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ABSTRACT Electric load data are essential for data-driven approaches (including deep learning) in
smart grid, and advanced smart meter technologies provide fine-grained data with reliable communica-
tions. Despite the recent development of smart metering devices, however, missing data still arise due to
unexpected device power off, communication failure, measuring error, or other unknown reasons. In this
paper, we investigate a deep learning framework for missing imputation of smart meter data by leveraging
a denoising autoencoder (DAE). Then, we compare the performance of the proposed DAE with traditional
methods as well as other recently developed generative models, e.g., variational autoencoder andWasserstein
autoencoder. The proposed DAE based imputation shows significantly better results compared to other
methods in terms of root mean square error (RMSE) by up to 28.9% for point-wise error, and by up to
56% for daily-accumulated error.

INDEX TERMS Deep learning, smart grid, missing imputation, smart meters, denoising autoencoder,
generative model, daily load profile (DLP).

I. INTRODUCTION
ASmart grid is an intelligent power grid system that is
enabled by the convergence between the legacy power grid
and the information & communication technology (ICT); the
paradigm of power grid has expanded from infrastructure-
based industry to hybrid of ICT and infrastructure. In this
respect, intelligence is the core of the smart grid that differ-
entiates from the legacy system.

Meanwhile, recent advent of the fourth industrial revolu-
tion was sparked by the development of artificial intelligence
(AI). Specifically, deep learning leads the field of AI research.
Based on higher abstraction ability and training frommassive
data, deep learning outperforms other algorithms in various
fields, e.g., image classification, natural language processing,
machine translation, generative model, etc. In this respect,
the intelligence of the smart grid can be achieved by deep
learning, which implies the emergence of energy AI as the
future of the smart grid.

This shift is being realized through worldwide deploy-
ment of smart meters. Since smart meters are installed from

The associate editor coordinating the review of this manuscript and

approving it for publication was Canbing Li .

large-scale sites to small-scale end-customers, i.e., build-
ing/factories to households, massive metering data are gen-
erated. By leveraging deep learning on energy big data,
intelligent solutions for smart grid applications have been
actively developed recently, e.g., load forecasting [1]–[4],
system monitoring [5], clustering [6] [7], battery manage-
ment [8], and load control [9].

Hence, metering data are the core of energy AI, and
data-driven intelligent systems can be developed by utilizing
energy big data. For all data-driven approaches, the well-
known data mining framework is the knowledge discov-
ery in databases (KDD) process [10]. The KDD process
consists of five steps: data selection, preprocessing, trans-
formation, data mining, and evaluation. Among the five
stages, preprocessing is important as a groundwork for data
mining process. Although it is possible to achieve fine-
grained data with reliable communications through advanced
smart metering technologies, there still exist missing val-
ues in databases. Such missing values occur due to unex-
pected device power off, communication failure, measuring
error, or other unknown reasons [11], [12]. Therefore, missing
values should be properly recovered during the preprocessing
stage.
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There are various strategies of dealing missing value,
which can be classified by three categories [13]: a) do not
impute (DNI), b) deletion, and c) imputation. The first option
leaves missing values as it is. However, in practice, most data
analysis techniques are not robust to missing values and thus
missing values need to be filled in advance. The second option
is excluding missing values from the dataset. It is simple,
but the main drawback is that the size of valid data reduces.
In addition, typical forecasting models require complete past
data with no missing values. From these reasons, we focus
on the third option, i.e., missing imputation that replaces
missing values with estimated ones. Specifically, we leverage
a denoising autoencoder (DAE) to fill in multiple missing
values in a daily load profile (DLP). So far, simple imputation
techniques have been applied to missing smart meter data
imputation. Twowidely used methods are linear interpolation
(LI) and historical average (HA) [14]. LI method replaces
missing values from a straight line between the last/first
measured value before/after missing value occurs. Hence,
it is simple, fast, and effective for short-term missing val-
ues. However, if missing data occur for a long duration, LI
based imputation may not work. On the other hand, HA
method imputes missing values with the average of highly
correlated time slots, e.g., the average of hour-ahead, day-
ahead, or week-ahead metering data [1], [7]. HA method
shows good results for load data at an aggregated level that
has regular load patterns. However, electric loads of end
customers (households or small buildings) are more ran-
dom and volatile, which makes missing value imputation
challenging.

Although missing imputation is common in data analytics,
there are few studies focusing on the imputation of electric
load in the literature. To overcome the disadvantages of LI
and HA methods, optimally weighted average imputation
method was proposed in [14], where missing values are
imputed by the weighted sum of both LI and HA results.
In [15], the authors developed a learning-based adaptive
missing data imputation method (LAI) by applying kNN
algorithm to the optimal length of historical data. Then,
the extended LAI method, which combines LAI and LI,
was proposed to alleviate the unexpected variations in the
missing durations. Based on the low intrinsic dimensionality
of load profile and the sparsity of bad data (missing values and
outliers), distributed principal components pursuit is utilized
for cleansing of bad data in [16]. K-means clustering algo-
rithm based imputation framework was proposed in [17]. The
authors compared different lengths of past data and distance
measure for clustering, and the use of segmented cluster
center and Canberra distance showed better imputation per-
formance than others. In power grid perspective, topology
based missing value estimation was proposed in [18]. In case,
topology, voltage, and current information of neighboring
nodes are available, missing meter readings can be well esti-
mated.

Recently, deep learning has been utilized for missing data
imputation in various fields, e.g., RNA sequences [19], traffic

FIGURE 1. Missing points and missing blocks in load data.

data [20], images [21]. For smart grids, a stacked DAE is uti-
lized for missing power system monitoring data [22]. In [23],
an enhanced DAE and long short-term memory (LSTM)
based missing reconstruction framework was proposed and
verified with phasor measurement unit data. In this paper,
we investigate a deep learning based missing value imputa-
tion framework for household load data, which are highly
irregular and thus missing value imputation becomes more
challenging.

Our contributions are summarized as follows. First,
we propose a DLP based missing value imputation frame-
work by leveraging a DAE. Based on the observed meter
readings in an input DLP, the proposed DAE fills in multiple
missing values of DLP at once. Compared to the previous
methods, the proposed method does not require iteratively
applying imputation for multiple missing values or determin-
ing the proper number of clusters and neighbors. Hence, once
trained, it is easily applicable. Then, we analyze and compare
the error results of the proposed framework with traditional
LI, HA methods as well as other deep learning based gen-
erative methods such as denoising variational autoencoder
and denoisingWasserstein autoencoder. Our extensive exper-
iments with various types of missing (e.g., uniformly ran-
dom and block-wise missing with 4 different configurations,
and 4 predefined missing scenarios) for 15-minute interval
residential load data verify that the proposed DAE model
shows robust and accurate missing imputation performance;
the point-wise imputation error of the proposed DAE is up
to 28.9% lower and daily-accumulated error is up to 56%
lower than the others in terms of RMSE and normalized
accumulated absolute error.

The rest of this paper is organized as follows. First, we ana-
lyze the occurrence of missing data in a real dataset in
Section II. In Section III, we briefly introduce deep learn-
ing methodologies (autoencoder and generative models).
Section IV describes the proposed autoencoder basedmissing
imputation framework in overall. Experimental results with
residential load data are given in Section V. Finally, the paper
is concluded in Section VI.

II. DESCRIPTION OF MISSING SMART METER DATA IN
PRACTICE
Before describing the proposed missing value imputa-
tion framework, we analyze the statistical information of
missing data obtained from a real dataset. As illustrated
in Figure 1, missing data can occur block-wise. As an exam-
ple in Figure 1, there are 9 missing points and 3 missing
blocks. Let l ≥ 1 denote the length of missing block.
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FIGURE 2. Pie chart about the length of missing block.

TABLE 1. Statistics of missing values.

Next, we analyze the statistics ofmissing blocks of residen-
tial customers in South Korea. The dataset contains 360 days
(March 1, 2016, to February 23, 2017) 15-minute interval
load data of 1,445 residential customers. Hence, there are
total 49,939,200 (360 × 96 × 1445) data points. Among
50 million load measurements, there exist 420k (420,253)
missing points, which is roughly 1% of total measurements.
In addition, there are 72k (72,412) missing blocks, and
47% of them are length 1. Details of missing statistics are
given in Figure 2 and Table 1. We classify missing data
into five classes depending on the length of missing block
(l). As described in Table 1, Class I takes a large portion
(47.14%). Class II (1 < l ≤ 48, up to half day) takes the
largest portion such as 51%. Since Class I missing block
can be easily imputed with simple interpolation method and
Class III, IV, V (more than half days) are only 1.6%, this paper
mainly focuses on the random mixture of intra-day missing
blocks (Class II).

For better understanding of missing value distribution,
Figure 3 shows the number of missing points occurred at
a specific time slot. As can be seen, missing points occur
evenly in most areas, except two regions marked by (A)
and (B). For example, more than 90% of households in the
dataset have missing data in (A) area. For (B) area, missing
data consecutively occur during 24 ∼ 25 and 27 ∼ 31
of December (20% of households). Such high occurrence
of missing data is abnormal compared to other periods, and
it might be due to external impact or event rather than the
malfunction of smart meter. Figure 4 describes missing data
occurrence in terms of the time of day, which is equal to the

FIGURE 3. Illustration of missing occurrence.

FIGURE 4. Bar graph of missing occurrence in each time slot. Red line is
the average.

sum over Date axis in Figure 3. Missing points are uniformly
distributed over a day except around 16:00, which is affected
by abnormal missing occurrence of (A) in Figure 3. So far
we emphasize the high occurrence of missing blocks in real
environment. This motivates us to develop a deep learning
technique, which is particularly effective for imputing ran-
dom mixture of missing blocks.

III. METHODOLOGIES
In this section, we introduce deep learning methodologies (a
family of autoencoders) for missing load data imputation.

A. DENOISING AUTOENCODER
An autoencoder is one kind of artificial neural networks
which can be summarized by two nonlinear encoding and
decoding functions f and g, respectively. For a given input
vector x, f encodes input x to latent feature z, then g decodes
transformed z to original x. Therefore, the autoencoder learns
to extract a feature vector that contains crucial information of
input data. As the name suggests, DAE is an autoencoder hav-
ing denoising property. Instead of input x, DAE reconstructs
x from partially corrupted input x̂. Hence, DAE achieves
robustness to the partial destruction of input by learning
common latent representation over the original and corrupted
data [24]. For a given corruption function h, intentionally
corrupted data x̂ = h(x) can be obtained. Then, DAE is
trained to minimize the error between x and x̃ = g(f (x̂)).
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Even though additive Gaussian noise is commonly used for
h, DAE for missing value imputation needs to utilize different
corruption functions; instead of adding noise to data, corrup-
tion function replaces selected data with predetermined value
that represents missing status. Hence, the network is trained
to restore the correct data from missing status value.

B. VARIATIONAL AUTOENCODER
A variational autoencoder (VAE) is a generative model hav-
ing autoencoding structure [25]. The basic autoencoder learns
deterministic function f and g by neural networks. However,
generative models focus on the distribution of the data PX ; we
denote capital letters (e.g., P(X ),Q(Z |X )) for probability dis-
tribution and lower-case letters (e.g., p(x)) for corresponding
density function by following the notations in [26], respec-
tively. In doing this, VAE starts from the latent variable model
PG to achieve PX where pG(x) =

∫
pG(x|z)p(z)dz holds. This

indicates high dimensional and complicated x is driven from
simple latent vector zwhich lies in a lower dimensional space.
Prior distribution PZ is typically assumed to be Gaussian.
Hence, the objective becomes maximizing log likelihood of
pG(x), but,

∫
pG(x|z)p(z)dz is intractable. Thus, VAE solves

this problem by maximizing the lower bound of likelihood
with encoder Q(Z |X ) and decoder PG(X |Z ). Consequently,
the objective function of VAE is given by minimizing

−EQ(Z |X )[log pG(x|z)]+ DKL(Q(Z |X ),PZ ). (1)

Intuitively, the first term indicates maximizing log like-
lihood pG(x|z) when z follows Q(Z |X ), and the latter term
leads Q(Z |X ) to approximate prior latent distribution PZ ,
respectively. Details of VAE is given in the original work
of [25]. Note that denoising framework also can be applied
to generative models, and denoising criterion for VAE is
introduced in [27].

C. WASSERSTEIN AUTOENCODER
Another approach of generativemodel is based on the optimal
transport, i.e., Wasserstein autoencoder (WAE) [26]. A dis-
tance between two probability distributions can be measured
by optimal transport (OT) cost. The underlying objective
of generative model is achieving generator distribution PG
equal to the data distribution PX . Hence, in terms of opti-
mal transportation, generative model is minimizing OT cost
Wc(PX ,PG) where PG is a latent variable model specified
by the prior distribution PZ . OT cost Wc(PX ,PG) is defined
by the infimum of E(X ,Y )∼0[c(X ,Y )] where c(x, y) is any
measurable cost function and 0 belongs to the set of joint
distribution P(X ∼ PX ,Y ∼ PG). Specifically for the metric
space (X , d) and c(x, y) = dp(x, y) for p ≥ 1, the p-th root
of Wc is called the p-Wasserstein distance.
According to Theorem 1 in [26], the above OT cost

Wc(PX ,PG) is equal to

inf
Q:QZ=PZ

EPXEQ(Z |X )[c(X ,G(Z ))], (2)

with deterministic PG(X |Z ) and any functionGmapsZ toX .
Finally, with relaxation of QZ = PZ condition, the objective

FIGURE 5. Overall procedure of DAE based missing value imputation.

of WAE is minimizing

inf
Q(Z |X )∈Q

EPXEQ(Z |X )[c(X ,G(Z ))]+ λ · DZ (QZ ,PZ ), (3)

with nonparametric set of encoders Q, arbitrary divergence
DZ , and its weight λ > 0. In short, the first term is the
cost (distance) between original X and generation by G(Z ).
The latter is a regularizer to make QZ approximates PZ .
Theoretical ground and implementation details of WAE are
given in the original work of [26].

The inherent problem of VAE is that the KL divergence
term forces each Q(Z |X ) to match PZ [26], [28]. On the
other hand, overall QZ matches to PZ in WAE. In addition,
deterministic encoder-decoder can be utilized for WAE.

IV. AUTOENCODER BASED MISSING IMPUTATION
FRAMEWORK
In this section, we propose a DLP based missing value
imputation framework by leveraging DAE. Let x =

{x1, x2, . . . , x96} denote a daily load data of 15-minute inter-
val, where xt is metered value at time slot t . We assume x
is ground-truth, i.e., there are no missing values in x. Then,
a DLP with missing values is denoted by x̂ where xt is not
available for some t . The objective of this framework is
learning encoder network f and decoder network g by mini-
mizing the error between the output x̃ = g(f (x̂)) and ground-
truth x, i.e., DAE. The overall framework of DAE based
missing value imputation is illustrated in Figure 5. As can
be seen, it consists of four major stages (data preprocessing,
data corruption, autoencoder, and imputation comparison).
Note that our scope is limited to the DLP based imputation.
However, this can be further developed to longer missing data
by utilizing adjacent load profiles.
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FIGURE 6. Example of block-wise missing with l = 4.

A. GROUND-TRUTH DLP DATA CONSTRUCTION
We first build the ground-truth DLP data from the real dataset
in Section II by replacing missing values with the average of
previous time slots (e.g., hour and day ahead values). Note
that this process is not a part of missing value imputation
but just to make ground-truth dataset for experimental study.
Then we normalize the load data by dividing the maximum
value for each customer. Other normalization method (e.g.,
z-scores and max-min) can be applied with different missing
status values.

B. DATA CORRUPTION
In data corruption stage, we generate the corrupted x̂ by
enforcing artificial missing values to the ground-truth data
x. The number of all possible combinations of daily missing
pattern is 296, which is impossible to train. Thus we utilize
two corruption strategies, random corruption and block-wise
missing as we observed the missing patterns in Section II.
In random corruption, each value can be independently con-
verted to missing value with given missing percentage (pm).
For example, if pm is 50%, randomly selected half of mea-
surements become missing values. In the case of block-wise
missing, we generate artificial missing patterns according to
the given missing duration l as illustrated in Figure 6. For
example, there are 24 missing patterns per one DLP when
l = 4; {xt |t = 0, 1, 2, 3} are missing in the first pattern, and
{xt |t = 4, 5, 6, 7} are missing for the next.

Based on the above two corruption functions, selected
artificial missing data are replaced by 0 to represent missing
status. In addition, we attach binary missing status channel to
DLP, which has 1 for missing and 0 for the others. Hence the
dimension of input data is 1 × 96 × 2. Finally, the DAE is
trained with both random corruption and block-wise missing
data.

C. MODEL SELECTION
Next, we train the DAE to reconstruct complete DLP from
the above corrupted inputs. In doing this, two design options
are network structure and loss function. First, we set mod-
ified 1-D convolutional autoencoder (CAE) based on the

FIGURE 7. The CAE structure of denoising framework. The number and
the size of filters are given in the form of a@b. The size of the feature map
is given on the right and the parenthesis shows the depth in decoder.

proposed structure in [7] and the validation result. Final CAE
structure is illustrated in Figure 7. The CAE has three 1-D
convolutional layers, one fully-connected layer, and three
1-D transposed convolutional layers, respectively. We set the
dimension of latent vector z to 90. Leaky ReLU is used for the
activation function, and the network is trained with ADAM
optimizer [29].

After selecting the autoencoder structure (layers, neurons,
and activation function), we build the network with three dif-
ferent loss function configurations based on DAE, VAE, and
WAE. The overall loss function L consists of reconstruction
loss Lrecon and latent loss Llatent as follows.

L = Lrecon + λLlatent , (4)

where λ > 0 is a hyperparameter. The first case is with loss
function for DAE which utilizes only Lrecon, i.e., Llatent =
0. The second case is based on the VAE and Llatent is KL
divergence between Q(Z |X ) and PZ . The last one is based on
the WAE where Llatent is arbitrary divergence DZ (QZ |PZ ).
In this paper, maximum mean discrepancy (MMD) with
inverse multi-quadratics kernel is utilized as in original work
of [26]. In the rest of this paper, we call the above three
autoencoders with different loss functions as DAE, denoising
VAE (DVAE), and denoising WAE (DWAE), respectively.

In addition, we modify the reconstruction loss as follows.

Lrecon = α||m ◦ (x− x̃)||22 + (1− α)||m̄ ◦ (x− x̃)||22, (5)

where ◦ indicates element-wise product andm, m̄ are binary
mask vector (i.e., missing status channel in data corruption
stage where 1 denotes missing and 0 for the others) and its
complement. Hence, this gives more weight on the accuracy
of imputed missing values rather than learning robust latent
feature of corrupted DLPs. The overall structure of DAE and
two generative models (DVAE, DWAE) for missing value
imputation are summarized in Figure 8.
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FIGURE 8. Summary of DAE, DVAE and DWAE methods.

D. IMPUTATION COMPARISON
In the imputation comparison stage, we compare imputation
performance with respect to 6 different configurations that
are based on three corruption functions and two test set
formulations. Corruption functions include random missing,
block-wise missing, and predefined corruption patterns. The
uniformly random and block-wise corruptions described in
the data corruption stage are applied to test data. In addi-
tion, to compare the generalization according to the various
missing patterns, we utilize 4 predefined missing patterns as
illustrated in Figure 9; predefined patterns are not exposed
during the training. From pattern 1 to 4, each missing pattern
corresponds to missing during a) day-time, b) morning and
evening, c) midnight and afternoon, d) double peak time,
respectively.

V. RESULTS
A. EXPERIMENTAL SETUP
In the experiments, 15-minute interval electric load data
of 60 residential customers are utilized. The dataset contains
load profiles of total 360 days (from Mar. 1, 2016 to Feb. 23,
2017). Among the load data of 60 customers, 300 daily load
data of customer 1 to 40 are used for training. The rest 60 daily
load data of the same customers are used for test set, which
is denoted as ‘‘Test 1’’. By contrast, 300 daily load data of
remaining 20 customers are used for generalization over other
customers and denoted by ‘‘Test 2’’. The details of the dataset
configuration are described in Table 2, and parts of training
data (i.e., Val.train and Validation) are used during model
selection and hyperparameter setting.

During the training of autoencoders, we set block missing
durations as l ∈ {4, 12, 24, 48} and missing percentage for
random corruption as pm ∈ {5%, 10%, 20%, 30%, 50%},
respectively. The networks are trained with 30 epochs accord-
ing to the validation results. The hyperparameter λ and α are
set to 1 and 0.8, respectively.

FIGURE 9. Predefined missing patterns (never experienced during
training).

TABLE 2. Dataset configuration.

For the benchmark, we compare with the well-known
methods of LI and HA. In doing this, we utilize two different
HA configurations [30]; HA1 is based on the average of the
values at time slots t−1 and t−96, and HA2 uses the average
of the values at t − 96, t − 1, t + 96. We evaluate imputation
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FIGURE 10. Bar plot of daily error Ei,d of random corruption: mean and
(5,50,95)-th percentile.

TABLE 3. Error metrics for imputation performance comparison.

performance in terms of RMSE (measured in W), and nor-
malized absolute error (nAE). Since the proposed framework
is based on DLP, we calculate the imputation error per DLP.
Then, the customer and total errors are derived by averaging
the values. Error metrics are given in Table 3, where xt
denotes the ground-truth value and , x̃t is the imputed value,
N is a set of customers,D is a set of corrupted DLPs through
the year and T is a set of missing time slot indices during
a day. To check the imputation bias, we also compute the
normalized accumulated absolute error (nAAE), and both
nAE and nAAE are normalized by the average load of each
customer (denoted by X̄i) to alleviate high MAPEs of near
zero denominators.

FIGURE 11. Bar plot of daily error Ei,d of block-wise missing: mean and
(5,50,95)-th percentile.

Finally, based on the above implementation details,
we compare the imputation performance of different methods
for various missing patterns in the following sections.

B. CASE OF RANDOM MISSING
First, we compare the result of random corruption. Figure 10
shows overall errors when pm is given by 5%, 10%, 30%,
50%, respectively. In the graph, bar indicates the average,
◦ indicates the median, and the lower/upper indicators are
for 5th, 95th percentiles. Since missing occurs randomly, LI,
the simplest method by linear interpolation mostly shows
the best imputation performance in both point-wise errors
(Figure 10 (a)-(d)) and accumulated errors (Figure 10 (e)-(f)),
and the proposed DAE also shows similar performance in
overall. Remaining four methods follows behind in the order
of DWAE,HA2, HA1, andDVAE. Since eachmeasurement is
randomly changed to missing, the probability of long missing
block in DLP (like l = 48) is low, even with high missing
percentage (e.g., pm = 50%).

C. CASE OF BLOCK-WISE MISSING
Next, we compare overall imputation error of block-wise
missing. The overall imputation errors for different miss-
ing durations (l = 4, 12, 24, 48) are given in Figure 11;
l = 4, 12, 24, 48 correspond to 1h, 3h, 6h, 12h consecu-
tive missing occurrence. Unlike the case of random missing,
the proposed DAE shows the minimum errors in overall as
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FIGURE 12. Bar plot of daily error Ei,d of predefined missing patterns:
mean and (5,50,95)-th percentile.

shown in Figure 11. DVAE, on the other hand, usually shows
the worst results among all methods. Other methods show dif-
ferent aspects in terms of l and error measures. For example,
LI shows low point-wise error for relatively short missing
durations (l = 4, 12). HA2 shows the lowest accumulated
error for long missing duration (l = 48). Interestingly, all
methods have similar 5th percentiles, but difference in 95th
percentile is prominent, and the proposed DAE has the lowest
95th percentiles in overall, which implies robustness of the
proposed imputation framework.

D. CASE OF PREDEFINED MISSING PATTERNS
Finally, we analyze the imputation error with four predefined
missing patterns as defined in Figure 9. Recall that these
patterns are not exposed during training. As can be seen
in Figure 12, the proposed DAE shows the lowest RMSE,
whereas HA2 method shows the lowest accumulated errors,
i.e., nAAE. Since the predefined missing patterns are com-
posed of missing duration longer than l = 24 (6 hours),
the result of LI method is relatively worse than the others,
and HA methods show good performance. In all methods,
Pattern 3 (midnight & afternoon) has lower error than Pattern
2 (morning & evening) in average, and this is because the
imputation of morning and evening is more difficult com-
pared to midnight and afternoon due to typical double peaks
of residential energy consumption patterns.

E. DISCUSSION ON OVERALL RESULTS
Table 4 summarizes the overall results. The proposed DAE
shows lower imputation errors compared to the generative

TABLE 4. Summary of overall results.

models. LI method shows good result with short miss-
ing duration (e.g., block-wise missing with l = 4, and
random missing cases), and HA2 method has the lowest
daily-accumulated errors for long missing sequences (e.g.,
block-wise missing with l = 24, 48 and missing with prede-
fined patterns). However, regardless of the length of missing
block, corruption functions and error metrics, the proposed
DAE shows the lowest overall mean values than the others.
For example, average RMSE of DAE is 43.7 (52.7) for Test 1
(Test 2), which is 2.7 ∼ 28.9% (5.5 ∼ 20.2%) lower than
the others. In terms of daily-accumulated error of nAAE,
the mean value of DAE is 19.3 (17.2) which is 5.8 ∼ 56%
(10.4 ∼ 40.7%) lower than the others. This result implies the
robustness of DAE based imputation, which is also observed
in the bar plots of daily errors. According to the graphs,
all six methods have similar 5th percentiles. However, 95th
percentiles vary depending on the imputation methods and
DAE mostly shows the lowest 95th percentile compared to
the others.

Although DVAE and DWAE are in the form of DAE,
the results are relatively worse than DAE, and the reasons
are as follows. First, as can be observed in the reconstruc-
tion example of Figure 13, DVAE generates imputation that
resembles averaged DLP regardless of different input. This
reconstruction problem is a drawback of VAE, which is
induced by the intersection ofQ(Z |X ) [26]. SinceWasserstein
autoencoder in [26] overcomes shortcomings of variational
autoencoder, DWAE generates more plausible imputation
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FIGURE 13. Example of load curve and missing imputation results of
block-wise missing. The entire imputation graph is created by
concatenating the imputation results of each missing section in the
block-wise missing.

result and lower errors than DVAE. But the error is still
higher than DAE. We observe that the error converges to
that of DAE when decreasing the hyperparameter λ in (4).

FIGURE 14. Example of load curve and missing imputation results of
predefined patterns.

This result suggests that the probabilistic approach to the
latent vector does not improve the performance within DLP
(15 minute interval data) based imputation framework. Since
the dimension of latent vector (90) is similar to the input
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data (96), DAE may suffice within the proposed imputation
framework, and the latent loss of DWAE (Llatent ) works as
a regularizer. However, DWAE can be utilized for multiple
imputations.

Meanwhile, for the case of LI and HA, two methods are
known to be good at short and long missing data respectively.
However, LI method also shows low point-wise error for
long missing data. For example, RMSE of l = 48 is similar
to that of HA1. But this does not imply LI is suitable for
long missing data, since LI shows worse results in terms of
accumulated error. In addition, the imputation by LI is not
plausible in terms of DLP shape; it is just a single straight
line. For HA method, point-wise errors are worse than the
others. This may be due to the variability of residential load,
i.e., day-ahead electricity load at the same time slot can differ
from current load. This result suggests that more intelligent
imputation (or forecasting) method is required in dealing with
highly variable load data (e.g., residential customer).

To visualize the imputation result, the load curve and miss-
ing imputation results of Customer 59 at Apr. 16, 2016 are
given in Figures 13, 14 as examples. First, Figure 13 describes
the imputation result of block-wise missing cases with
l = 4, 12, 24, 48. Each line graph is concatenation of impu-
tations in given missing blocks. For example, Figure 13(d)
shows concatenation of {x̃t |t = 0, . . . 47} and {x̃t |t =
48, . . . , 95}, hence two straight lines are observed for LI
method. As l increases, it is hard to restore the original load
curves by imputation. Finally, Figure 14 presents the imputed
values of predefined missing patterns. Although it is hard to
restore original peaks, imputation of DAE follows the trend
of original load curve regardless of missing patterns. In all
examples, DVAE provides the same, smoothed load curve
that accounts for the highest error values. LI generates a
single straight line which is not suitable for long missing
sequence. HA methods generate unexpected peak around
15:00, and such difference in peak load leads to high point-
wise error.

VI. CONCLUSION
In this paper, we proposed a novel missing imputation frame-
work for electric load data leveraging the denoising convolu-
tional autoencoder and showed that daily load profile (DLP)
with multiple missing values can be accurately imputed. In
doing this, we compared the proposed denoising autoencoder
(DAE) with the traditional linear interpolation (LI), historical
average (HA), and the recent two generative models (DVAE
and DWAE). The proposed DAE outperformed the others in
overall. Specifically, DAE has lower errors in both point-wise
and daily-accumulated errors whereas the others have disad-
vantages in accuracy (DVAE, DWAE), shape and accumu-
lated error (LI), unexpected peaks and point-wise error (HA),
respectively. The imputation performance of the proposed
DAE was verified with various missing patterns applied for
residential DLPs, which are more random and volatile com-
pared to industrial or commercial load patterns. Based on
partially observed information, DAE exhibited accurate and

robust missing imputation of corrupted DLPs. In addition,
we compared threemissing scenarios, i.e., uniformly random,
block-wise missing, and predefined missing patterns. The
proposed DAE framework showed 2.7 ∼ 28.9% lower point-
wise RMSE and 5.8 ∼ 56% lower daily-accumulated nAAE
than the others. The proposed method can be further devel-
oped in several directions, e.g., cluster-wise missing impu-
tation with customer clustering or recurrent neural network
based real-time missing imputation framework.
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