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ABSTRACT Multimodal human action recognition with depth sensors has drawn wide attention, due to its
potential applications such as health-care monitoring, smart buildings/home, intelligent transportation, and
security surveillance. As one of the obstacles of robust action recognition, sub-actions sharing, especially
among similar action categories, makes human action recognition more challenging. This paper proposes
a segmental architecture to exploit the relations of sub-actions, jointly with heterogeneous information
fusion and Class-privacy Preserved Collaborative Representation (CPPCR) for multi-modal human action
recognition. Specifically, a segmental architecture is proposed based on the normalized action motion energy.
It models long-range temporal structure over video sequences to better distinguish the similar actions bearing
sub-action sharing phenomenon. The sub-action based depth motion and skeleton features are then extracted
and fused. Moreover, by introducing within-class local consistency into Collaborative Representation (CR)
coding, CPPCR is proposed to address the challenging sub-action sharing phenomenon, learning the
high-level discriminative representation. Experiments on four datasets demonstrate the effectiveness of the

proposed method.

INDEX TERMS Action recognition, feature fusion, class-privacy preserved, sub-action sharing.

I. INTRODUCTION

“Human action or activity recognition has played signifi-
cant roles in many potential applications, including security
surveillance, human-computer interaction (HCI), health mon-
itoring and intelligent transportation [1]-[6]. For instance,
in healthcare environments, by monitoring the behavior of
people and recognizing human activities, the activity habits
and patterns of people can be understood. Thus correct emer-
gency decisions can be made so that a healthier and more
secure living environment can be created for the community.
Human action recognition involves specific tasks such as
action detection, localization and action recognition from
different data modalities with RGB, Depth, infrared or inertial
sensors. Normally, action recognition is to classify a video or
data sequence into one of the pre-defined action categories,
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whereas action detection is to determine the presence of
the interested action in continuous untrimmed data streams.
Action localization aims to find the potential proposals which
contain certain human movements, i.e., the time and area that
an action of interest happens.

For an intelligent machine to achieve the level of action
recognition like humans do, the first is the representation
capability, i.e., the ability to perceive the informative obser-
vations (features) from multi-modal data. Based on these
observations, a feature space is learned with a good capacity.
This feature space receives and stores distinct characteristics
of the objects of interest, which needs representation learning
methods. Multimodal observations may facilitate the level
of capacity of receiving useful information and the level of
receptivity for impressions.

Earlier action or activity recognition researches focus more
on the using of RGB video captured by conventional RGB
cameras [8], [9]. The limitations of using RGB cameras is
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FIGURE 1. Sub-actions sharing phenomenon and non-accurate skeleton data makes multimodal action recognition challenging (the
samples are from SBU-Kinect action dataset [7]). The first row is the depth image sequence. The second row is its segmented sub-actions
generated by the proposed Energy-guided segmentation (left) or Time-guided segmentation methods (right). Depth modality has the
geometry (shape) cues but is redundant with noise. The last two rows are to demonstrate that skeleton data is concise with action’s partial
semantic information, however sometimes with incorrectly tracked skeleton poses.

that conventional RGB images lack 3D action data, which
is regards as one critical clue to improve the recognition
performance. The advancement of sensor technology makes it
possible Energyto sense 3D action data by the new depth sen-
sors. In addition, 3D depth images provides a way to acquire
3D skeleton of a person for better action or activity recogni-
tion. For human action recognition, RGB-Depth video, and
the skeleton pose sequence enrich the representation space
of human motions. Figure 1 shows the RGB-Depth and the
skeleton samples. Depth sensors-based action recognition has
been studied for years [10]-[13], which is the focus of this
paper.

Depth sensor-based human action recognition provides
new opportunities whereas faces some challenges. Firstly,
one important observation of action datasets is that different
actions have irrelevant/similar actions and therefore certain
actions from different classes share similar or even same char-
acteristics. As shown in Figure 1, in SBU action dataset [7],
sub-actions are shared between different action categories,
especially among the similar categories “Punching”, “Hug-
ging” and “Departing”. This is truly ubiquitous in different
action datasets. This common phenomenon makes the human
action recognition confusing and challenging. In another
MSR Action 3D dataset [14], the existing literatures [10],
[15]-[17] show that the lower accuracy always happened
among three very similar actions, No.4 action “Hand catch”,
No.7 action “Draw x and” No.9 action “Draw circle”. The
reason is that they share sub-actions, leading to low recogni-
tion performance.

Secondly, as shown in Figure 1 (the last row), in the
SBU-Kinect interaction dataset [7], the ground truth action
category ‘“Hugging” is similar and could be confused with
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“Approaching” and “Departing”. Action category ‘‘Push-
ing” is a composition of sub-actions from “Kicking”,
“Approaching ” and “Departing”’. Consequently, other sam-
ples from “class i” may be represented ‘‘collaboratively”
with the assistance of samples from other classes, as demon-
strated in [18]. Therefore, with the potential assistance of
samples from other classes, samples from distinct classes
may be “collaboratively” expressed. Thus the feature of a
testing video can be coded collaboratively on the globally
shared dictionary (i.e., the entire dictionary constructed from
the samples of all categories).

Thirdly, the feature space constructed from multi-modal
sources is high-dimensional and not uniform distribution. The
action performing subjects have their own uncontrolled free-
dom and behavior habits. This results in larger within-class
variations, making human action recognition more difficult
than image classification tasks. Sparse representation (SR)
has been successful for RGB-based action recognition [3],
[19], [20]. The key assumptions of SR are: the features or
representation of each category of training data is sufficient
enough to span a separable subspace; and the training data
are collected carefully, making the extracted feature space
distribute uniformly. These preconditions limit their gener-
alization to video analytic tasks. For example the gaming
action dataset, UTD-MHAD-Kinect V2 [21] is a multi-modal
dataset. It is a typical small-training sample-size dataset,
likely causing unacceptable representation errors and unsta-
ble classification results when applying strong supervised
approaches.

In this paper, to increase the capacity of perceiving infor-
mation, two heterogeneous low-level features are extracted
from depth and skeleton modalities, respectively. Then
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Canonical Correlations Analysis(CCA) is utilized for fea-
tures correlation analysis, providing us with compact and
shared mid-level heterogeneous features. The ubiquitous
sub-action sharing challenge is regarded as an opportu-
nity and is exploited by the proposed sub-action segmen-
tation method and Class-privacy Preserved Collaborative
Representation (CPPCR) learning method. In CCA fea-
ture space, CPPCR integrates the low-dimensional manifold
(local consistency) into the collaborative sub-action learning
process (globality), obtaining the final high-level discrimina-
tive representation. CPPCR not only leverages the collabo-
rative representation to address the challenge of sub-action
sharing phenomenon among different classes globally, but
also preserves the expected local geometric structures of
action classes. The analytical solution of CPPCR makes
the computation efficient and avoids being trapped in local
optima.

The main contributions of the proposed method are sum-
marized as follows:

1) We propose an energy guided sub-action segmen-
tation method based on which the input activity is
decomposed into an unfixed number of temporally
segmented sub-activities. Accordingly the depth fea-
tures are extracted based on the new energy-guided
sub-actions. In addition, guided by the proposed
motion energy function generated from depth modality,
the “Cross-modality Parameters Transferring” trans-
fers the sub-action segmentation parameters into the
synchronous skeleton modality for heterogeneous fea-
ture representation.

2) The proposed CPPCR is demonstrated to be an effec-
tive scheme for addressing sub-action sharing problem.
CPPCR integrates local consistency into the collabora-
tive sub-action learning process, alleviating the adverse
effect caused by sub-action sharing, which leads to a
final high-level discriminative representation. CPPCR
demonstrates not only performance improvement over
the CR learning process, but also efficient computation
with the closed-form solution.

3) For human action recognition aiming to address the
sub-action sharing phenomenon, the proposed frame-
work demonstrates an effective Statistics Machine
Learning (SML) based pipeline. It could be easily
extended to DNN framework or hybrid framework
combining SML and Deep Neural Network (DNN),
if the hand-crafted feature extraction components are
replaced by DNNs followed by either a DNN-based or
a SML and DNN combined classification module.

In the following, Section II reviews the related works.
Section III presents the proposed adaptive energy guided
sub-action segmentation method, heterogeneous feature
extraction and fusion. Section IV introduces the CPPCR
method for addressing the sub-action sharing challenge.
Experiments and analyses are conducted in Section V, and
subsequently a conclusion is summarized in Section VI.
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Il. RELATED WORK

According to the feature extraction for action recognition,
existing methods can be categorized into hand-crafted fea-
ture based and deep learning based. The relevant fusion and
representation learning methods are also reviewed.

A. HAND-CRAFTED FEATURE BASED METHODS

1) DEPTH MAP FEATURES

From depth sensors, hand-crafted features, such as bag
of 3D points [14], depth surface normal feature super nor-
mal vector (SNV) [22], histograms of oriented principle
components (HOPC) [10], depth motion maps (DMM) [23],
spatio-temporal depth cuboid [24] motion history and sta-
tistical metrics are extracted for action recognition. His-
tograms of oriented 4D normals (HON4D) [25] takes the 3D
depth data as an opportunity to construct the 4D normals
of body parts and uses the statistical information as data
representation. Similar to the motion history images (MHIs)
and motion-energy images (MEIs) [26] which are suc-
cessful for RGB based action recognition, Depth Motion
Maps (DMM) [23] with depth sensor [27] aims to model
human body shape and motion’s history information. Gener-
ated from depth cloud points, Histograms of oriented princi-
ple components (HOPC) [10] feature uses the information of
eigenvectors of its support cuboid, for view-invariant action
recognition. Super normal vector (SNV) [22] is constructed
and aggregated by grouping local hyper-surface normals into
polynormal. However, depth maps have background noise,
which disturbs the feature extraction process.

2) SKELETON FEATURES

As a distinct modality, skeleton data is heterogeneous with
depth and provides us with 3D human skeletal joints. There-
fore skeleton data features can be extracted from 3D skeleton
data, such as skeletal quads feature [28], eigenjoints fea-
ture [29], 3SDMTM-PHOG [30], active skeleton feature [13],
body-pose feature [7] poselet mining, [31] joint trajectory
maps, [11], covariance 3D Joint [32], skeleton optical spec-
tra [33]. Skeletal quads feature [28] is proposed for 3D action
recognition. By encoding the skeleton limbs into states via
Markov random field, active skeleton representation [13]
is aggregated for characterizing human actions. Based on
the differences of skeleton joints of static poses and the
dynamic poses over time, the eigenjoints feature [29] is used
successfully for skeleton based action recognition. Skeletal
representation by curved manifold Lie Group [34] is a novel
method that models the 3D joint points of human bodies
via 3D geometric algebra. In [33], skeleton optical spectra
is proposed, in which the skeleton data are rendered into
color images and then CNNs are used to learn the features
for action recognition. By dividing 3D points into 4D grids,
Vieira et al. [35] employed occupancy patterns to describe 4D
grids spatially and temporally. Actionlet ensemble model [15]
extracts local features in the neighborhood area of skele-
ton joints. For view-variant action recognition, Rahmani and
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Mian [36] proposed a nonlinear model, transforming data
from distinct views into a canonical view. However, as shown
in Figure 1, non-accurate skeleton poses and sub-action shar-
ing phenomenon make action analysis more challenging.

B. DEEP LEARNING BASED METHODS

With the evolution of neural networks, bidirectional Recur-
rent Neural Network (RNN) [16], structured Convolutional
Neural Networks (CNNs) [37], cross-modality feature anal-
ysis [12], Graph Convolutional Networks (GNN) [38], [39],
attention-based long short-term memory (LSTM) [40], [41]
and Spatio-temporal attention network [42] are proposed
for action or video analysis tasks. By designing a general
attention neural cell, spatio-temporal attention network with
heterogeneous data is proposed for traditional RGB action
recognition. Wang et al. [43] proposed to consider atten-
tion based deep 3D CNN features with LSTM for action
recognition. Amir et al. [44] presented a spatio temporal
LSTM networks for 3D action recognition. Zhu et al. utilized
LSTM with Co-occurrence scheme [45] and achieved good
performance. In order to address the challenge of action
representations with view variations, two view adaptive neu-
ral networks [46] were combined for high performance
skeleton-based action recognition. SkeletonNet method [47]
transforms the features of skeleton frames into images and
feeds them into the proposed deep learning framework. Simi-
larly, in [17], the authors designed an RNN driven by priv-
ileged information (PI) for action recognition. From depth
modality, three kinds of dynamic depth image features using
rank pooling are generated [5], and then are fed into CNNs
for action recognition.

However, deep neural network-based methods [5], [6],
[17], [48], [49] for depth-action recognition are not popu-
lar as RGB-action recognition. One reason is deep learning
based methods are data-driven, requiring big data with labels.
The depth datasets are of relatively small or medium size
so that the data-driven models are weakened, at the risk
of over-fitting. By the augmented skeleton data, multiview
LSTM fusion model with attend scheme [6] was proposed
for skeletal action recognition. Liu et al. [48] constructed a
3D-based CNN (3DCNN) to learn the depth features. Then a
hand-crafted skeleton joint based feature is fused with these
3DCNN learned depth features. DMM feature is weighted
hierarchically, then is fed into three channel deep CNN [49]
on small training datasets. To overcome the drawback of the
less color or pixels of depth maps, methods [5], [17] were
proposed.

Although end-to-end deep learning has many advan-
tages, Al systems built through it often show the following
fatal weaknesses: inexplicability, vulnerability (robustness is
poor), easy to be deceived and attacked, and need a lot of
data. These weaknesses make it possible to be used only in
limited scenarios, such as complete information, determinis-
tic information, static (or evolving according to deterministic
laws) environment, and limited domains. Therefore, creating
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explainable, credible and robustness theories and methods is
necessary for complex applications.

C. INFORMATION FUSION AND REPRESENTATION
LEARNING METHODS

Fusing information from multiple modalities is useful for
performance improvement. Fusion strategy can be performed
at data-level, feature/representation-level and score/decision-
level [8]. Each fusion category has its own cons and pros,
and the selection of the fusion method is generally dependent
on the types of features and data sources. Score-level fusion
requires no post-processing or dimension reduction, and is
independent on the types and lengths of different multi-modal
features. However, score-level fusion has the main draw-
backs: (1) Independent classification decisions that relate to
each sensing modality, need to be combined via some soft
rule for the final decision; (2) For n different modalities,
the decision-level fusion needs to train n separated classi-
fiers, resulting in more parameters and time consumption
especially when using deep learning classifiers; (3) Decision
scores are obtained from data streams separately, therefore
the correlation between different modalities is largely lost
when fusion takes place at the decision level.

In contrast, in the practice for multi-modal human action
recognition system, concurrent data from multiple sources
is a good clue to collect sufficient amount of informa-
tion for making improved decisions. Therefore SML based
feature-level fusion projects the features concurrently col-
lected from multiple sensors to a new space by vigorous
mathematical transformation to optimize information repre-
sentation for high quality decision making.

The earlier works mainly focused on feature fusion for
action recognition [S0]-[57]. In [50], a multi-modal learning
framework was proposed to fuse depth and skeleton-based
features. Feature-level fusion [51] of depth features and skele-
ton joints based on random forests were proposed by the rule
of Winner-Take-All. By extending CCA model [58], hetero-
geneous domain adaptation by ¢; regularized CCA [52] was
proposed to exploit the correlation subspace, for cross-view
action recognition. Recent work [56] a 3D CNN fusion strat-
egy is proposed by combing the softmax scores for action
recognition with arbitrary length. In [57], RGB and depth
futures are fused for RGB-D videos based action recognition.

On the other hand, representation learning could provide
us with stronger discriminative power [42], [59]-[61]. Col-
laborative Representation (CR) [62] has been demonstrated
to be effective for face recognition and is fast as it has
a closed-form solution. Kernel collaborative representation
(KCR) [63] and discriminative collaborative representation
(DCR) [64] were proposed and then based on them dictionary
learning and discriminant projection methods were designed
to determine appropriate features. Discriminative compact
representation [18], KCR with locality constrained dictio-
nary (KCRC-LCD) [60] and locality-constrained collabora-
tive representation (LCCR) [59] were proposed to extend
collaborative representation for face recognition.
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FIGURE 2. lllustration of motion energy-oriented sub-action segmentation and Depth features extraction. (a) Action sample “Tennis Swing” in Depth
modality; (b) Energy-oriented adaptive sub-actions segmentation. Normalized motion energy vector (vertical axis) is used to build the adaptive
multi-scale sub-actions, for both the depth sequence and skeleton pose sequence. (c) 21 Depth features of three projection views of three level
sub-actions. Note in this example the sample sequence is divided into P = 4 parts, normally P is set to be power of two in experiments for easy

computation.

However, more complicated fusion methods increase dra-
matically the computational cost. Simpler but efficient fusion
methods are preferred for action recognition. Moreover,
CR-based methods have a weakness that they rely heavily on
a ““good” dictionary (properly controlled) which is derived
from the training dataset. This shortcoming limits the appli-
cation of the CR model in action recognition.

IIl. PROPOSED HETEROGENEOUS FEATURES AND
FUSION

For depth sensor based human action datasets, skeleton data
are not always accurate, as shown in the third row of Figure 1.
Global depth feature DMMs [23] which is extracted from
the entire videos contains more long-term temporal infor-
mation of human movement while less short-term informa-
tion. Speed variations will directly affect the appearances of
DMM feature since it is extracted from inter-frame motions.
Moreover, there are large intra-class variations since depth
sequences are generated at different speeds, i.e, the depth
sequences have different lengths, as the cases demonstrated
in Figure 3 (a). These observations and ubiquitous sub-action
sharing prompt us to propose an adaptive energy guided
sub-action segmentation method. It discovers sub-actions
automatically in diverse action video instances.

A. ENERGY-ORIENTED SUB-ACTION SEGMENTATION

As introduced in Section I, the sub-action sharing phe-
nomenon within distinct action categories is existed, decreas-
ing the recognition performance, which can be addressed by
exploiting the relations of shared sub-actions. When dividing
an action sequence, an intuitive segmentation strategy is to
divide the action sequence into segments with the same length
directly in the time axis. Thus each segment is a sub-action
of equal length, which is called as ‘“‘time-oriented” segmenta-
tion. In contrast, in order to express the dynamic information
such as the speed variations of human motion over time,
we propose to segment each video into temporal sub-actions
according to the motion energy function, so that sub-actions
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with different lengths can be obtained, which is called as
“energy-oriented”’ segmentation.

Assuming there is an action sequence with N depth maps,
we first project each depth map with three-dimensional infor-
mation onto three orthogonal Cartesian planes, each of which
corresponds to a perspective of the 3D space. The three
planes are denoted as v € {front, side, top}. The difference
between two consecutive projected maps on three views is
then thresholded to generate a binary map. Then the accu-
mulated motion energy on the i-th frame, E(i), is defined
as:

3 -1

Eh=3Y" (sum(|F4‘+1 —Fi|> 9) ,

v=1 j=1

ey

where F{,'Jrl is the j + 1-th depth frame on view v €
{front, side, top} from the depth modality, sum{.} returns the
number of non-zero element in a binary map, 6 is the thresh-
old. Since the motion energy function is accumulated, it starts
from the first i video frames. The motion energy of a frame
reflects current frame’s relative motion status and location
with respect to the entire activity. Based on this method,
a video is divided adaptively into sub-segments of unequal
length globally, effectively capturing the motion’s temporal
orders.

The video is segmented based on equal division of the
normalized motion energy, where each segment has the same
percentage energy. As shown in Figure 2, the total motion
energy E(N) of an action video with N depth frames is
normalized to one. Thus we divide this normalized energy
into a set of segments whose corresponding indices of frames
are used to partition a video. In the example of Figure 2,
the video is segmented into P parts based on equal division
of the normalized motion energy. Each segment accounts
for approximately 1/P of the total energy. For easy com-
putation, P is set to be the power of 2 and P = 25cale—1
where the Scale is temporal pyramid scale parameter. Thus
the frame indexes for sub-action segmentation is obtained if
Scale and P are ready. For instance, as illustrated in Fig. 2 (b)
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FIGURE 3. Visualization of sub-action segmentation methods and their DMMs feature for action recognition. We compare two settings: (a) Top two
rows represent intra-class variation challenges: two depth sequences (with different lengths) of the two-person interaction “Kicking” from SBU
dataset; the action is performed freely with personal habits and attentions by different subjects; (b) Third to fifth row: energy-oriented and

time-oriented sub-action segmentation and corresponding 7 DMMs feature of the two video samples above. Here we show the temporal Scale = 3
case.

when Scale is set to be 3, thus P = 4. We will have the
entire video, i.e., {T0_T4} in the first scale; 2 sub-actions,
i.e., {T0_T2} and {T2_T4} in the second scale; and 4 sub-
actions, i.e., {T0_T1}, {T1_T2}, {T2_T3} and {T'3_T4} in
the third scale; where 7i corresponds to different frame index
number. As a result we will have 3 5¢¢=3 2s-1 1+
24+ 4 7 sub-actions in three temporal scale on three
views. Parameter Scale, P in Fig.2 were determined experi-
mentally, i.e., we evaluated the recognition rates versus dif-
ferent values of P, while fixing the others, and chose the best
ones.

B. ENERGY-ORIENTED DEPTH FEATURE EXTRACTION
Depth maps have more information and geometric shape
in the third depth dimension, which can be used as an
important clue to describe the shape of human motion. But
it contains structural and background noises, as shown in
Figure 3.

Suppose that start; denotes the beginning frame indexes
of i-th parts. The segmentation parameters should satisfy
i € {1:P}. DMMs feature [23] of each perspective is
extracted and they are concatenated for each sub-action as
follows:

DMM; = ;“t:;z:ff( map " — magl| > s)
DMM' = [DMM},,, " pmmi," ,DMM;OP I )

where Ni is the number of video frames of the i — th sub-
action, and f is frame index, 7 means matrix transposition
and ¢ is the background noise threshold In the experiment
& = 50. The symbols F 1 and mapf ,in Subsect10n II-A
and Subsection III-B, are slightly d1fferent F] is the (j +
1)th depth frame on view and mapé is the (j + 1)th depth
map on view v € {front, side, top} which is resized after using
bounding box to extract the foreground.
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C. SKELETON FEATURE EXTRACTION BY
CROSS-MODALITY PARAMETERS TRANSFERRING

3D depth image sequences lack the global semantic dynamic
of the entire action videos. To compensate for the insufficient
information therein, the skeleton features that characterize the
relationship of skeleton joints are extracted.

The depth sensors capture the skeleton and depth data
simultaneously and synchronously. Thus the motion energy
function, generated from depth modality, characterizes the
execution speed of actions in depth and skeleton data simulta-
neously. This motivates us to transfer the action segmentation
parameters, generated from depth modality, into skeleton
modality to divide the skeleton sequence.

In skeleton modality, based on the sub-sequences,
Dynamic skeleton (DS) features [15] are extracted by com-
puting the relative positions between each pair of trajectories.
Then Fourier features and its gradient information (i.e., DSG)
are further extracted and concatenated together as introduced
in [15]. From the result of this practice, gradient information
could depict the velocity change of the action’s motion.

D. HETEROGENEOUS INFORMATION FUSION

Here, the goal of heterogeneous information fusion is to ana-
lyze and exploit the relations between heterogeneous feature
sets. Thus the obtained representation is more discriminative
than any of the input ones. The features extracted above
always have high dimensionality with a certain redundancy.
Therefore, these redundant features should be fused, com-
pressed or refined. With the advantages of analytic capabil-
ities of machine learning, features of high dimensionality
can be analyzed efficiently to extract meaningful informa-
tion, forming compressed and discriminative representations.
Feature level fusion is perceived as simpler, more effective
and meaningful than the other levels of fusion [65]. In this
paper, the Canonical Correlation Analysis (CCA) is adopted
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to reduce the dimension of high dimensional features. CCA
incorporates the vector associations into the correlation anal-
ysis of the feature sets, maximizing the correlation across the
two feature sets.

Given two feature matrices X € RP*" and Y € R9*",
which are generated from n training samples. The feature
vectors are from depth (p dimension) and skeleton (g dimen-
sion) modalities respectively. Within-set covariance matrices
of X and Y are defined as Sy, € RP*? and Sy, € R9*¢
respectively. Between-set covariance matrix of X and Y is
defined as Sy, € RP*? and Sy, = S . The aim of CCA is
to maximize the pair-wise correlations of X and Y, resulting
in the transformation matrices W, and W,. By these trans-
formation matrices, linear combinations X* = WXTX and
Y* = WyT Y are obtained by solving the eigenvalue equations:

{S;}Sxysy—ylsyx W, = R2W, 3
S S S S Wy = R*W,,

where W, and VlA/y are the eigenvectors and R? is the diagonal
matrix of eigenvalues or squares of the canonical correlations.
Two typical feature fusion methods using CCA are: serial
feature fusion (CCA-serial) and parallel feature fusion (CCA-
parallel):

* wIx wy 0\ [x
2=()=Gy) = (% w) () @
and

T
Ly=X*+Y"=WIX+WY = (3?’;) G) 6)
where Z; and Z; are called the canonical correlation discrim-
inant features. X* and Y* € RY*" are known as canonical
variates and have two useful qualities: they have nonzero cor-
relation only on their corresponding indices, and are uncorre-
lated within each feature set.

For instance, in SBU interaction dataset, there are n = 196
training samples, the dimension of depth features is p =
47376, the dimension of skeleton features is ¢ = 54810.
Using feature-level fusion method, the dimension of the com-
puted CCA feature space is d = 195, so that the final dimen-
sion of fused features is either d = 195 by CCA-parallel
summation or d = 390 by CCA-serial concatenation.

IV. THE PROPOSED CLASS-PRIVACY PRESERVED
COLLABORATIVE REPRESENTATION (CPCCR) ACTION
RECOGNITION METHOD

Sub-actions sharing among action categories is a challenge
for action recognition. The global scheme in CR-based learn-
ing is designed to leverage the shared feature subspace.
However, the locality of the action category is a strong clue
to recognize actions. We propose to make the class-privacy
property preserved, and select the linear combination of
nearby characteristics/sub-actions, favoring class-preserved
locality (which preserves some expected local geometric
structures) even though the testing sample can be described
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by another classes’ few far characteristics/sub-actions, which
is called Class-privacy Preserved Collaborative Representa-
tion.

A. PRELIMINARY: CR-BASED LEARNING AND
CLASSIFICATION

In popular low-dimensional manifold models [19], [53], for
each feature space, one feature vector is represented by the
linear combination of a few representative points. However,
in these models the characteristics of the testing data can
only be represented by the learned characteristics of one
class from the training samples. As introduced in Section I
and shown in Figure 4 (b) and (c), sub-actions sharing is
ubiquitous throughout the different interaction categories.
The sub-actions hugging are shared between ‘“Hugging”,
“Approaching” and ‘““Departing”, which are different inter-
action categories.

This paper regards the negative sub-action sharing chal-
lenge as an positive chance, and ingeniously transforms
challenge into opportunity in the proposed CPPCR method.
As introduced in Section I, from Immanuel Kant’s state-
ment, the sub-actions sharing challenge is also a chance since
sub-actions from other classes are helpful to represent the
testing sample. If all the other sub-actions’ extracted features
are used as possible training features (samples) for represent-
ing each sub-action, we can not only significantly improve
the ability of learning features (knowledge representation),
but also mitigate sub-action share challenges.

Let D = [Dy,Ds,...,D;,...,Dc] be the dictionary,
which has C human action categories. Each sub-dictionary
D; is associated with the i action category, and each column
of D; represents the fused feature set of training samples
from class i. The fused feature set is obtained via CCA from
heterogeneous data. Let y be the fused feature of testing
sample.

Firstly, in CR learning method [62], the columns of D
is normalized to have unit norm. Then y is represented on
D collaboratively and globally using the ¢>-minimization
Lagrangian formulation:

& = arg ming Iy = Dl + el ©)

where A is a Lagrangian scalar parameter to balance the resid-
ual of representation function and the regularization term.

Secondly, by computing the representation residuals
e = ||y - Dio?in/ ||o?i| ,» the class label is determined via
class(y) = arg min; {e;}.

B. CPPCR FOR ACTION RECOGNITION

CR [62] favors the global relationship and encodes the testing
sample as a linear combination of sub-actions of training sam-
ples from all categories. However, the locality of the action
category is a strong clue to recognize actions. In other words,
we tend to select the linear combination of neighboring
characteristics/sub-actions, rather than the global relation-
ship. Class-preserved local geometric structures is favored
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FIGURE 4. Visualization of classification confusions caused by sub-action sharing in the long-range temporal structure. It could appear in different
stages of actions such as the beginning, middle and ending parts. (a) First row: Examples of incorrect skeleton estimations in different interaction
categories “Punching”, “Hugging”, “Departing” and “Kicking”, from SBU Kinect-Interaction dataset [7]. (b) Second row: the beginning and ending
sub-actions of “Hugging” are shared with the interaction categories “Approaching” and “Departing” respectively. (c) Third row: the middle part of

“Pushing” is shared with “Hugging".

in CPPCR, even though the testing sample can be described
by another few far characteristics/sub-actions. By integrating
this class-preserving locality to CR [62], we will improve the
discrimination ability of the feature representation.

In this section, by adding a class-privacy preserved locality
constraint Cp, = (Zy,-e/\/'K(y) llyi — Da ||%)/K to Eq. (6),
the objective function is:

min(l = y) [ly = Der[3 + 2 el

Y 2
+e 2 lw—Dal3
yveNk ()

N

where Nk (y) are the top-K nearest training samples of the
testing sample y. And A and y are regularization param-
eters to balance the reconstruction residual term, the spar-
sity term and the locality constraint term. The neighborhood
local region is determined by some distance metrics, such as
Spearman, Cityblock and Seucliden distance by KNN search-
ing. Under this locality constraint, the closer the distance is,
the greater the contribution will be.

By computing the derivative with respect to « of Eq. (7)
and letting it be zero, we have the solution as follows:

—1
&= (DTD + ,\1) D’

Y
A=py+e Dl —Del
yweNk(y)

®)

In the training phase, the term(DTD + A)~IDT can be
precomputed. This precomputed term is independent of the
testing sample, depending only on the training data.

In the recognition phase, given a testing sample y, the two
low-level heterogeneous features are extracted and then fused
by CCA to get the mid-level feature. Moreover, the neighbor-
hood region Nk (y) is determined by KNN searching from the
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training set, then the (1 — y)y + % ZyNENK(y) lyy — Da||%
is calculated and multiplied by the pre-calculated projection
matrix. Finally the regularized representation residuals e;(y)
is computed by

ei(y) = ”y - Ddi“z/ ||07i“z 9)

and the action category label can be predicted via

label(y) = arg min; {e;(y)}

The proposed CPCCR algorithm for action recognition is
concluded in Algorithm 1.

(10)

V. EXPERIMENTS AND PERFORMANCE EVALUATION

To evaluate the proposed method for multi-modal action
recognition, we first conduct an ablation study. Then exten-
sive experiments on four public datasets are conducted,
including one interaction dataset [7] which has two-person
interactions, and three action datasets [14], [21], [66] which
include single person actions.

A. ABLATION EVALUATION
Firstly, we evaluated the energy guided sub-action segmenta-
tion for feature extraction and fusion strategies. The ablation
evaluations are conducted on the SBU-Kinect interaction
dataset [7]. As shown in Table 1, the performance of the
proposed energy-guided sub-action segmentation method is
superior to that of the time-guided method. Secondly, for
individual heterogeneous features, the depth feature has bet-
ter performance than the skeleton feature since skeleton data
sometimes contains incorrectly tracked skeleton poses. For
single feature, the energy-guided depth feature has the highest
recognition accuracy of 87.69%.

For feature fusion strategies, the CCA-serial fusion strat-
egy performs better than the CCA-parallel one. As a result,
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Algorithm 1 CPPCR Algorithm for Action Recognition

1: Training phase and inputs:

(1) A heterogeneous feature matrix (dictionary)
D = [D1,D3,...,Dj,...,Dg] constructed by
Section III, containing the extracted heterogeneous
(depth and skeleton) feature of all training samples. D; is
the heterogeneous feature set of training video samples
from class i.

(2) The heterogeneous feature vectors from the test-
ing sample y.

(3) The regularization parameters A and y .

(4) The parameter K, which is the size of the top-K
local neighborhood region.

2: Pre-calculation process: Calculate the projection matrix
(DD + 2D~ 'DT.
3: Testing phase: For each testing action sample y:

(1) Use KNN searching, from the training feature
set D, to determine the neighborhood region Nk (y).

(2) Calculate the class-privacy preserved constraint
item % ZyNeNK(y) lyn — D‘X“%-

(3) Balance the importance between the testing sam-
ple and its local neighborhood region samples by (1 —
Y+ % X veniq) Iyv — Dell3.

4: function CPPCR(P, y, y, A, K) // Where P — projection
matrix; y — the test sample; y, A, K — the parameter

(1) Calculate the CPPCR solution via Eq.(8).

(2) Calculate the regularized representation residu-
als via Eq.(9).

(3) Inference the label via Eq.(10).

5: end function

TABLE 1. Contributions of heterogeneous feature and fusion strategies,
evaluated on the SBU Interaction dataset [7].

Features and Fusion Strategies

Accuracy (%)

Time-guided Skeleton Feature 80.0

Time-guided Depth Feature 83.08
Time-guided Features via CCA-parallel Fusion 90.77
Time-guided Features via CCA-serial Fusion 90.77
Energy-guided Skeleton Feature 84.56
Energy-guided Depth Feature 87.69
Energy-guided Features via CCA-parallel fusion | 92.31
Energy-guided Features via CCA-serial fusion 95.39

the CCA-serial fusion of two heterogeneous energy-guided
features has the highest recognition accuracy of 95.39%.
This demonstrates that the appropriate feature fusion meth-
ods effectively preserve the complementary information of
heterogeneous data.

B. PARAMETERS EVALUATION

The key parameters of CPPCR are investigated, in terms of
analyzing the recognition rates iteratively. Table 2 reports the
recognition accuracies versus the variant values of parameter
K. From the evaluations, it’s observed that the action per-
formances are better when K = 3 and the metric distance
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TABLE 2. Parameter K effect evaluation using two skeleton features with
dimensionality 54810*2 = 109620, on the SBU-Kinect Interaction dataset.

Distance Metric [ K=1 [ K=2 ] K=3 ] K=4 ][ K=5

Spearman 90.77 92.31 95.38 95.38 92.31
Cityblock 92.31 92.31 93.85 93.85 93.85
Cosine 87.69 90.77 92.31 92.31 92.31
Eucliden 90.77 90.77 89.23 89.23 87.69
Minkowski 90.77 90.77 92.31 90.77 90.77

is chosen to be Spearman metric. From the experimental
evaluations, the parameter K, > and y are setas K =3, A =
0.01, y = 0.2 respectively in all the following experiments.
In DMM feature, scale of sub-action is empirically set to be
Scale = 3 so that each sample has 7 sub-actions of three
views.

C. SBU INTERACTION DATASET AND PERFORMANCE
EVALUATION

The SBU Interaction dataset [7] is a multi-modal dataset with
8 interaction activities. It was collected from 7 participants,
providing synchronized RGB video, depth map and skeleton
pose modalities. It consists of 230 video sequence samples
from 8 interaction categories. In most scenarios, interactions
are performed when one person is acting and the other person
is reacting.

The challenges of this data set include: (1) human motion
categories are the interaction between two persons; (2) in
most interactions, one person is acting while the other is
responding, and most of the interactions are associated with
the security surveillance, healthcare monitoring, smart build-
ings/home applications; (3) as illustrated in Figure 1, most
of these action categories are social behaviors; (4) most
categories are non-periodic human-to-human interactions,
containing sub-actions and comparable physical movements.
Same settings in [7] is followed, where a standard 5-fold
cross-validation scheme is employed.

The result of the proposed method is 95.39%, as shown
in Table 3. It is observed that the performance of the
proposed method is better than body pose feature with
libSVM method [7], privileged information-based RNNs
method [17], representation learning of temporal dynamics
by RNNs [16], deep structured model [37] and co-occurrence
LSTM model [45]. This indicates that the proposed method
is effective for person-to-person interaction recognition.

The confusion matrix is a useful tool to show the recog-
nition accuracies of each class and the confusion percent-
age between distinct categories, which is for analyzing the
detailed recognition results. Confusion matrix of SBU inter-
action dataset is illustrated in Figure 5. We can see that
most interaction categories are recognized correctly. Care-
ful observation shows that the confusions occur mainly in
recognizing three similar interactions which share a lot of
sub-actions: No.3 Pushing, No.4 Kicking and No.7 Hugging,
which are confused with Kicking, Exchanging and Punching
respectively.
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FIGURE 5. Confusion matrix of the SBU Kinect Interaction dataset by the
proposed method.

TABLE 3. Performance (%) Evaluation on SBU-Kinect Interaction dataset.
Note that “D” represents the Depth feature, “S” represents the Skeleton
feature,”A” represents the Accelerometer feature.

Methods [ Accuracy [ Modality
Multiple Instance Learning Boost [7] 91.1 Skeleton
Skeleton Pose [7] 87.6 Skeleton
Body-Pose Feature [7] 91.1 Skeleton
Poselet Mining [31] 86.9 Skeleton
Privileged Information-Based RNNs [17] | 89.2 D+S
Deep Structured Data-level Fusion [37] 93.4 RGB+D
ST-LSTM + Trust Gates [44] 93.3 skeleton
LSTM + Co-occurrence+ Dropput [45] 90.41 Skeleton
Hierarchical RNN [16] (reported in [45]) | 80.35 Skeleton
SkeletonNet (Skeleton + CNN) [47] 93.47 Skeleton
Global Context-Aware + LSTM [67] 94.1 Skeleton
LSTM+Multiview Feature Fusion [6] 95.0 Skeleton
Decision-level fusion vith VGG-F [68] 96.26 RGB+D+S
Multi-stream LSTM Feature Fusion [41] 92.5 Skeleton
The Proposed Method [ 95.39 [ D+S

D. MSR ACTION 3D DATASET AND PERFORMANCE
EVALUATION

The famous MSR Action 3D dataset [14] has 20 categories
and is collected by 10 subjects. Cross-subject experiment
settings were adopted as in [14], where the data of 5 subjects
are used for model training and the remaining data are used
for recognition.

The proposed method has the recognition accuracy
93.82%, as shown in Table 4, better than methods [10],
[23], [25] and most existing methods compared. It’s observed
that the proposed method is comparable to statistical
method [22], heterogeneous features fusion method [54]
and deep learning methods [16], [47], [67]. In addition,
sub-segmentation by cross-modality parameter transferring
is effective from the results. For feature fusion strategies,
the CCA-serial fusion contributes more than CCA-parallel
strategy. This indicates that the proposed method effectively
preserves the spatio-temporal information of the two hetero-
geneous features, outputting high-level discriminative action
representation.

E. UTD-MHAD DATASET AND PERFORMANCE
EVALUATION

Multi-modal dataset UTD-MHAD [66] is collected by depth
sensor and wearable inertial sensor. It consists of 27 action
categories, 4 modalities, and each modality has 861 samples.
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TABLE 4. Performance (%) comparisons on MSR Action 3D dataset.

Methods [ Accuracy | Modality
DMM-HOG [23] 85.5 Depth
HON4D [25] 88.9 Depth
HOPC [10] 86.5 Depth
Actionlet [15] 88.2 Skeleton
Lie Group [34] 89.5 Skeleton
Eigen joints [29] 83.3 Skeleton
Fusion-WTA Hash [51] 92.2 RGB+D+S
SNV [22] 93.1 Depth
3DMTM-PHOG [30] 90.7 Depth
Fusion-Random Forests [54] 94.3 Both
Active Skeleton Representation [13] 91.01 Skeleton
Decision-level Fusion-DMM-LBP [69] 93.0 D+S
Pri-information RNNs [17] 94.9 Skeleton
Time-guided Skeleton Feature 85.09 Skeleton
Time-guided Depth Feature 89.82 Depth
Time-guided via CCA-parallel Fusion 91.63 D+S
Time-guided via CCA-serial Fusion 93.45 D+S
Energy-guided Skeleton Feature 87.27 Skeleton
Energy-guided Depth Feature 89.5 Depth
Energy-guided via CCA-parallel Fusion | 92.73 D+S
The Proposed Method 94.18 D+S

These 3444 sequences include RGB video, depth maps data,
skeleton data and accelerometer data. We followed the exper-
imental settings of [66], where the cross-subjects protocol
actions were employed. In this protocol, half of subjects were
used for training and the other half for testing.

In Table 5, performance comparisons are conducted to
exploit the benefits of fusing two heterogeneous features
and the proposed CPPCR. It is clear that the proposed
heterogeneous features fusion with CPPCR improves the
recognition accuracy, compared to the existing methods. The
proposed method has recognition accuracy of 87.0%, 90.7%
and 91.2%, 94.2% for the schemes Time-guided+Fusion
via CCA-parallel, Time-guided+Fusion via CCA-serial
and Energy-guided+Fusion via CCA-parallel, Energy-
guided+Fusion via CCA-serial, respectively. It’s noted that
both data from the depth and inertial sensors are adopted in
method [66].

In addition, from Table 5 we observe that the proposed
method achieves comparable performance compared with
method [68] in which learned features from three modalities
are fused in feature-level. The method [70] leads to the state-
of-the-art performance since it fuses information collected
from four types of sensors, i.e., RGB camera, depth sensor,
and two wearable inertial sensors (accelerometer and gyro-
scope data) for action recognition. In contrast, the proposed
method just fused two types of data modalities, depth and
skeleton. The utilization of rich information across four data
modalities is likely to be the reason for superior perfor-
mance by [70]. Note method [70] was only evaluated on the
multi-modal dataset UTD-MHAD, whereas the proposed is
evaluated on four public domain datasets.

F. UTD-MHAD-KINECT V2 DATASET AND PERFORMANCE
EVALUATION

UTD-MHAD-Kinect V2 [21] is a multi-modal dataset, which
contains heterogeneous data from depth sensor and inertial
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TABLE 5. Comparisons on the UTD-MHAD dataset. Note that “D", “S","A”
and “G” represent Depth, Skeleton, Accelerometer and Gyroscope feature

respectively.

Methods | Accuracy | Modality
ELC-KSCD [71] 76.19 Skeleton
Multi-modal decision-level fusion [66] 79.10 D+A
Deep Decision-Level Fusion [72] 89.2 D+G+A
Decision-level fusion vith VGG-F [68] 94.6 RGB+D+S
Covariance 3D Joint [32] 85.58 Skeleton
Skeleton Optical Spectra+CNN [33] 86.97 Skeleton
Joint Trajectory Maps+CNN [11] 87.90 Skeleton
Three Sensors Feature-Level Fusion [73] | 84.89 RGB+D+S
Two Sensors Feature-Level Fusion [70] 89.3 RGB+D
Two Sensors Feature-Level Fusion [70] 91.6 G+A

Two Sensors Feature-Level Fusion [70] 93.7 D+G

Two Sensors Feature-Level Fusion [70] 94.8 D+A

Four Sensors Feature-Level Fusion [70] 98.2 RGB+D+G+A
Time-guided Skeleton Feature 84.9 Skeleton
Time-guided Depth Feature 76.2 Depth
Time-guided Fusion via CCA-parallel 87.0 D+S
Time-guided Fusion via CCA-serial 90.7 D+S
Energy-guided Skeleton Feature 85.6 Skeleton
Energy-guided Depth Feature 82.8 Depth
Energy-guided Fusion via CCA-parallel 91.2 D+S

The Proposed Method 94.2 D+S

sensor. It consists of 1200 sequences from three modalities.
It has 10 action categories and is performed by 3 female and
3 male subjects. Same experimental setting of [21] is adopted
in this paper.

Firstly, the recognition accuracy of single heterogeneous
feature and fusion methods are investigated. The perfor-
mances of the four features, skeleton feature guided by
time, depth feature guided by time, skeleton feature guided
by energy and depth feature guided by energy are first
derived. From Table 6, it can be seen that the proposed
Energy-oriented method improves the performance. For sin-
gle features, the Energy-oriented depth feature has higher
recognition accuracy than that of Time-oriented. The perfor-
mance of the depth feature proposed in this paper is better
than that of the skeleton feature.

The results demonstrate that the proposed CPCCR
achieves 91.5% which is higher than Multimodal Hybrid Cen-
troid CCA, Multimodal Centroid CCA and MCCA by 1.5%,
3.5% and 9%, respectively. For feature fusion strategies,
CCA-serial fusion contributes more than CCA-parallel strat-
egy. CCA-serial fusion of two heterogeneous Energy-oriented
features has the highest recognition accuracy of 90.0%,
further improved to 91.5% by the proposed representation
learning method. This indicates that the proposed CPPCR
preserves the spatiotemporal information of actions, out-
putting high-level discriminative action representation.

G. QUALITATIVE ANALYSIS OF THE PROPOSED METHOD

Here, we did the qualitative analysis of the proposed method,
including: (1) Whether the two heterogeneous features have
complementary characteristics; (2) the relationship between
feature dimensions and recognition accuracies after the rep-
resentation learning method CPPCR. The experiment was
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TABLE 6. Comparisons with the existing methods on
UTD-MHAD-Kinect V2.

Methods [ Accuracy [ Modality
MCCA [74] 82.7 D+S
Multimodal Centroid CCA [74] 88.0 D+S
Multimodal Hybrid Centroid CCA [74] 90.0 D+S
Time-guided Skeleton Feature guided by time | 62.0 Skeleton
Time-guided Depth Feature guided by time 75.1 Depth
Time-guided Fusion via CCA-parallel 83.3 D+S
Time-guided Fusion via CCA-serial 86.7 D+S
Energy-guided Skeleton Feature 82.0 Skeleton
Energy-guided Depth Feature 86.0 Depth
Energy-guided Fusion via CCA-parallel 90.0 D+S
The Proposed Method 91.5 D+S
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FIGURE 6. On the SBU Interaction dataset, recognition accuracies versus
different dimensions of the fused feature via feature-level fusion.

conducted on SBU Kinect Interaction dataset to do qualitative
analysis.

We evaluated the recognition accuracies versus feature
dimensions by CCA-serial fusion method. The dimensions of
the proposed two heterogeneous features are reduced to 195
from dimensions 47376 and 54810, respectively. As shown
in Figure 6, on SBU-Kinect Interaction dataset, the recogni-
tion accuracies increase drastically when the feature dimen-
sions are greater than 195, indicating that in the new CPPCR
feature space, the proposed two heterogeneous features are
highly complementary with each other. Furthermore, the
accuracies are stable if the dimensions are higher than 230.
The highest accuracy is 95.39% when the dimensions =
[298, 309, 310, 311, 312]. It should be noted that 195 is
precisely the feature dimension from the first data modality,
skeletal sequence data. This shows that the features extracted
from the two modalities are highly complementary with each
other in the new CPPCR feature space. They are compact
and high-level features for action representation. Fusing them
together contributes to performance improvement.

H. DISCUSSIONS

On SBU Kinect interaction dataset, it is observed that the
proposed method is better than numerous methods com-
pared [16], [17], [37], [44], [45], [47], [67], as shown
in Table 3. The proposed method is worse than feature fusion
methods [70] using multi-modal data from RGB, depth and
inertial sensors (accelerometer and gyroscope) on dataset
UTD-MHAD. On MSRAction 3D dataset shown in Table 4,
the performance is worse than the hierarchical skeleton
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FIGURE 7. On the MSR Action 3D dataset, recognition accuracies versus
different dimensions of the fused feature via feature-level fusion.

model [17] whereas yields better performance than active
skeleton representation [13] and decision-level fusion [69].
There are several main possible reasons:

1) The scale of the datasets. The proposed method
achieves the superior performance compared to most
state-of-the-art on small or medium scale datasets.
According to the development rule of artificial intelli-
gence, deep neural networks are data-driven methods,
requiring a large amount of training data. Statistical
machine learning can be applied to databases of dif-
ferent scales.

2) Ubiquitous sub-action sharing challenge. As demon-
strated in Figure 4 (b) and (c), sub-actions sharing
are ubiquitous throughout the different interaction cat-
egories. The sub-action shugging are shared between
“Hugging” and “Pushing”, which are different inter-
action categories. This paper regards the negative
sub-action sharing challenge as a positive chance, and
ingeniously transforms risk into opportunity in the pro-
posed CPPCR method. As introduced in Section I, from
Immanuel Kant’s statement, the sub-actions sharing
challenge is also a chance since sub-actions from other
classes are helpful to represent the testing sample. If the
features extracted from all the other sub-actions are
used as possible training features (samples) for distinct
sub-action, we can not only significantly improve the
ability to learn features (knowledge representation), but
also mitigate sub-action sharing challenges.

Non-accurate

3) skeleton data. The methods [6], [13], [16], [17], [37],
[44], [45], [47], [67] used skeleton features. However,
the estimated skeleton joints sometimes are not accu-
rate because of the body parts occlusion and missing
fragment, as illustrated in Figure 1 (a).

The sub-action sharing challenge and the experimental
results demonstrate that it is a novel choice to employ the
proposed heterogeneous feature fusion method with CPPCR
learning.

VI. CONCLUSION
There are many challenges in human action recognition
based on RGB-Depth sensors, among which ubiquitous
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sub-action sharing phenomenon (especially among the
similar categories) is a critical one. To this end, sub-action
segmentation based on equal motion energy and class-privacy
preserved collaborative representation (CPPCR) learning are
proposed to jointly explore/address the long-range temporal
dynamic structure involved in the actions/interactions. The
action motion energy is computed in the depth modality and
accordingly the action videos are segmented into sub-actions
based on equal motion energy division. Then the action seg-
mentation parameters are transfered from depth to the tempo-
rally synchronous skeleton modality, thus two heterogeneous
features are extracted respectively and fused. In addition,
the proposed CPPCR takes the negative sub-action sharing
challenge as a positive opportunity, addressing the sub-action
sharing challenge.

The experimental results on four datasets consistently
demonstrate the effectiveness of the proposed method. Quali-
tative analysis of the two features, as shown in Figure 6 and 7,
illustrates that in the learned CPPCR feature space depth and
skeleton features are complementary with each other, fusing
them leads to superior performance than using either of the
two individually.
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