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ABSTRACT With the augmentation of the non-zero conjugate correlation statistics of some modulating
signals, enlarged degrees of freedom (DOFs) can be achieved with conventional sparse arrays as proposed
by many literatures. But little research has been carried out on sparse array design with the augmented
statistics. In this paper, a novel sparse array geometry which exploits both the correlation and conjugate
correlation statistics is proposed. It stems from the prototype nested array with transposed subarrays. The
sensor locations are determined systematically, and the closed-form expression for the achieved aperture
under given number of physical sensors is derived. In our scheme, a new hole-free virtual array called the
sum difference coarray is constituted with the proposed sparse array, in which all the lags are consecutive.
Due to the output of the coarray is obtained by averaging the repeated lags generated by the addition and
subtraction of the physical sensor location, the hole-free structure of the coarray enables all the lags engaged
in averaging and makes the output of the coarray more stable. Moreover, the coarray has larger aperture than
existing sparse arrays, so that bringing more degrees of freedom. In the end, simulations are conducted to
demonstrate the superior performance of the proposed scheme over other existing structures.

INDEX TERMS Conjugate correlation statistics, DOA estimation, hole-free virtual array, sparse arrays, sum
difference coarray.

I. INTRODUCTION
Direction of arrival (DOA) estimation plays a significant role
in the field of array signal processing, which aims at retriev-
ing the direction information of sources from the received
signals. It arises in many practical scenarios such as radar,
modern communications and internet of things [1]–[6]. Con-
ventional DOA estimators such as multiple signal classifica-
tion (MUSIC) [7] and estimation of parameters by rotational
invariant techniques (ESPRIT) [8] are mainly built on the
uniform linear arrays (ULAs), where the inter-sensor spacing
is less than or equal to half wavelength. For a N -sensor ULA,
these DOA estimators can resolve at most N −1 uncorrelated
sources.

Another family of DOA estimators are intensive investi-
gated for underdetermined system, which aim at resolving
more sources than sensors. These estimators are designed for
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sparse arrays, where the sensors are placed nonuniformly.
And high degrees of freedom (DOFs) can be achieved by
the underlying difference coarrays of sparse arrays. The tradi-
tional sparse arrays include minimum redundancy arrays [9]
and the minimum hole arrays [10], [11], who have no
closed-form expressions for their array geometries and the
achieved virtual array aperture. The sensor location can only
be determined by exhaustive searching. Recently, the devel-
opment of sparse arrays such as the nested arrays [12] and
the coprime arrays [13], [14] have generated a new wave of
interest in the field of array signal processing. They have a
more concise and flexible geometry for sparse array config-
uration, and there are analytical expressions for the achieved
apertures. These sparse arrays can identify O(N 2) uncorre-
lated sources using N physical sensors and they lead to better
spatial resolution than ULAs with the same number of sen-
sors. Many extensions of the nested arrays and the coprime
arrays have been proposed, which can be divided into two
categories. One is for reducing the mutual coupling between
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sensors by redistributing the dense subarray of the nested
array, such as the super nested arrays [15] and the generalized
nested arrays [16]. The other is for increasing the available
DOFs. For instance, [17] has proposed generalized coprime
arrays with variable inter-sensor spacing and inter-subarray
spacing. And improved nested arrays composed of two ULAs
and an additional sensor have been proposed in [18]. More-
over, the augmented nested arrays have been proposed in [19],
who have both enhanced DOFs and reduced mutual coupling.

All of the aforementioned sparse arrays aim at construct-
ing the difference coarray with received signals’ covari-
ance matrix. However, as indicated in [12] that both the
sum coarray and the difference coarray can be utilized to
construct the virtual array, where the location of the vir-
tual sensors is obtained by the addition and the subtraction
of the physical sensor location. Generally, two approaches
are feasible to form such extended coarray. One is the
active or transmit/receive sensing scheme such as the colo-
cate multiple-input multiple-output (MIMO) radar, where the
detection performance can be enhanced due to the enlarged
coarray [20], [21]. The other is utilizing the specific non-zero
conjugate correlation statistics such as the pseudo covariance
or the conjugate cyclic correlation, which characterize two
kinds of modulating signals, viz the noncircular signals and
the cyclostationary signals. Some literatures have reported
that by exploiting this statistic property, the virtual array
aperture is extended by constructing the additional sum coar-
ray with the pseudo covariance of noncircular signals [22]
or with the conjugate cyclic correlation of cyclostationary
signals [23], [24].

Two obvious issues are emerged in the aforementioned
methods [22]–[24]. The additional sum coarrays are usually
inconsecutive and irregular distributed, owning to that the
majority of sparse arrays are designed to form consecutive
difference coarrays regardless of the structure of the sum
coarrays. Thus, the achieved DOFs provided by these sparse
arrays are limited. The other issue is that the sum and the dif-
ference coarrays are constructed respectively, and some vir-
tual sensors are contained in both coarrays at the same time.
These repeated virtual sensors provide the same informa-
tion, thus bringing redundancy to the augmented covariance
matrix. Even though the repeated virtual sensors are removed
in [25], [26], and the separated coarrays are merged into one
array called sum difference coarray (SDCA), [25] is still built
on the prototype coprime arrays, where its SDCA provide
limited DOFs increasement. [26] redistributes the sensors
in [25] to reduce the mutual coupling, but only compara-
tive DOFs is achieved. Therefore, it is necessary to develop
the SDCA-based sparse array, where the virtual sensors in
both coarrays can be integrated in one virtual array with
larger aperture. Some empirical results have been proposed,
a customized 6-sensor sparse array in [27] provide the largest
SDCA aperture among the 6-sensor arrays. And an adjacent
coprime array (ADCA) in [28] can generate N 2/2+ 3N + 1
virtual sensors within the SDCA using N physical sensors.
In addition, [29] has proposed a systematical methodology for

designing a SDCA-based sparse array, which announced to
have the largest SDCA aperture ofN 2

+N−1 withN sensors.
However, there is no general way to design similar arrays
with other than 6 sensors for [27], and the virtual sensors are
not consecutive within the SDCA of the sparse array in [29],
only the consecutive part of the SDCA can be utilized in the
subspace-based DOA estimator.

Due to dramatic increasement of DOFs can be achieved
when utilizing the augmented conjugated correlated statistics
in sparse array design, the research of SDCA based sparse
array design is promising. However, the aforementioned
sparse arrays [25]–[29] suffer from their respective defi-
ciencies, and no satisfactory DOFs increasement is achieve.
Hence, there is still substantial potential to form a larger
SDCA with fewer physical sensors. In this paper, we propose
a novel SDCA-based sparse array called refined nested array
with displaced subarrays (RNADS), which has at most N 2

+

3N − 1 virtual sensors with N physical sensors. In order to
constitute a hole-free SDCA,wefirstly transpose theULAs of
the nested array. The resultant array is called nested arraywith
displaced subarrays (NADS), whose first subarray is ULA
with D units inter-sensor spacing and the second subarray is
a dense ULA. Then, by systematically analyzing the struc-
ture of the NADS, the inter-sensor spacing and the spacing
between two subarrays are assigned elaborately, so that a
coarray with consecutive lags can be formed. In order tomake
the sparse array more economical, we remove an inessential
sensor, which is proved to be at a fixed position and make
no change to the coarray when it is removed, and obtain
the final version. The expressions for the achieved aperture
and its maximum are derived. It should be emphasized that
the RNADS has larger SDCA aperture than existing sparse
arrays. The output of the coarray is obtained by averaging
the repeated lags, thus the hole-free structure enables all the
lags engaged in averaging and makes the coarray output more
stable. Simulation results clearly demonstrate the superior
performance of the proposed scheme over other existing
structures in terms of the estimation accuracy, the number of
resolvable sources and the angular resolution.

The remaining part of this paper is organized as follows.
The data model and the underdetermined DOA estimation
method for sparse array are briefly introduced in Section II.
Then, in Section III, we propose the systematic methodology
for designing RNADS and provide relevant proofs associated
with the sparse array. Section IV demonstrate the numerical
results of the proposed scheme in different scenarios with
other existing sparse array structures. The conclusion is sum-
marized in Section V.
Notations:Vectors, matrices and sets are denoted by lower-

case bold letters, uppercase bold letters and uppercase outline
letters, respectively. The superscripts ∗, T and H denote the
complex conjugate, the transpose and the complex conjugate
transpose, respectively. In addition, E(·) is used to represent
the expectation operation. The addition between a set and a
scalar is represented as A ± c = {a ± c|a ∈ A}. Provided
with two sets A and B, the difference set between A and B

41952 VOLUME 8, 2020



J. Song et al.: Sparse Array Design Exploiting the Augmented Conjugate Correlation Statistics for DOA Estimation

are given by diff(A,B) = {a − b|a ∈ A, b ∈ B} and their
summation set is sum(A,B) = {a+ b|a ∈ A, b ∈ B}.

II. PRELIMINARIES
The sources can be noncircular signals or cyclostationary sig-
nals. The way to construct the coarrays with cyclostationary
signals can be found in [24]. In this paper, we assume K
narrowband far-field noncircular signals sk (t)(k = 1, . . .K )
impinge on a sparse linear array ofN sensors, whose locations
can be expressed by {p1, p2, . . . pN }d . d is the unit spacing,
which is equal to half wavelength λ/2, λ is the wavelength
of the received signals. The integer set S = {p1, p2, . . . pN } is
usually called the location set for convenience.With the angle
of the arrived kth source being θk , the observed signal xn(t)
at the nth sensor is given by

xn(t) =
K∑
k=1

an(θk )sk (t)+ n(t) (1)

where

an(θk ) = e−j2πpndsinθk/λ (2)

n(t) denotes the noise at the nth sensor, which is Gaussian
distributed and uncorrelated with the sources. Assembling the
signals of the whole N sensors gives the received vector as

x(t) =
K∑
k=1

a(θk )sk (t)+ n(t) (3)

The covariance matrix Rxx of the received signal x can be
written as

Rxx = E[x(t)xH (t)] =
K∑
k=1

a(θk )aH (θk )σ 2
k + σ

2
n I (4)

where σ 2
k and σ 2

i are the powers of the kth signal and the
noise, respectively. The correlation between the observed
signals of the mth and nth sensor can be expressed as

[Rxx]m,n =
K∑
k=1

e−j2π (pm−pn)dsinθk/λσ 2
k (5)

It can be seen that (5) is similar with (1), which can be
regarded as K real value signals with amplitude σ 2

k (k =
1 . . .K ) from directions of θk (k = 1 . . .K ) impinge on a
virtual sensor located at {pm − pn}. Then, the vectorization
of Rxx can be regarded as a single snapshot of a virtual array
called the difference coarray, whose location set are obtained
by the subtraction of the physical sensor location as

diff(S,S) = {pm − pn|pm, pn ∈ S} (6)

The difference set of (6) acts as the virtual sensor locations,
which can be utilized to form the difference coarray. Majority
of the sparse array design concentrates on how to distribute
the physical sensors to form a difference coarray which has
consecutive segment of virtual sensors. And the covariance

plays a fundamental role in constructing the difference coar-
ray. Besides the covariance, the non-zero conjugate corre-
lation statistics which is called the pseudo covariance for
noncircular signals or the conjugate cyclic correlation for
cyclostationary signals, can provide additional information
that can be exploited to form new coarray structures.

Due to the noise is uncorrelated with the sources,
the pseudo covariance for noncircular signals can be
expressed as

Rxx∗ = E[x(t)xT (t)] =
K∑
k=1

a(θk )aT (θk )gk (7)

where gk = E[sk (t)sTk (t)]. And the conjugate correlation
between the observed signals of the mth and the nth sensor
can be written as

[Rxx∗ ]m,n =
K∑
k=1

e−j2π (pm+pn)dsinθk/λgk (8)

(8) can be considered as a snapshot of a virtual sensor located
at {pm+pn}. So we vectorize the pseudo covariance, the result
can be regarded as one snapshot of a virtual array called sum
coarray, whose location set is obtained by the addition of
the physical sensor location and forms the following positive
segment of sum coarray

sum(S,S) = {pm + pn|pm, pn ∈ S} (9)

Take the conjugate of covariance R∗xx and the conjugate of
pseudo covariance R∗xx∗ into account, their values can also be
regarded as a snapshot of a virtual array. The vectorization
of R∗xx forms the same difference set as (6). For R∗xx∗ , its
vectorization forms the negative segment of sum set as

sum(−S,−S) = {−pm − pn|pm, pn ∈ S} (10)

Integrating these three location sets, we obtain the SDCA
with the following location set

U = diff(S,S) ∪ sum(S,S) ∪ sum(−S,−S) (11)

The resultant coarray contain the lags from {−2pN , . . . 2pN },
where pN denotes the location of the N th sensor in the
physical array. It should be noticed that the lags may not be
consecutive. In order to form an enlarged coarray, we pro-
pose a novel sparse array which has consecutive SDCA in
Section III.

For a underdetermined DOA estimator, we firstly define
the extended observation vector y(t) as

y(t) = [xT (t), xH (t)]T (12)

Then, we evaluate the augmented covariance corresponding
to the extended observation vector as

Ry = E[y(t)yH (t)] (13)

After that, we vectorize the Ry followed by removing the
repeated elements in the coarray and sorting the remaining
elements in ascending order, the single snapshot received
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FIGURE 1. The array configuration of RNADS.

model of SDCA is formulated. The spatial smoothing [12]
or the direct augmented method [30] can be utilized to
recover the rank of the one snapshot covariance. Finally,
the subspace-based DOA estimating algorithms can be
performed.

III. PROPOSED SPARSE ARRAY
With the augmented conjugate correlation statistics, we pro-
pose a methodology to design a sparse array by exploring its
SDCA structure. The initial version of the proposed array is
termed as the nested array with displaced subarrays (NADS),
which is composed by two ULAs with different inter-sensor
spacings. The first ULA specified by integer set S1 with N1
sensors has an inter-sensor spacing of D units, i.e., Dλ/2 and
the second subarray is a dense ULA with D sensors, which is
D/2 units away from the last sensor of the first ULA. Then
in the concept of sum difference coarray we can always find
an inessential sensor in the second ULA, who has a fixed
position i and can be removed without changing the coarray
structure. Hence, we remove the inessential sensor to make
the desired array more economical, and the resultant second
subarray is specified by integer set S2. Finally, we obtain the
sparse array termed as refined nested array with displaced
subarrays (RNADS), whose location set S = {S1,S2} is
given as

S1 = {l|l = mD, 0 ≤ m ≤ N1 − 1} (14)

S2 = {l|l = (N1 − 1/2)D+ n, 0 ≤ n ≤ D− 1, n 6= i} (15)

The array geometry of the proposed sparse array are shown
in Fig. 1. The black dots represent the physical sensors and the
red cross represents the inessential sensor which is removed
from the array.

Theorem 1 describes the assignment of parameters associ-
ated with RNADS that forms a consecutive SDCA.
Theorem 1: Consider a N-sensor RNADS consisting of two

subarrays, one is an ULA with D units inter-sensor spacing,
and the other is a D−1 sensor nonuniform linear array (NLA)
generated by removing an inessential sensor located at i of a
dense ULA with D sensors. To achieve a hole-free SDCA with
large aperture, D should be an even number satisfying D ≥ 6,
the NLA should be D/2 units away from the last sensor of
the first subarray, and the location of the inessential sensor
should be i = N1D, where N1 = N − D + 1 is the sensor
number of the first subarray.

Before proving Theorem 1we first provide a proposition to
investigate the SDCA structure of the NADS before removing
the inessential sensor from it.
Proposition 1: Consider a N-sensor NADS consisting of a

ULA with D units inter-sensor spacing and a dense ULA with
D sensors, represented by ULA-I and ULA-II, respectively.
ULA-II is D/2 units away from the last sensor of ULA-I and
D is an even number. Then the SDCA is a hole-free consec-
utive virtual array ranging from −(2N − 2D + 1)D + 2 to
(2N − 2D+ 1)D− 2.

Proof: Due to ULA-II is D/2 units away from the last
sensor of ULA-I, D must be an even number to ensure that
the inter-sensor spacings of the NADS are integer multiple
of half-wavelength. Let integer sets S1 represent the sensor
location of ULA-I, and S3 be the sensor location of ULA-II
with the following expression

S3 = {l|l = (N1 − 1/2)D+ n, 0 ≤ n ≤ D− 1} (16)

N1 is the sensor number of ULA-I. For the difference coarray,
it can be seen that the difference set of NADS is consisted of
the self-difference and the cross-difference of the integer sets
S1 and S3. The self-difference sets are evaluated as

diff(S1,S1) = {0,±D, . . .± (N1 − 1)D} (17)

diff(S3,S3) = {0,±1, . . .± (D− 1)} (18)

And the cross-difference set between S3 and S1 is

diff(S3,S1) = {S3 − 0} . . . ∪ {S3 − (N1 − 1)D}

= {0.5D, . . . (N1 + 0.5)D− 1} (19)

Due to diff(S1,S3) is the mirrored negative segment of
diff(S3,S1), we have

diff(S1,S3) = {−(N1 + 0.5)D+ 1, . . .− 0.5D} (20)

Integrating these four parts of difference sets, the difference
coarray turns out to be a consecutive array ranging from
−(N1 + 0.5)D+ 1 to (N1 + 0.5)D− 1.
As to the sum coarray, the summation set is also made up

of the self-summations and the cross-summation, which are
evaluated as follows

sum(S1,S1) = {0,D, . . . 2(N1 − 1)D} (21)

sum(S3,S3) = {(2N1 − 1)D, . . . (2N1 + 1)D− 2} (22)

sum(S3,S1) = {S3 + 0} . . . ∪ {S3 + (N1 − 1)D}

= {(N1 − 0.5)D, . . . (2N1 − 0.5)D− 1} (23)
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Due to sum(S3,S1) = sum(S1,S3), these four parts of sum-
mation sets takes up the segment of

{(N1 − 0.5)D, . . . (2N1 + 1)D− 2}.

Furthermore, the summation set sum(−S,−S) is the mirrored
negative segment of sum(S,S). Integrating both the difference
set and the summation set, we can summarize that the SDCA
is consecutive and rangs from −(2N1 + 1)D + 2 to (2N1 +

1)D − 2. N1 is the sensor number of the ULA-I which can
be substituted by N − D and then we complete the proof of
Proposition 1.

In the following, we introduce the definition called
inessential sensor and demonstrate the influence of removing
the inessential sensor to the sum difference coarray of NADS.
Lemma 1: The N-sensor RNADS array and the

N+1-sensor NADS array with the same parameter D process
the same SDCA, and the location of the inessential sensor in
the NADS is i = N1D, where N1 is the sensor number of the
first subarray of NADS.

Proof: we use the definition inessential sensor proposed
in [31] with modification. Here a sensor is said to be inessen-
tial if the SDCA remains unchanged when it is removed
from the array. In order to prove Lemma 1, we shall verify
the location elements generated by subtraction operation and
addition operation involving the inessential sensor can be
replaced by other elements existing in the location set of
SDCA. For the difference coarray, the removed sensor leads
to the missing of some values when evaluating diff(S2,S1),
diff(S1,S2) and diff(S2,S2). It is evident that

diff(S2, S2) = {0,±1, . . .± (D− 1)}

which is still equal to (18) when the inessential sensor is
existed in the array. The missing values in diff(S1,S2) and
diff(S2,S1) are

{N1D− S1} ∪ {S1 − N1D} = {±D,±2D, . . .± N1D}

Among them, the elements {±D,±2D, . . .± (N1− 1)D} can
be replaced by diff(S1,S1), the rest two holes {±N1D} are
existed in the difference coarray, but they can be filled by the
addition of the physical sensor location pairs {D, (N1 − 1)D}
and {−D,−(N1 − 1)D}. The removed sensor also makes no
change to the positive segment of sum coarray due to

sum(S2,S2) = {(2N1 − 1)D, . . . (2N1 + 1)D− 2}

which is coincident with (22). And the missing values in the
positive segment of cross-summation set are

{N1D+ S1} = {N1D, (N1 + 1)D, . . . (2N1 − 1)D}

Among the missing elements, {N1D, (N1 + 1)D, . . . (2N1 −

2)D} can be replaced by sum(S1,S1), the remaining missing
element {(2N1− 1)D} can be replaced by the self-summation
of element {(N1 − 0.5)D}, which is the location of the first
sensor of ULA-II. Themissing values in the negative segment
of sum coarray can also be replaced likewise, due to the
negative segment is symmetric with the positive segment at
the zero point. Thus, removing the inessential sensor located

at i = N1D make no change to the SDCA, and the SDCA
of RNADS is also ranging from −2(N1 + 0.5)D + 2 to
2(N1+0.5)D−2. For a N -sensor RNADS array, the physical
sensor number of ULA-I isN1 = N−D+1, so in our scheme
the aperture expression of SDCA is 4(N − D+ 1.5)D− 3.

Next, we study the parameter character of the RNADS and
provide the following corollary.
Corollary 1: The inter-sensor spacing of the ULA-I within

the RNADS array should be an even number satisfying D ≥ 6,
and the minimal sensor number of RNADS is 6.

Proof: As we know that the RNADS is obtained by
removing an inessential sensor of the ULA-II in NADS. And
in order to form a hole-free SDCA, the inessential sensor can
not be the second from the bottom of ULA-II. Because the
element {(2N1 + 1)D− 3} in the location set of SDCA can
only be generated by the summation operation of the physical
sensor location pair {(N1 + 0.5)D − 2, (N1 + 0.5)D − 1},
which are the locations of the last two sensor of NADS.
Thus, the location of the inessential sensor must satisfy the
following condition

N1D < (N1 + 0.5)D− 2 (24)

It can be inferred from the above inequation that D satisfies

D > 4 (25)

As D must be an even number explained in Proposition 1,
the minimal even number for D is 6, and when D = 6 the
minimal size of RNADS is composed of one sensor ULA-I
and D − 1 = 5 sensor NLA, so the minimal sensor number
of RNADS is 6.

Together with Proposition 1, Lemma 1 and Corollary 1,
we complete the proof of Theorem 1 about how to construct
a sparse array with hole-free SDCA. Thus, if we know the
sensor number as well as the inter-sensor spacing D, we can
determine the physical configuration of RNADS and the
coarray aperture with the expression 4(N − D+ 1.5)D− 3.
With the explicit analysis of the RNADS and its corre-

sponding coarray structures, an example is provided for better
illustration. Consider a 10-sensor RNADS with parameter
D = 8. According to Theorem 1, the first subarray has
N1 = N−D+1 = 3 sensors with the location set of {0, 8, 16},
the second subarray with D − 1 = 7 sensors ranges from
(N1 − 0.5)D = 20 to (N1 + 0.5)D − 1 = 27, the location
of the inessential sensor is N1D = 24, thus the second sub-
array has the location set as {20, 21, 22, 23, 25, 26, 27}. The
physical sensors and its corresponding coarrays are illustrated
in Fig. 2. As the analysis results, the difference coarray is
ranging from−(N1+0.5)D+1 = −27 to (N1+0.5)D−1 =
27 with two holes located at ±N1D = ±24, and the sum
coarray has two consecutive segments from (N1−0.5)D = 20
to (2N1 + 1)D − 2 = 54 and its mirrored negative segment.
Combining these two coarrays, the SDCA presents to be a
consecutive array with aperture 4(N −D+ 1.5)D− 3 = 109.
The structures of coarrays in Fig. 2 verify the above analysis
and manifest the capability to form a hole-free SDCA of our
scheme.
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FIGURE 2. An example of the RNADS with 10 physical sensors.

FIGURE 3. An example of the 10 sensor optimum RNADS.

The sparse array RNADS and the achieved aperture can be
uniquely determined once the parameter D is assigned. But
it is still unknown about how to choose D to maximize the
virtual array aperture under given number of sensors. In the
following, we propose Theorem 2 to show the way to choose
D and the explicit expression for the maximum aperture.
Theorem 2: For a N-sensor RNADS array, the aperture of

SDCA is maximum when the inter-sensor spacing of the first
subarray satisfying

D =
N
2
+

3
4

(26)

and the maximum is N 2
+ 3N − 1.

Proof: How to choose D to maximize the aperture of
SDCA leads to the following optimizing problem

max 4(N−D+ 1.5)D− 3 (27)

The quadratic maximizing problem can be easily solved with
the following result

D =
N
2
+

3
4

(28)

And the maximum is N 2
+ 3N − 0.75 ≈ N 2

+ 3N − 1.
In practice, D is chosen as the approximated even number
satisfyingD ≥ 6. Hence the achieved aperture maybe slightly
smaller than N 2

+ 3N − 1, but it still can be explicitly
determined by 4(N − D+ 1.5)D− 3.
Here, we reconsider the array geometry of the 10-sensor

RNADS. For an optimum RNADS, we firstly determine the
inter-sensor spacing for the first subarray with D = N/2 +
3/4 = 5.75, so we choose D = 6 that satisfies the cri-
teria specified in Corollary 1. Then the first subarray has
N1 = N − D + 1 = 5 sensors located at {0,6,12,18,24},
the second subarray is ranging from (N1 − 0.5)D = 27 to
(N1 + 0.5)D− 1 = 32, after removing the inessential sensor
at N1D = 30, the sensors of the second subarray locate at
{27, 28, 29, 31, 32}. Finally, the corresponding SDCA is a

hole-free array ranging from −64 to 64 with the aperture
of 129, which is equal to the theoretical result N 2

+ 3N −
1 = 129. Fig. 3 shows the physical array and its correspond-
ing coarrays, which verify the analysis results. The optimum
RNADS has 20 more lags than that of RNADS with D = 8.
Compared to the method in [29] which announce to have the
largest SCDA aperture of N 2

+ N − 1, our method also has
20 more lags when N = 10.

TABLE 1. Comparison of the number of lags in the SDCA between
proposed array and other related arrays.

In this section, we compare the SDCA aperture of the
proposed arrays withD = 6, 8, 10 and two recently proposed
sparse arrays named ADCA [28], and NADiS [29], which
also aim to construct the SDCA utilizing both the correlation
and the conjugate correlation statistics. Table 1 shows their
respective coarray aperture where the numbers of physical
sensors are chosen to be 10 to 20. It can be seen that the
ADCA with analytical aperture expression N 2/2 + 3N + 1
have obviously shorter aperture than the NADiS and the
RNADS with optimal sensor distribution. The coarray aper-
ture of RNADS with optimized D are in bold font, which
are chosen to be even numbers approximated to N/2 + 3/4
according to Theorem 2. And the coarray aperture of RNADS
with optimized D is shown to be 2N larger than that of the
NADiS when D = 10, 14, 18 and 2N − 2 larger than that of
the NADiS when D = 12, 16, 20.
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FIGURE 4. The spatial spectrum for the NADiS (a) and the RNADS (b) with 31 sources.

IV. SIMULATION RESULTS
In this section, simulations are performed to study the per-
formance of the proposed array structure in terms of DOA
estimation and comparedwith other existing schemes, includ-
ing the ADCA, NADiS and the initial version of the pro-
posed array called NADS described in Proposition 1. The
compressed sensing based methods and the subspace-based
DOA estimation methods can be utilized in the underdeter-
mined estimation problem. For the subspace-based method,
the DOFs can be obtained by (L − 1)/2 when the number
of lags within a coarray is L. In this paper, we adopt direct
augmented approach [30] followed by spectrum-searching
MUSICmethod with 8-sensor sparse arrays in the first exper-
iment, which demonstrates the spatial spectrum under multi-
ple sources scenario. In the following experiments involving
evaluating the mean square error (MSE) of the estimation,
the sensor number increases to 10. And the Root MUSIC
approach is adopted, which can directly obtain the estimates
of DOA with low computational complexity.

A. SPATIAL SPECTRUM
In the first simulation, we study the performance in terms of
spatial spectrum of the proposed array. The 8-sensor sparse
array geometries are specified as

SADCA = {0, 4, 5, 8, 10, 12, 15, 16},
SNADiS = {0, 1, 2, 3, 4, 13, 22, 31},
SNADS = {0, 6, 9, 10, 11, 12, 13, 14},

SRNADS = {0, 6, 12, 15, 16, 17, 19, 20}, D = 6,

According to these array geometries, we know that the
RNADS contains 81 consecutive lags and its DOFs are 40,
the DOFs for both the ADCA and the NADS are 28, and the
NADiS contains 71 consecutive lags so that its DOFs are 35.
We assume K = 31 uncorrelated baseband BPSK sources,
who belong to noncircular signals, impinge on these arrays.

These sources are distributed uniformly between −60◦ to
60◦ with the step of 4◦. The SNR is chosen to be 20dB and
the number of snapshot is 1000. The search interval for the
MUSIC method is fixed to 0.01◦. We ignore the performance
of ADCA and NADS, due to the number of sources is beyond
their DOFs. Fig. 4 (a) and Fig. 4 (b) demonstrate the spa-
tial spectrums of the NADiS and the RNADS, respectively.
As seen in Fig. 4 (a), the NADiS fails to resolve the sources
from ±56◦ and ±52◦, even though its DOFs are larger than
the number of sources. The reason can be attributed to the lack
of stability of the NADiS, which is further tested in the fol-
lowing subsection. In Fig. 4 (b), there are 31 distinguishable
peaks, which match with the ideal peaks marked by ticks on
the θ axis. It is indicated that the proposed scheme achieves
superior detection performance due to its larger DOFs and the
stability induced by its hole-free coarray.

B. ESTIMATION ACCURACY
In this subsection, we examine the estimation accuracy of
these sparse arrays in terms of MSE. The curve of CRAMER
RAO bound (CRLB) for DOA estimation using sum differ-
ence coarray is also shown to evaluate the estimation perfor-
mance, whose detailed derivation can be found in [29]. Due to
it is represented in the form of normalizedDOA θ̄ = sin(θ )/2,
our MSE is also evaluated with the normalized DOA as

MSE =
1
IK

I∑
i=1

K∑
k=1

(θ̂i,k − θ̄k )2 (29)

where K is the number of sources, I denotes the number
of Monte Carlo trials, which is chosen to be 1000 in each
scenario. The sensor number increases to 10, and the array
geographies are given as

SADCA = {0, 5, 6, 10, 12, 15, 18, 20, 24, 25},
SNADiS = {0, 1, 2, 3, 4, 5, 16, 27, 38, 49},
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FIGURE 5. MSE results versus input SNR.

SNADS = {0, 6, 12, 18, 21, 22, 23, 24, 25, 26},
SRNADS = {0, 6, 12, 18, 24, 27, 28, 29, 31, 32}, D = 6

SRNADS = {0, 8, 16, 20, 21, 22, 23, 25, 26, 27}, D = 8

The curves between the MSE versus the input SNR,
the number of snapshots and the number of sources are drawn
in different scenarios. Firstly, we assume 27 uncorrelated
baseband BPSK sources distributed uniformly between−60◦

to 60◦ impinge on these sparse arrays. And the angles range
from -1.0472 to 1.0472 in the normalized DOA domain.
Fig. 5 shows the curves of MSE results versus input SNR,
where the snapshot number is fixed to 500. The RNADS
with D = 6 achieves the lowest MSE for the whole input
SNR range, because it possesses the largest coarray aperture
including 129 consecutive lags. Besides the large coarray
aperture, the stability also contributes to the low MSE. In our
scheme, all the lags within the SDCA are consecutive and
engaged in averaging, which makes the estimates of the
coarray output more accurate and stable. The consecutive lags
for the RNADS with D = 8, the NADiS and the NADS with
D = 6 are 109, 109 and 105, respectively. The close coarray
aperture make them share similar MSE. And the ADCA with
the smallest consecutive lags of 81 has a larger MSE than
the other sparse arrays. It is worth noting that there is a big
gap between the MSE and the CRLB even at high SNR.
This is because the equivalent received signals of the virtual
sensors cannot further improve the estimation accuracy as the
authentic received signals of physical sensors, even though
they can be utilized to improve the number of resolvable
sources. Fig. 6 depicts the comparison of MSE results versus
the number of snapshots, where the SNR is fixed to 20dB.
It can be see a similar trend and the proposed RNADS with
D = 6 achieves the lowest MSE.

Thenwe study the estimation accuracy in terms of theMSE
as a function of the number of sources, where SNR is selected
as 0dB and the number of snapshots is fixed to 1000. The
number of sources increases from 25 to 40. It can be seen from
Fig. 7 that the RNADSwithD = 6 possesses the lowest MSE

FIGURE 6. MSE results versus number of snapshots.

FIGURE 7. MSE results versus number of sources.

for the whole range. Due to the uptight DOFs, the ADCA
begin to fail when the number of sources is larger than 30.
The MSE of the RNADS with D = 8 and the NADiS are
smaller than that of the NADS when the number of sources is
larger than 36 due to they have 2 more DOFs than the NADS.
But they fail to estimate the sources’ DOA when the number
of sources is larger than 38. Our scheme with D = 6 can
resolve even 40 sources with moderate MSE.

C. ANGULAR RESOLUTION
The angular resolution is examined in the last subsection.
Two sources from directions θ1 = 30◦ and θ2 = 30◦ + 1θ
impinge on these sparse arrays. We define that two sources
are correctly resolved when the estimated DOAs θ̂1 and θ̂2
satisfy |θ̂1 − θ1| < 1θ/2 and |θ̂2 − θ2| < 1θ/2 at the
same time. The SNR is 0dB and the number of snapshots is
1000. 1θ varies from 0.1◦ to 0.8◦. The angular resolution
probability versus the angular interval is shown in Fig. 8. All
of these sparse arrays have 100 percent resolution probability
when the angular interval is bigger than 0.65◦. The resolution
probability of the NADiS is smaller than that of the RNADS
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FIGURE 8. Resolution probability versus the angular interval.

withD = 8 and the NADS, even its DOFs are larger than that
of the NADS. The reason is that the NADiS scheme is less
stable than others. Beside the 109 consecutive lags, 20 lags
out of the consecutive part are ignored and not engaged in
averaging the estimate of the repeated virtual sensors, thus
it leads to less stable estimate. Our scheme with D = 6
achieves higher angular resolution probability than the other
sparse arrays, which can still be attributed to its large coarray
aperture and its stability.

V. CONCLUSION
In this letter, a novel sparse array called RNADS has been
proposed, which can utilize both the signals’ correlation
statistics and the conjugate correlation statistics to construct
the coarray. The resultant sum difference coarray is hole-free
and contain at most N 2

+ 3N − 1 lags with N physical
sensors. The explicit parameter assignment associated with
the RNADS is provided, the analytical expressions of the
coarray aperture and its maximum are derived. Simulation
results demonstrate the efficiency of the proposed scheme and
the advantage over other recently proposed structures in DOA
estimation.
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