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ABSTRACT Over the past decades, plenty of filtering algorithms have been presented to distinguish ground
and non-ground points from airborne LiDAR point clouds. However, with the existing methods, it is difficult
to derive satisfactory filtering results on rugged terrainswith dense vegetation due to the low-level penetration
ability of laser pulses. Therefore, a multi-level interpolation-based filter is developed in this paper. The
novelty of the algorithm lies within its usage of multi-scale morphological operations and robust z-score
to correctly select ground seeds as more as possible, and a terrain-adaptive residual threshold to adapt to
various terrain characteristics. Rural samples provided by International Society for Photogrammetry and
Remote Sensing (ISPRS) were employed to assess the performance of the proposed method and its results
were compared with 15 filtering algorithms developed in recent 5 years (2015-2019). Results show that the
proposed method with the optimized parameters produces the best accuracy with the average total error and
kappa coefficient of 1.89% and 87.88%, respectively. We further filtered high-density point clouds in six
forested areas with different vegetation covers and terrain slopes. Results demonstrate that the proposed
algorithm is more accurate than the well-known filtering methods including morphological-based filter,
progressive TIN densification filter (PTD), improved PTD and cloth simulation filter, with the average total
error decreased by 26.2%, 19.9%, 3.8% and 40.4%, respectively. Moreover, the DEMs of the proposed
method have lower average root mean square errors than the four classical filters. Therefore, the proposed
method can be considered as an effective ground filtering algorithm for airborne LiDAR point clouds in
forested areas.

INDEX TERMS Filtering, point cloud, interpolation, digital elevation model.

I. INTRODUCTION
Nowadays, airborne light detection and ranging (LiDAR)
with the ability of tree canopy penetration and little influence
by shadows and surrounding light conditions has become
a valuable and effective tool in forest inventory, such as
individual-tree based height determination and volume esti-
mation, and tree-species classification [1]–[3]. Generally,
the extraction of ground points from raw airborne LiDAR
point clouds is the pre-requisite and most important step
for almost all LiDAR applications. This process is termed
as filtering [4]. In the last two decades, plenty of filtering
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algorithms have been proposed. According to their working
principles, the existing filtering algorithms can be divided
into six broad categories: slope-based, morphology-based,
interpolation-based, statistical-based, machine learning-
based and segmentation-based approaches [5], [6].

Generally, these filters achieve a good performance in
relatively flat terrains with simple landscapes, but show poor
results in mountainous terrains, cliffs, ridges and discontinu-
ities with complex environments [7]. Compared to the other
filtering methods, the interpolation-based filters commonly
obtain better results since they can usemore contexts [5]; nev-
ertheless, they cannot perform well in dense forested areas,
because the canopy prevents most laser pulses from reaching
the ground surface, resulting in few ground points beneath the
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canopy [8]. Although some specific methods [9]–[12] have
been designed for forested areas, their performances are still
unsatisfactory and require to be improved [13].

To solve the aforementioned problems, we propose amulti-
level interpolation-based filter for airborne LiDAR data in
complex forested areas in this paper. Compared with the
existing interpolation-based filters, the proposed method has
three main contributions:
• Multi-scale morphological operations are used to select
potential ground seed points. These points are more than
those derived by the local minimum method with pre-
defined grids, which is commonly used for the detection
of initial ground seeds [4], [14]. Thus, detailed terrain
features can be captured with the so many ground seeds,
especially in dense forested areas.

• The non-ground points falsely recognized as the poten-
tial ground seeds are removed by robust z-score, which
guarantees the accuracy of the initial reference DEM.

• An adaptive residual threshold with the consideration
of terrain slope is introduced, which assures the adapt-
ability of the filtering in forested areas with rugged
terrains.

The remainder of this paper is organized as follows.
Related works are reviewed in Section II. The proposed
method is detailed in Section III. In Section IV, experiments
are designed to evaluate the proposed method. Section V
comparatively analyzes the results of the proposed method.
Finally, discussion and conclusions are given in Sections VI
and VII, respectively.

II. RELATED WORKS
Slope-based filters classify the point as the non-ground point
when its slope is greater than a threshold [15]. In general, this
method obtains good results in gentle slope areas but cannot
perform well in steep slopes. To overcome this problem,
Wang and Tseng [16] proposed an adaptive dual-directional
slope filter, where the filtering results of different directions
are complementary to each other, so that over-filtering prob-
lem can be avoided. Susaki [17] proposed an adaptive slope
filter, where the slope parameter adopted in the algorithm is
updated after an initial production of the digital terrain model
(DTM). Although the slope-based filters are theoretically
simple, they are very sensitive to the slope threshold.

Morphology-based filters are based on the assumption
that elevation differences of the non-ground points before
and after the opening operations are greater than a thresh-
old. However, their success significantly depends on the
selection of an appropriate structure element (SE). Thus,
Zhang et al. [18] proposed a progressive multi-scale morpho-
logical filter by gradually increasing SE. Pingel et al. [19]
presented an improved simple morphological filtering algo-
rithm (SMRF). It uses a linearly increasing window and
simple slope thresholding with the combination of an image
inpainting algorithm. Li et al. [20] developed a filtering
algorithm based on geodesic transformations of mathemat-
ical morphology, where the transformations only use the

elementary SE and converge after a finite number of itera-
tions. Overall, since morphology-based filters work on raster-
ized data, they have a highly computational efficiency. Yet,
the transformation from raw point clouds into the gridded
data inevitably causes accuracy loss.

The interpolation-based filters first produce a reference
surface using certain interpolation method [21], [22] and then
gradually select more and more ground points. For example,
Axelsson [23] proposed a progressive triangulated irregular
network (TIN) densification (PTD) filtering method, where
a point with the angle and distance to the corresponding
triangle less than the thresholds is labeled as the ground
point. Evans and Hudak [12] proposed a multi-scale cur-
vature classification method, which used regularized spline
with tension method instead of TIN interpolation to construct
raster surfaces. Chen, et al. [14] developed a multi-resolution
hierarchical classification algorithm (MHC), where the refer-
ence ground surface is produced with thin plate spline [24].
Hu et al. [25] presented an adaptive surface filter, which used
bending energy to realize adaptive filtering threshold. How-
ever, the interpolation-based filters suffer from the problem
of filtering out terrain features, such as discontinuities.

The statistical-based filters are based on the assumption
that natural ground points follow a normal distribution and
the raw point clouds can be seen as a mixture of Gaussian
models. Considering the fact that the mixture of ground and
non-ground points makes the skewness of the point clouds
positive, Bartels et al. [26] proposed a skewness balancing
filter (SBF), which was achieved by iteratively removing the
highest point until the skewness of the remaining points is
equal to zero. Bao et al. [27] updated SBF by the additional
use of a statistical measure, i.e. kurtosis. Bartels and Wei
[28] further improved this method to adapt to slope terrains.
Crosilla et al. [29] employed the sequential skewness and
kurtosis analysis of elevation and intensity point distribution
values to filter and classify point clouds. Taking the filtering
as a separation of mixed Gaussian models, Hui et al. [30]
proposed a threshold-free algorithm based on expectation-
maximization. However, the statistical-based filters are prone
to classify the non-ground points as the ground points
when the number of the former are greater than that of the
latter [28].

To improve the robustness of the filtering algorithms,
many machine learning-based filters have been proposed.
For example, Lu et al. [31] classified the LiDAR points as
being either ground or non-ground using supervised learn-
ing techniques with a variety of features. Jahromi et al. [32]
proposed a novel filtering algorithm based on artificial neu-
ral networks to select ground points. Hu and Yuan [33]
developed a filtering method based on deep learning using
deep convolutional neural networks. Rizaldy et al. [34]
used fully convolutional networks to classify point clouds.
Hui et al. [35] proposed an active learning filtering method,
where the initial training samples are automatically prepared
by a morphological-based filter and then a support vector
machine is employed to filter the point clouds. Nevertheless,
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FIGURE 1. Flowchart of the proposed method.

the machine learning-based filters require a large amount
of training samples and their computational costs are very
expensive.

Segmentation-based filters first divide the point cloud into
a set of segments, and then classify the segments according
to certain algorithms. For example, Tovari and Pfeifer [36]
employed a weightedmoving least squares method to classify
segments. Lin and Zhang [37] classified the segments using
the PTD method. Chen, et al. [4] used the MHC to filter the
segments. Yang et al. [38] filtered the segments according
to the elevation differences between boundary points of the
segment and the provisional DEM. Nevertheless, the perfor-
mance of segmentation-based filters heavily depends on the
quality of segmentation.

In addition, to incorporate advantages of different filtering
methods, some researchers suggested the combination of dif-
ferent filters. For example, Podobnikar and Vrečko [39] first
divided the study area into different subareas according to the
characteristics of the terrain, and then the point clouds in the
subareas were classified based on different filters. Deng and
Shi [40] integrated PTD and hierarchical robust interpolation.
Yang, et al. [38] employed segment-based and multi-scale
morphological filters to classify segmented points and one set
of individual points, respectively. Zhao, et al. [13] proposed
an improved PTD (IPTD) filter for dealing with a variety of
forested landscapes, where the initial ground seeds are first
obtained by the morphological method and then densified by
the progressive TIN. Bigdeli, et al. [3] integrated the results of
slope-based andmorphological-based filters for DEM extrac-
tion in dense forested areas. Cai et al. [41] developed a novel

filtering algorithm that combines cloth simulation (CS) and
PTD, where an initial DEM is obtained by CS and the param-
eter thresholds of the PTD are derived from the initial DEM.
Finally, the PTD with the adaptive parameter thresholds is
used to update the initial DEM. Although the fusion of dif-
ferent filtering methods could improve the results, the over-
all accuracy significantly relies on the performance of each
algorithm.

III. METHODOLOGY
Fig. 1 demonstrates the flowchart of the proposed method.
Firstly, potential ground seeds are selected with morphologi-
cal opening operations. Then, non-ground points mixed in the
potential ground seeds are removed by robust z-score under
a statistical manner. Hence, true ground seeds are obtained.
Finally, an adaptive multi-level interpolation-based filter is
developed to densify the ground points, where the initial
reference DEM is interpolated by thin plate spline (TPS) on
the true ground seeds.

A. SELECTING GROUND SEEDS
To select potential ground seeds, the raw point cloud is
first gridded to form the minimum surface (zmin). Then, the
morphological opening operation is applied to the zmin. The
grids are flagged as the non-ground grids if their elevation
differences before and after the opening operation exceed a
threshold. The specific steps are as follows:

Step1: Gridding point cloud
The point cloud is first covered with grid cells, and the

elevation of the lowest point in each cell is taken as the grid
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FIGURE 2. Point cloud gridding.

value (Fig. 2). This is because the lowest points are more
likely to be ground points. Note that the size of the grid cell
depends on the data density. Specifically, the denser the point
cloud, the smaller the grid cell size. In general, the size of
the grid cell equals to the average point space. For the empty
cells where no points are located, their values are filled by the
spring-metaphor inpainting algorithm [42]. After the above
operations, the minimum surface (zmin) is obtained, which is
taken as the input of the following morphological opening
operation.

Step2: Morphological opening operation
The opening operation, which consists of erosion followed

by dilation, is sensitive to the size of the structuring ele-
ment (SE), since a large SE fails to remove low vegetation
points whereas a small SE wrongly removes terrain features.
To this end, a multi-scale morphological opening operation
developed by Pingel, et al. [19] is used here, where SE and
residual threshold gradually increase. Note that the surface
after each opening operation is taken as the input of the next
operation (Fig. 3). For each opening operation, the points with
the elevation differences exceeding the residual threshold are
flagged as non-ground points. Thus, after all the operations,
the points without being flagged as non-ground points are
taken as the potential ground seeds.

Step3: Removal of non-ground points from the potential
ground seeds

It is inevitable that the potential ground seeds contain non-
ground points (here, low outlier is also considered as a non-
ground point), which must be removed before the production

FIGURE 3. Diagram of opening operations.

of initial ground surface. In statistics, the non-ground point
can be considered as an outlier, which can be detected by the
z-score (z). It is expressed as

zi = (xi − x̄)/σ (1)

where xi is the elevation of ith point, x̄ is the mean value, and
σ is the standard deviation. It is well known that in a normal
distribution, 99.4% of the observations fall within 2.5 stan-
dard deviations from the mean, and the z-scores of the obser-
vations follow the standard normal distribution with the mean
of 0 and standard deviation of 1. Thus, it is reasonable that xi
is flagged as an outlier if |zi| ≥ 2.5.
In robust statistics [43], breakdown point is the percent-

age of outliers that an estimator can resist before giving
wrong results. The mean estimator has a breakdown point
of 0%, since a single outlier can destroy it. Likewise, standard
deviation also has a breakdown point of 0%. Thus, the tra-
ditional z-score has zero breakdown point, thereby tending
to eliminate true ground points due to the swapping effect
[44]. The median estimator, in turn, has a breakdown point
of 50%, since it can resist 50% of outlier observations to
disturb it. Thus, the median is a robust alternative to the
mean. Similarly, there is a robust alternative to the stan-
dard deviation estimator, termed median absolute deviation
(MAD). Like the median, MAD also has a breakdown point
of 50%. Based on the two estimators, a robust z-score (rz) is
developed, where the mean and standard deviation estimators
in the traditional z-score are respectively replaced with the
corresponding robust estimators, namely,

rzi =
(
xi −median

j=1,··· ,n

(
xj
))/

MAD (2)

where MAD is expressed as

MAD = 1.4826median
i=1,··· ,n

∣∣∣∣xi −median
j=1,··· ,n

(
xj
)∣∣∣∣ .

In the context of non-ground point detection, the robust
z-score of each point in the candidate ground seeds is esti-
mated based on its k nearest neighbors (e.g. k = 12). Thus,
xi is flagged as a non-ground point and then removed from the
ground seeds if |rzi| ≥ 2.5. After the removal, the true ground
points are obtained. Note that some abrupt terrain points may
be wrongly removed. However, these removed points could
be restored based on the slope-adaptive threshold, which will
be discussed in following Section.

B. ADAPTIVE MULTI-LEVEL INTERPOLATION-BASED
FILTER (MIF)
After the selection of true ground seeds, the raw point cloud
is classified into two groups: ground points and candidate
points. Thus, in the following steps, the other ground points
mixed in the candidate points are to be selected by the
adaptive MIF.

The adaptiveMIF includesm levels (e.g.m = 3), where the
reference DEM resolution and the residual threshold gradu-
ally increase from the low to the high levels. In the ith level
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FIGURE 4. Point classification based on the slope-adaptive threshold or
the fixed threshold.

(i = 1, 2, . . . ,m), the steps for the selection of ground points
is as follows:
Step1: Produce a reference DEM with the resolution of hi

by TPS on the ground seeds.
Step2: Compute the height residuals of each candidate

point to the 9 surrounding grid cells of the reference
DEM. If 4 of 9 residuals are less than the threshold,
the point is flagged as the ground point. In the
classical MHC method [14], the residual threshold
only considers the elevation difference, so it is prone
to misclassify points on steep slopes [19]. To over-
come this problem, a slope-adaptive threshold (t)
is adopted, which is expressed as t = ti + sf ×
slope, where ti is a fixed threshold value, sf is a
slope scale and slope is the terrain slope derived
from the interpolated DEM. As shown in Fig. 4,
with a fixed threshold, many ground points on steep
slopes are misclassified as the non-ground points.
However, this misclassification is avoided by the
slope-adaptive threshold.

Step3: Update the ground points and the ground seeds
based on the selected points in Step2. The ground
seeds are the local lowest points in the grid cells with
the resolution of hi.

Step4: Repeat steps1-3 until no ground points are found.
Step5: Go to the (i + 1)th level and repeat steps1-4 until

the highest level is reached, where hi+1 = hi/2 and
ti+1 = ti + 0.1.

It can be found that the adaptive MIF has three key user-
defined parameters, namely, initial DEM resolution (h1), ini-
tial fixed threshold value (t1) and slope scale (sf). Note that
the code of our method was written using MATLAB R2018b
software on aWindows 7 operating system with the hardware
configuration of Intel Core i5-3470 CPU @ 3.2 GHz and
4.0 GB RAM.

IV. EXPERIMENTAL DESIGN
A. DATASETS
The benchmark dataset provided by the International Soci-
ety for Photogrammetry and Remote Sensing (ISPRS) are
employed to assess the performance of the proposed method.

TABLE 1. Landscape features and some statistics of the 6 samples in the
rural areas provided by ISPRS.

Here, 6 samples (i.e. 51, 52, 53, 54, 61 and 71) located in the
rural areas are used, since they are covered with vegetation.
The LiDAR data in the samples were collected by an Optech
Airborne Laser Terrain Mapping (ALTM) scanner with the
point density of 0.08-0.25 points (pts)/m2. The point labels
for all samples were manually produced by ISPRS for quan-
titative evaluation of filtering algorithms. Table 1 presents
detailed information about each sample regarding number of
ground points (#G), number of non-ground points (#NG),
standard deviation of the elevations (STD), and landscape
features.

Since the ISRPS benchmark dataset was published about
two decades ago, they have low sample density due to the
limitation of hardware devices in that era. Thus, 6 forested
sites with high sample density are further used to evaluate the
performance of the proposed method. Considering the fact
that vegetation cover and terrain slope have a serious effect on
the success of filtering algorithms [45]–[48], we selected the
6 sites covered with different terrain characteristics and veg-
etation covers (Fig. 5). This can fully assess the performance
of the proposed method under different landscapes. The area
for each site is 25 ha. Detailed data collection summaries
of the 6 sites based on airborne LiDAR systems are shown
in Table 2.

In addition, some statistics of the study sites are shown
in Table 3. It can be found that the 6 sites have the sample
density ranging from 8.9 to 15.6 pts/m2, and include vari-
ous terrain characteristics with the mean terrain slopes from
16◦ to 37◦. Furthermore, the vegetation conditions change
greatly with the mean canopy covers ranging from 41%
to 98%, and mean tree heights from 2.6 to 12.8 m. The
reference data for the 6 sites were generated using com-
mercial LiDAR data processing software named TerraScan
along with manual editing by the industry data processing
experts. The reference DEMs were produced by interpolat-
ing the reference ground points using natural neighbor, as
shown in Fig. 6.

B. COMPARATIVE METHODS
Since the publication of the ISPRS dataset, they have been
widely employed by many researchers to assess the accu-
racy of their methods. Thus, we compare the performance
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FIGURE 5. Orthophoto images of the 6 forested areas: (a) Data1, (b) Data2, (c) Data3, (d) Data4, (e) Data5 and (f) Data6.

TABLE 2. Data collection summaries of the 6 forested sites.

TABLE 3. Statistics and descriptions of the 6 forested sites.

of the proposed method with those of 15 filtering
algorithms developed in recent 5 years (2015-2019) [13],
[20], [30], [38], [49]–[59], which also took the ISPRS dataset
as the benchmark data. Moreover, because the proposed

method can be considered as an improved version of the
classical MHC [14], the results of MHC are also compared.

For the forested data, the proposed method is com-
pared with four well-known filtering algorithms including
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FIGURE 6. Reference DEMs of the 6 forested areas: (a) Data1, (b) Data2, (c) Data3, (d) Data4, (e) Data5 and (f) Data6.

morphological filter (MF), progressive TIN densification
(PTD), improved PTD (IPTD) [13] and Cloth Simu-
lation Filter (CSF) [60]. MF and PTD were respec-
tively implemented in the publicly available software
ALDPAT (http://lidar.ihrc.fiu.edu/lidartool.html) and Ter-
raScan (http://www.terrasolid.com/home.php). IPTD was
implemented with the private source code provided by
the first author of the paper [13], and CSF was con-
ducted with the publicly available MATLAB code (https:
//www.mathworks.com/matlabcentral/fileexchange/58139-c
sf-cloth-simulation-filter /). The best results of the filtering
methods are obtained by the cautious tuning of their param-
eters with the trial-and-error skill. Namely, the best result
corresponds to the minimum total error.

C. ACCURACY MEASURES
Four accuracy measures including Type I errors (T.I), Type II
errors (T.II), total errors (T.E) and kappa coefficient (κ) are
used to quantitatively evaluate the filtering performance [5].
A cross-matrix of filtering result is shown in Table 4. Based
on the cross-matrix, the four accuracy measures are respec-
tively expressed as

T .I = b/(a+ b)× 100% (3)

TABLE 4. Cross-matrix of filtering result.

T .II = c/(c+ d)× 100% (4)

T .E = (b+ c)
/
e× 100% (5)

κ = (p0 − pc)/(1− pc)× 100% (6)

where e = a + b + c + d, p0 = (a + d)/e and
pc = ((a+ b)× (a+ c)+ (c+ d)× (b+ d))/e2.
In addition, the DEMs of all the filtering methods on the

forested datasets are produced by interpolating their filtered
ground points using natural neighbor and then their root mean
square errors (RMSEs) are computed to further assess the
filtering performance. RMSE is expressed as

RMSE =

√√√√ n∑
i=1

e2i /n (7)
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where ei is the elevation difference between the interpolated
and the reference DEMs (Fig. 6) at the ith grid cell and n is
the total number of grid cells in the DEM.

V. RESULTS AND ANALYSIS
A. ISPRS DATASET
To assess the average filtering performance, the 6 ISPRS
samples were filtered by the proposedmethod with one single
set of parameters. Through trial-and-error, the best parameter
settings are obtained in terms of the minimum average kappa
coefficient (Table 5). That is, the initial resolution (h1) is 2 m,
initial elevation threshold (t1) is 0.29 m and slope scale (sf)
is 1. Furthermore, we also derive the highest kappa coefficient
with the optimized parameters for each sample.

Table 5 illustrates that with one single set of parameters,
the average kappa coefficient and total error of the proposed
method are 82.31% and 3.17%, respectively, while with the
optimized parameters, the kappa coefficient and total error
are 87.88% and 1.89%. Thus, the difference between the total
errors for the single set of parameters and the optimized ones
are less than 2%. This indicates that there is no obvious accu-
racy difference between the two groups of filtering results,
which shows the insensitivity of the proposed method to the
parameter settings.

Regardless of parameter settings (Table 5), samp51 and
samp61 obtain the best results with respect to kappa coeffi-
cient and total error, respectively. The kappa coefficient of
samp53 is much smaller than the others due to the steep
slopes in this area (Table 1). In fact, this sample also puzzles
the other filtering methods [19]. Yet, except for samp53,
the kappa coefficients of the other samples with the optimized
parameters are always greater than 84% and the total errors
less than 3%. This demonstrates the robustness of the pro-
posed method on the rural samples.

It can be found that the type II errors exceed the type
I errors in all samples (Table 5). Thereinto, samp53 shows
the largest difference between the type I and II errors while
samp54 shows the smallest. For example, with the optimized
parameters, the type II error of samp53 is 26.98 times larger
than the type I error while the type II error of samp54 is
1.03 times larger than the type I error. On average, the type II
error is about 773% larger than the type I error.

The computational cost of the proposed method mainly
depends on the number of input points (Table 5). For exam-
ple, samp54 with the least number of points (Table 1) has
the lowest computing cost while samp61 with the largest
number of points (Table 1) has the highest cost. On average,
the proposed method requires 137.11 s to filter the point
clouds. Thus, although the proposed method aims to improve
the filtering quality of airborne LiDAR point clouds, its
processing cost is acceptable due to the limited hardware
configuration. Note that the processing cost of a filtering
method also relies on the programming code (e.g. C++,
C#, python and MATLAB). Hence, it is difficult to compare
the computing efficiency of filtering methods under different
running environment.

FIGURE 7. Type I and II errors of the proposed method on the rural
samples: (a) samp51, (b) samp52, (c) samp53, (d) samp54,
(e) samp61 and (f) sam71 (� is the type I error and �
is the type II error).

Fig. 7 shows the distributions of the type I and II errors
of the proposed method. It is obvious that the type I and II
errors are mainly located on steep slopes, e.g. samp52
(Fig.7b) and terrain discontinuities, e.g. samp53 (Fig. 7c).
In addition, parts of bridges with the attachment to the ground
are incorrectly accepted as the ground points (Fig. 7f). Over-
all, the type I and II errors are relatively few and terrain
features are well retained, especially for samp51, 54 and 61
(Figs. 6a, d and e).

Table 6 gives an accuracy comparison between the pro-
posed method, MHC and the recently developed 15 filtering
methods with respect to total error. The proposed method
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TABLE 5. Results of the proposed method with the optimized parameters and with one single set of parameters.

TABLE 6. Total errors of the proposed method, MHC and the recently developed 15 filtering algorithms (Bold fonts are the best results).

produces the lowest errors in 4 of 6 samples (including
samp51, 53, 54, and 61). However, the total errors of the
remaining samples (including samp52 and 71) are approxi-
mate to the best results. Specifically, the proposed method
in samp52 and 71 is only 11.6% and 22.6% less accurate
than the corresponding best filters. On average, the proposed
method has the total error of 1.89%, whereas the other filters
have the errors ranging from 2.92% to 13.56%. Namely,
the proposed method is at least 35.3% more accurate than the
classical filters. Thus, the proposed method obtains promis-
ing and reliable results for the rural landscapes.

B. FORESTED DATASET
Table 7 exhibits an accuracy comparison between the pro-
posed method and the well-known filtering methods in the
forested sites. We can see that for the proposed method,
the type II errors are obviously larger than the type I errors
in almost all samples, except for Data1. This conclusion

is consistent with that derived from the ISPRS dataset.
Compared with the classical filters, the proposed method
achieves the lowest type I errors on 3 out of 6 samples
(i.e. Data4, Data5 and Data6) and the lowest type II errors
on 2 samples including Data1 and Data4. With respect to
total error and kappa coefficient, all the methods produce
more accurate results on Data4-6 than on Data1-3. This is
because the latter are characterized by low vegetation on steep
slopes (Table 3), which tend to puzzle the filtering methods.
In terms of total error and kappa coefficients, the proposed
method outperforms the other methods on almost all samples,
except for Data2. On average, the proposed method with
the total error of 6.80% and kappa coefficient of 85.61%
achieves the best result, which is followed by IPTD, and
CSF produces the worst results. More specifically, compared
to MF, PTD, IPTD and CSF, the proposed method reduces
the average total error by 26.2%, 19.9%, 3.8% and 40.4%,
respectively.
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FIGURE 8. DEMs of (a) reference, (b) proposed method, (c) MF, (d) PTD, (e) IPTD and (f) CSF on Data1.

TABLE 7. Accuracy comparison between the proposed method and the
well-known filtering methods on THE FOESTED datasets (BOLD FONT
REPRESENTS THE BEST RESULT).

The DEMRMSEs of all the methods for each site are given
in Table 8. The proposed method performs better than the
other methods in 4 of 6 sites (i.e. Data1, Data3, Data5 and
Data6), while IPTD has the best results on the other two sites

TABLE 8. DEM RMSEs of the proposed method and the well-known
filtering methods (Bold font represents the best result) (m).

(i.e. Data2 and Data4). On average, the proposed method is
46.9%, 39.7%, 35.3% and 46.5% more accurate than MF,
PTD, IPTD and CSF, respectively.

Fig. 8 shows the DEMs of the proposed method and the
classical filteringmethods onData1. Results demonstrate that
the proposed method (Fig. 8b) produces a similar DEM to
the reference (Fig. 8a). In comparison, the classical methods
including MF (Fig. 8c), PTD (Fig. 8d) and CSF (Fig. 8f)
tend to preserve low vegetation on rugged terrain, thereby
resulting in the production of unnatural coarse surfaces, such
as denoted by the circles. The surface of IPTD (Fig. 8e) shows
a good appearance to the reference, yet has a loss of terrain
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FIGURE 9. Error distributions of the proposed method (a) without and
(b) with using morphology-based method for obtaining potential ground
seeds on samp54 (� is the type I error and � is the type II error).

TABLE 9. Accuracy of the proposed method with and without the
improvement on the ISPRS dataset (%).

detail on the steep slope, as denoted by the ellipse. In contrast,
CSF suffers from a serious loss of surface details on the
rugged terrains, like those denoted by the ellipses (Fig. 8f).

VI. DISCUSSION
Theoretically, the proposed method belongs to the interpola-
tion-based filters. However, compared to the classical
interpolation-based algorithms, the new method has three
main contributions, namely, multi-scale morphology-based
method for obtaining potential ground seeds, robust z-score-
based method for removing non-ground points and slope-
adaptive threshold for filtering point clouds. Thus, to further
verify the performance of the proposed method with and
without each contribution, three tests are conducted on the
ISPRS dataset.

Taking samp54 as an example, we assess the effect of
the morphological-based method on the detection of poten-
tial ground points. Results (Table 9) indicate that the pro-
posed method with the improvement shows a clearly higher
accuracy than that without the improvement. Specifically,
compared to the latter, the former decreases the total error
by 56.7% and increases the kappa coefficient by 5.5%.
Fig. 9 shows that the proposed method without the improve-
ment suffers from obvious type II errors on rugged terrain.
Thus, more ground seeds can greatly improve the filtering
accuracy.

FIGURE 10. Error distributions of the proposed method (a) without and
(b) with using robust z-score for removing non-ground points on samp53
(� is the type I error and � is the type II error).

FIGURE 11. Error distributions of the proposed method (a) without and
(b) with using slope-adaptive residual threshold on samp52 (� is the
type I error and � is the type II error).

We further assess the effect of the robust z-score-based
method on the removal of non-ground points on samp53.
Results (Table 9) demonstrate that the proposed method
with the improvement performs better than that without the
improvement. Nevertheless, the accuracy difference is slight.
Specifically, the differences of total error and kappa coeffi-
cient are 0.07% and 2.97%, respectively. This indicates that
the morphological-based method has a good ability of accu-
rately detecting potential ground seeds. Fig. 10 demonstrates
that the two error distributions are similar, except for that
denoted by the ellipse.

Finally, the effect of the slope-adaptive residual threshold
is evaluated on samp52. Compared to the method without the
improvement, the proposed method with the improvement
decreases the total error by 59.6% and increases the kappa
coefficient by 22.9% (Table 9).Moreover, the type I errors are
significantly reduced on the steep slopes (Fig. 11). Therefore,
the slope-adaptive residual threshold has a great effect on the
filtering performance on steep slope areas.

In conclusion, the three contributions make the filtering
method adaptive, accurate and robust with respect to various
terrain characteristics and vegetation covers.

VII. CONCLUSION
To improve the filtering accuracy of airborne LiDAR data
in forested areas, we developed a multi-level interpolation-
based filtering algorithm in this paper. The proposed method
uses morphological operations and robust z-score to accu-
rately detect ground seeds. Moreover, a terrain-adaptive
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residual threshold is developed to accommodate for different
terrain characteristics. We demonstrated the effectiveness of
our method by conducting a detailed comparison with the
most recent and with some well-known approaches for fil-
tering point clouds. The methods were respectively evaluated
on ISPRS rural samples and 6 forested datasets with various
terrain slopes and vegetation covers. The proposed algorithm
achieved the average total error of 1.89% and average kappa
coefficient of 87.88% on the ISPRS rural samples, while
the average total error and kappa coefficient on the forest
datasets are 6.80% and 85.61%, respectively. In comparison,
our method performs better than the competitors, demonstrat-
ing its robustness and reliability. It should be noted that the
proposed method have much larger type II errors than type
I errors. Namely, some non-ground points are mixed in the
ground points. Thus, our further researches will focus on
the decrease of type II errors under the help of other simple
filtering methods, such as slope-based approaches.
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