution
layers, one max pooling layer, two convolution layers, and
one max pooling layer were performed in order. At this time,
the size of the feature matrix was 3× 5, it was too small to
perform the following layers. Thus, we performed a zero-
padding layer to padding the feature matrix to the size of
3× 7. Then, two convolution layers and one max pooling
layer were performed. At this time, we extract features as
256 matrixes with the size of 1× 3. We flatten them in a
line, and a full-connected neural network was performed. The
input layer contains 768 neurons, the hidden layer contains
256 neurons, and the output layer contains just one neuron.
The opportunity of a target residue that belongs to the output
neuron was considered as the prediction result.

E. PERFORMANCE EVALUATION
In order to measure the prediction performance of TM-ZC,
three indicators were used to reflect it: the mean absolute
error (MAE), the Pearson correlation coefficient (CC), and
the percent of results that error less than 3Å (P3Å). MAE
reflects the average deviation between the predicted and
observed z-coordinate of all residues. It ranged in [0, 1],
the smaller the MAE value, the better the performance.
CC reflects the linear correlation between predicted and
observed z-coordinate. It ranged in [−1, 1], the more the
CC close to 1, the better the performance. P3Å reflects the
ratio of the ideal prediction results, the threshold inherited
from ZPRED. It ranged in [0%, 100%], the higher the ratio,
the better the performance.

MAE =
1
L

∑L

i=1
|yi − xi| , (7)

CC =

∑L
i=1 (xi − x̄) (yi − ȳ)√[∑L

i=1 (xi − x̄)
2
] [∑L

i=1 (yi − ȳ)
2
] , (8)

P3Å =
N
|yi−xi|<3Å

L
, (9)

where L represents the number of residues, xi and yi represent
the observed and predicted z-coordinate of the ith residue, and
x̄ and ȳ represent the corresponding mean value, N

|yi−xi|<3Å
represents the number of residues that prediction error less
than 3Å.

III. RESULTS AND DISCUSSION
A. FEATURE ANALYSIS
In order to investigate the effectiveness of different kinds
of features and their contribution to the prediction model,
we performed the ablation study on features. Three models
were built by using one-hot code, PSSM, and both of them.
As shown in TABLE 1, PSSM outperforms one-hot code.
This phenomenon reflects the strong correlation between
evolutionary conservation and protein structure. Although the
model using one-hot code alone performed poorly, it comple-
mented the PSSM feature that the model achieved the best
performance while using two features together.

B. EFFECT OF WINDOW SIZE
A sliding window scheme was used in this work, and the
value of the window size greatly affected the prediction per-
formance of TM-ZC. We test the possible value of window
size from 15 to 31 with the step size of 2. The prediction
performance on the validation dataset while training TM-ZC

TABLE 1. Performance comparison of the different models on the feature
ablation study.
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TABLE 2. The prediction performance by using different window sizes.

by using different window sizes is illustrated in TABLE 2.
As the window size gets larger, the performance of TM-ZC
gradually improved and reached the top when the value of
window size reached to 25. Thus, we set the window size to
25 in all the experiments.

C. EFFECT OF CUTTING THRESHOLD
As described in the ‘‘Section II-BCalculation of
Z-coordinate’’, the original coordinates of residues recorded
in the PDB files were rotated and moved according to the
relative positions of the protein and the membrane. Then,
two steps of threshold cutting were performed. The first
step took the absolute value that cutting the threshold from
(−∞,+∞) to [0,+∞). The second step limited the value
in the range [5, 25]. Three training labels with different
cutting thresholds were obtained, and three models were
built by using different labels. The performance of these
models on the validation dataset (ZC-valid50) is illustrated
in TABLE 3.

It is obvious that the performance of the model using
the original labels with the threshold of (−∞,+∞) was
poor, and the other two models significantly outperformed it.
There proposed a possible explanation for this phenomenon:
Residues that are symmetrical about the membrane center
always have similar features while their labels are opposite
to each other, which makes it difficult for the prediction
model to find the relationship between the features and the
corresponding labels. It can also be seen that the models
using the labels with the threshold of [5, 25] achieved the best
performance.

TABLE 3. The Prediction performance of models, which are trained by
using training labels with different cutting thresholds.

FIGURE 2. The stability of the training process. (a) The performance of
MAE on the cross validation. (b) The performance of CC on the cross
validation.

FIGURE 3. Comparison of MAE in different z-coordinate regions.

D. PERFORMANCE OF TM-ZC
In order to investigate the performance of TM-ZC and ver-
ified its stability, we performed ten-fold cross validation.
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FIGURE 4. Case studies of TM-ZC: took 6EU6_A and 5L25_A as examples. (a) and (c) are 3D visualization of the prediction result of 6EU6_A and 5L25_A,
respectively. As the value of predicted z-coordinate increases, the color changes from white to dark blue. (b) illustrate the curves of the z-coordinate
value of 6EU6_A: the observed value (orange dotted curve), the ZPRED predicted value (gray dotted curve), and the TM-ZC predicted value (blue curve).
(d) illustrate the curves of the z-coordinate value of 5L25_A, which is as same as (b).

Fig. 2 shows the performance of the TM-ZC in terms of
(a) MAE value and (b) CC value. As shown in (a), the mean
value of MAE of ten models is 2.215, the deviation between
the MAE of each sub-model and the mean value is shown
as the label value. As shown in (b), the mean value of CC
of ten models is 0.915, the deviation between the CC of
each sub-model and the mean value is shown as the label
value. Fig. 2 exhibits that TM-ZC performed stably among
cross-validation.

E. COMPARE WITH ZPRED
ZPRED is the only predictor in existence. We compared
the TM-ZC with ZPRED to investigated its effectiveness.
Fig. 3 illustrates the mean absolute error (MAE) of ZPRED
and TM-ZC in different z-coordinate regions. It could be seen
that TM-ZC outperforms ZPRED in most of the z-coordinate
regions, especially in regions with low z-coordinate value.
A low z-coordinate indicates that the residue locates in the
hydrophobic transmembrane region. It proved that TM-ZC
performed great for residues in the transmembrane region.
In the region [19.5, 24.5), the advantages of TM-ZC became
less obvious and even worse than ZPRED. It shows that
TM-ZC’s prediction performance for residues in the junc-
tion area on the membrane surface needs to be further
improved.

TABLE 4. Comparison of the performance between ZPRED and TM-ZC.

The overall prediction performance comparison between
ZPRED and TM-ZC is illustrated in TABLE 4. It is obvious
that TM-ZC outperformed ZPRED. The MAE reduced by
approximately 43%, the percent of results that error less than
3Å (P3Å) increased more than 28% and the increment of the
Pearson correlation coefficient (CC) up to 0.1.

F. CASE STUDIES
Weperformed case studies to demonstrate the effectiveness of
TM-ZC further. 6EU6_A and 5L25_A from ZC-test50 were
chosen as examples. 6EU6_A is an eleven-transmembrane
protein from Escherichia Coli. It is the target of ATP,
Dodecyl-Alpha-D-Maltoside, and other ligands. 5L25_A is a
ten-transmembrane protein from Saccharomyces Cerevisiae.
It plays an important role in the process of anion exchange
and borate transport. The prediction results of both proteins
are illustrated in Fig. 4.
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In Fig. 4: (a) visualized the TM-ZC predicted z-coordinate
of 6EU6_A, the darker the color, the larger the precited
z-coordinate value. (b) is the curve of the z-coordinate
of 6EU6_A, including the observed value, the ZPRED pre-
dicted value, and the TM-ZC predicted value. (c) and (d)
illustrated the same information of 5L25_A as (a) and (b).
It could be seen from (a) and (c) that the z-coordinate pre-
dicted by TM-ZC is basically in line with the actual situation.
It is further confirmed in (b) and (d) that the curve of the
TM-ZC predicted value fits the curve of the observed value
to a high degree, and it is better than ZPRED.

G. Z-COORDINATE CORRELATED WITH
TOPOLOGY STRUCTURE
The z-coordinate directly relates to the topology structure
of residues in TMPs. We tried to distinguish the transmem-
brane residues from non-transmembrane residues by limit-
ing the threshold of the z-coordinate predicted by TM-ZC.
This experiment was performed on the ZC-test50 dataset and
achieved the highest accuracy (79.268%) at the threshold
of 14.5Å. The residues with z-coordinate within 14.5Å were
considered as transmembrane residues. That means the mean
thickness of the membrane was 14.5× 2 = 29Å, and the
biological experiment proved that the mean thickness of the
membrane is about 30Å [47]. Therefore, the threshold of TM-
ZC predicted z-coordinate is in line with facts, and there
exists a strong correlation between topology structure and
z-coordinate.

H. TM-ZC ENHANCE THE PREDICTION
OF SURFACE ACCESSIBILITY
In addition to having a strong correlation with the topol-
ogy structure, the TM-ZC predicted z-coordinate could
also enhance the prediction of the surface accessibility of
α-TMPs residues. Our team once proposed a predictor (TMP-
SSurface) for the relative accessible surface area (rASA)
prediction of residues in α-TMPs [19]. TMP-SSurface used
one-hot code, terminal flag, and PSSM as the input features
of a deep learning-based regression method. We added TM-
ZC predicted z-coordinate as an additional feature to verified
the usefulness of TM-ZC and we were glad to find that the
value of the Pearson correlation coefficient (CC) increased
from 0.581 to 0.604. This experiment proved that there is also
a correlation between z-coordinates and rASA.

IV. CONCLUSION
The z-coordinate of a residue in α-TMPs is defined as the
distance between the residue and the membrane center. It is
an important structure descriptor that highly correlated with
the function regions of α-TMPs. Up to now, ZPRED is the
only one predictor for this problem and needed to be further
improved. In this work, we proposed a deep learning-based
predictor (TM-ZC) to predict the z-coordinate of residues in
α-TMPs. TM-ZC is a simple CNN-based predictor that used
one-hot code and PSSM as input features. TM-ZC achieved
great performance that the MAE was 1.958, the CC was

0.922, and the percent of prediction error within 3Å was
77.461%. Experiments showed the contribution of two kinds
of feature, and find that PSSM features were more powerful.
We also verified the correlations between TM-ZC predicted
z-coordinate and tested the usefulness of TM-ZC predicted
z-coordinate on the problems of surface accessibility predic-
tion. Experiments proved that TM-ZC could provide effective
support for related problems. We are confident that TM-ZC
can be further used in more researches on transmembrane
proteins.
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