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ABSTRACT A two-wheeled robotic wheelchair (TWRW) has a better manoeuvrability than a conventional
four-wheeled wheelchair. However, it is not statically stable near the upright posture or a posture desired by
the rider, and an active stability controller is required. Stability control becomes more challenging when a
TWRW is also required to move in a desired direction. To rely on wheels’ motions to achieve both stability
and direction control tend to impose a large burden on the wheels’ driving motors or other types of actuators
in terms of their driving torque and power consumption. Various disturbances in the system also affect the
performance of the controller. To solve these problems, this paper presents a stability and direction controller
based on the motion of a pendulum-like movable mechanism added to assist the wheels to produce control
actions. The dynamic model of the TWRW is established through the Euler-Lagrange formulation in which
the disturbances caused by model uncertainties and rider’s motion are considered. A robust second-order
sliding mode control is then developed for the stability and the direction control of a TWRW. Simulation
results are presented to validate the effectiveness of the proposed method.

INDEX TERMS Two-wheeled robotic wheelchair, stability control, direction control, added movable

mechanism, second-order sliding mode control.

I. INTRODUCTION

A conventional robotic wheelchair consists of two driv-
ing wheels and two passive casters, where the driving
wheels move actively for both mobility and stability of the
wheelchair, while the passive casters provide a support for
the wheelchair’s stability [1]-[3]. A two-wheeled robotic
wheelchair (TWRW) without casters can turn on spot, climb
small steps, and thus has a better manoeuvrability than a
conventional wheelchair [4]. It is also compact in structure
and can maneuver in a narrow space [5].

However, a TWRW which can be modelled as a two-
wheeled inverted pendulum, is not statically stable as a
conventional wheelchair at the upright posture (defined by
a pitch angle) and needs an active controller to be sta-
bilized [6]. When a TWRW is also required to follow a
path along a desired direction (defined by a yaw angle),
to achieve both stability and direction control is more
challenging. The TWRW is also subjected to disturbances
caused by the unmodelled dynamics, rider’s motion, sensor
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noises and uneven surface, etc which affect the controller’s
performance [7], [8].

Different motion patterns of a TWRW such as turning,
going straight or standing still are produced from the relative
angular velocity between two driving wheels; this is called
differential wheel drive mechanism [4], [9]-[12]. Such a
mechanism has a high demand on torque and power consump-
tion from the driving motors. Another approach for stability
control is based on the motion of a movable seat or a linearly
moving mass slider under the rider’s seat [13], [14]. Though
it needs less torque and power consumption for stability
control, its operation range is limited, and it tends to cause
unwanted disturbances affecting the comfort of the rider.

For a nonlinear system like a TWRW with different driv-
ing mechanisms, the common nonlinear controller Computed
Torque Control can be applied for stability and direction
control [15]. In this controller, the control inputs (torques)
are derived from nonlinear state feedback and closed loop
tracking errors through the system dynamic model. However,
it requires an accurate dynamic model of the system and is not
robust against model and external uncertainties [5]. In com-
parison, sliding mode control (SMC) is more robust against

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45221


https://orcid.org/0000-0002-3665-4175
https://orcid.org/0000-0002-4032-6238
https://orcid.org/0000-0002-9826-0374

IEEE Access

M. Nikpour et al.: Stability and Direction Control of a TWRW Through a Movable Mechanism

disturbances and is more computationally efficient [16]-[18].
In this controller, the closed loop tracking errors are forced
to be near a predefined surface, called sliding surface, in the
state space of the system. For an underactuated systems where
the number of inputs is less than the number of controlled
outputs, hierarchical sliding mode control (HSMC) can be
applied [19]. In HSMC, the system is divided into several
subsystems for each of which, a so called layer sliding surface
is designed. The main drawback of SMC control is chattering
phenomenon which leads to high vibration in the system.
This problem can be solved with quasi-sliding mode con-
trol (QSMC) where a smooth sigmoid function is used to
replace a non-smooth sign function found in a SMC con-
troller [20]. Another effective solution is higher order sliding
mode controller like the second order sliding mode controller
(SOSMCO) [21]. In this controller, a discontinuous integrator
is added to the control input to eliminates the chattering
phenomenon.

Both stability control and direction control of a TWRW
are required in practice, but this issue has not been addressed
in the existing research. A main challenging is to achieve
the both control targets well when the system is subject to
various disturbances and torques and power consumption are
constrained by the limits of the wheel motors’ capacities.
In this paper, pendulum-like movable mechanism is added
to the TWRW to assist the wheels for stability and direction
control. The dynamic model of the system is established
using Euler-Lagrange formulation. Disturbances from model
uncertainties of system and rider’s motion are also consid-
ered. A SOSMC is developed for stability and direction con-
trol of the TWRW. The proposed approach is shown to be
superior conventional methods in terms of the performance of
the controller and the control torque and power consumption
needed.

The rest of paper is organized as follows. The TWRW
is described and its dynamic model is derived in Sect. II.
In Sect. III, a SOSMC for stability and direction control of
the TWRW is presented. Simulation results to validate the
effectiveness of the proposed control approach are presented
and discussed in Sect. IV. Conclusions are given in Sect. V.

Il. WHEELCHAIR MODELLING
A TWRW consists of two wheels and a seat for the rider
which can rotate freely around the wheels axle; the seat and
the rider are combined to form a body. A pendulum like
movable mechanism is placed under the seat to assist the
wheels to control the TWRW. This mechanism consists of a
rod and a mass placed at one end of rod. The mass of rod is
small and is neglected. Fig. 1 shows a prototype of a TWRW.
Fig. 2 shows the schematic view of the TWRW and
the proposed mechanism. The nomenclature can be found
in Table. 1. To derive the dynamic model of the TWRW,
the Euler-Lagrange formulation is used, [22]

()= =0 (1
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FIGURE 1. TWRW prototype.

where L = T — U is known as Lagrangian and 7 and U
are the kinetic and potential energy of the whole system,
respectively. The system’s generalized coordinates and their
corresponding inputs are denoted by ¢; and Q;, respectively.
The friction forces between joints are not considered. Also,
it is assumed that the wheels don’t slip on the ground. In con-
ventional control method, the wheels torques are the control
inputs. Therefore, the overall kinetic and potential energy of
system can be obtained as

T=T+Ti1+Tp, U=U+U+Up.

where T, T; and T} are the kinetic energy of right and left
wheel and body (including rider and seat frame), respectively.
Similarly, U,, U; and U, are their potential energies. The
kinetic energy of right and left wheel can be shown as

T, = lmwr%) + Jw 0; + le,éz
2 2 v P
1 1.
T, = 5mwrze), + JW)92 + 5szef

éy which is the yaw angular velocity can be obtained as [23]
r . .
by = = (6 — ) )
The kinetic energy of body can be obtained as
1 . . .
Ty = Smp(V? + 207 + 1267 sin*6, + 2VI0) cost))
1 . .
+§(be0y2 s1n29;J + Jbﬁz coszé’b + Jbze,f)

where V is the linear velocity of center of wheels axle which
is

v=;@+m 3)

The potential energy of the right and left wheels and the body
can be shown as

Up = mpgl cosby.
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(a): Side view

(b): Top view

FIGURE 2. Model of a two-wheeled wheelchair and proposed mechanism.

TABLE 1. Nomenclature.

Notation Definition
x% _y¥ _z¥  World coordinate frame
xt_yt_zL TWRW coordinate frame attached to the middle of wheel axle
o Middle of wheel axle
P The point movable mechanism is added to the TWRW
6., 6 Rotation angle of the right and left wheel measured from Y axis
6y Rotation angle of the body (pitch angle) measured from Y% axis
6, Rotation angle of the added movable mechanism measured from link OP
0, Yaw angle of the TWRW measured from X W axis
My, Mp, My Mass of each wheel, body and added mechanism, respectively
Jwys I, Moment of inertia of each wheel at their center of gravity (CoG) in wheel’s local frame
Joy> Ibys Jb. Moment of inertia of body at its CoG in body’s local frame
Jpes Ipys Ip. Moment of inertia of added mechanism at its CoG in added mechanism’s local frame
r Radius of each wheel
d Length of wheels axle
l Distance between the body’s CoG and point O
I3 Length of the added mechanism’ rod
b Distance between point O and P
T Ty Tp Input torque of right and left wheels and added mechanism, respectively
P, P, P, Input power of right and left wheels and added mechanism motors, respectively
E, EE, Energy consumption of right and left wheels and added mechanism motors, respectively

Applying Equation (1), the dynamic model of TWRW in the
conventional method can be derived and presented as [24]

Mcgc + He + Ge = Bete “®

where q is the generalized coordinates vector that can be
shown as

w=[6 o 6]
M, is the symmetric matrix called the inertia matrix.
MCI 1 MCI 2 MC] 3
Me = | M,y Mey, Moy
My Mey, My,

H_ is the Centrifugal and Coriolis forces matrix.

He=[H, H, Hy]|
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M, and H, components can be found in Appendix A. G is

the gravity matrix.
Ge=[0 0 —mpglsing, ]

B, is the control coefficient matrix.
1o o]
B, =
0 1 0
and 7 is the control input vector.

TCZ[‘L'r T]]T

The input power and energy consumption of right and left
wheel motors can be obtained as [25]

P, = ‘L’rér, P, =‘L’191, E =/Prdt, E; Z/Pldt.
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Considering the disturbances like model uncertainties due
to the varying mass of the rider and the variations of the
body’s center of gravity (CoG) from the motions of the rider,
the dynamic model of system should be reformulated as

1\,\/Icqc + I,:Ic + éc + D¢ +Re =Bt (5)

where D, and R, denotes the disturbances caused by model
uncertainties and change of body’s CoG position, respec-
tively. M, He and G are the nominal inertia, centrifugal and

gravity matrices, respectively and can be shown as
M, = M. — AM,, H.=H, — AH,, G¢ = G. — AG,

The disturbance caused by the uncertain mass of the body can
be shown as

De = AMcijc + AHc + AGe

where
AMyp  AMp;  AMi3
AM, = | AMy1 AMy AM»3
AM3;  AM3  AMs3
AH, = [AH, AH, AH;]"
AGe=[0 0 —Amyglsing,]"

AM, is a symmetric matrix. AM, and AH, components are
shown in Appendix A. Amp = myp — my,, where my, and
are the real and nominal values of body’s mass, respectively.

FIGURE 3. Change of body’s CoG position.

The body’s CoG varies when the rider moves on the seat.
Assume its position along the forward direction is defined by
xp as shown in Fig. 3, the kinetic and potential energy of body
are reformulated as

1 . . . .
T) = Emb[Vz + %6 + I76] sin®6) + 2VI, cosdy + x50,
+x§éy2 00529b + lxbéf sin26, — 2beéb sindp |

1. ) )
+§(be 05 sin®0y + Jp, 67 cos*0p + Jp. 6 cos*0),
Up = mpg(l cosby + h sinbp).
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The effect of change of body’s CoG can be shown as

R, = [Rl R R3]T

The R, elements are shown in Appendix A. From Equa-
tion (5), we have

iic = 1\A/[c_l(_lflc - éc — D¢ — R¢ +Bete) (6)
Differentiating Equation (2), with respect to time leads to
. V. .
by = E(er -0 @)
From Equation (6), and Equation (7), we have

Op = A, +Be, + M1, + M 'y

C31 €32 ’

. r A A A N
6, = S[Ac, + B, + M =MD+ o) — M D).
(®)

The definition of A.,, B¢, Ac,, and B, can be found in
Appendix A.

Considering the added pendulum like movable mecha-
nism, the overall kinetic and potential energy of TWRW is
obtained as

C11

T=T,+T/+Tp+T,, U=U+U+Up+U,.

where T, and U, are the kinetic and potential energy of the
added movable mechanism, respectively. ), and U, can be
presented as
Ty = Smy[V2 4+ 067 +2bV6y costy + 126y + 6,
p= 5" b b b b T Up
—21'V (6 + 6,) cos(p + 6,) — 2b1'G(6), + 6,) cosb,
+b29y2 sin’g, + l/zéyz sin* () + 6)
22 . 1 0
—2b1'6," sinby, sin(Bp + 6,)] + W, 07 sin*(0y + 6)
+1p, 05 cos* Oy + Op) + Jp. (0 + 6,)°].

U, = mpg(b cosb, — 1" cos(6, + 6p)).

By applying Equation (1), the dynamic model of the whole
system is as follows,

Myiip + Hp + Gp = Byt )
where
T
qp = [Qr 91 917 Gp]
MPll MPlZ MP13 MP14
M _ MPZI MP22 MP23 MP24
p =
MPSI MP32 MP33 MP34
L Mp41 MP42 MP43 MP44
T
GP = [0 0 Gp, GP4]
10 o o]"
B,=[0 1 0 0|, tp=[v u 5]
0 0 0 1
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M,, Hp, and G, components can be found in Appendix B.
The input power and energy consumption of added movable
mechanism motor can be obtained as [25]

P, =16, E,= / Pydt.

Considering model uncertainties and change of body’s
CoG position, the dynamic model is rewritten as

Myip + Hp + Gp + Dy + Rp = By1p (10)
where

D, = AMyip + AH, + AG,

AMy1 AM;p; AMiz 0O

AM. — AM>y  AMyy AMyz 0
P AM3 AMz  AM3z 0

0 0 0 0

AH, = [AH, AH, AH; 0]
AGy=[0 0 —Ampglsing, 0]
Ry=[R R Ry 0]

AM,,, AH,, and R, elements are similar to the disturbances
matrices derived in conventional method and can be found
in Appendix A. In proposed method, 6, and 9} can be
obtained as

éb =AP1 + +Mp31T” +MP32‘L'[ +MP34
[Ap2 + B, + M [71| - My, )T
+( P12 - Pzz)rl +( P14 - P24)T[7] (11

The definition of Ap,, Bp,, Ap,, and By, are presented in
Appendix B.

Ill. CONTROLLER DESIGN

A. CONVENTIONAL METHOD

The control objective is to track the desired yaw angle by
the TWRW, while the pitch angle remains zero. To control
the pitch and yaw angle through SOSMC, the sliding surface
vector is defined as

o = [0‘1 O‘2]T , 01 =eytcier, op =eq+cre3. (12)
where o1 and o7 are the sliding surfaces defined for pitch
and yaw angle control, respectively. e, e>, e3, and eq are
the tracking errors of pitch angel, pitch angular velocity, yaw
angle, and yaw angular velocity, respectively. c; and ¢, are
positive design parameters. e; = Ob—06b,, e = Op — éhd, e3 =

Oy — By, ea = 6y — by, Oy, Op,, 0y, and 6y, are the desired
values of pitch angle pitch angular velocity, yaw angle, and
yaw angular velocity, respectively. From Equation (12), we

have

61 = éx+crér = Gy — b)) + crea,

62 = éa + c2é3 = (B — by,) + caea. (13)
According to the structure of SOSMC, we have [26]
cr=ur+h, o=u+h. (14)
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where u1 and u, are the equivalent control inputs. 41 and &y
are the disturbances. Comparing Equation (8), Equation (13),
and Equation (14), for conventional method we have

uj :Acl—i—Mmrr—i-MC32 ébd+61€2, h1 = Be,,

s
d[AC2+( 611 MCZ])rr (r,, 612 Msz)rl] (15)
r

—Gyd +creq, hp = 3302.

To develop the SOSMC, K, and K}, which are two positive
constants are chosen as

OSKmISlSKMl

There exists two positive constants g; and Uy, which are
selected as

| l<qiUu,, O0<q1 <1
Also, the positive constant value Cj is chosen as

|y |<C

Considering the assumptions above, the equivalent control
input u; is defined as

up = =1 | o1 |3 sign(oy) + v1,
—uy, U

by = uy . | uy |> Uy, (16)
—aysign(oy), |ur |< Upyy

where, A1 and o] are two positive constants. Selecting

)\1 > 2 (Km]al + CI)KMl(l + Q1)
(K1 — C1) Kz (1 —q1)

and oy > Ci/K,y,, all tracking errors converge to zero in
finite time. The stability proof of SOSMC can be found
in [27].

Similar to uy, u» is defined as

uy = =Xz | o2 %3 sign(on) + va,
—uy, U

by = u . | uz |> Up, a7
—azslgn(02)7 | u |§ UM2

From Equation (15) - Equation (17), the input torque of
right and left wheels in conventional method can be obtained
through

~ -1
T M;1 Mfl Fe,
|: Tli| |:( M, _3MC_211) ( C|2 -M, ):| I:Fc2i| 1o

Fey = —A¢, + 65, —crea — 11 | o1 |* sign(oy) + vy,
d . .
Fe = —Ae, + — (B — c2e4 =22 | 2 15 sign(o2) + v2).
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TABLE 2. Physical parameters of the TWRW for simulation.

Property my iy m,  Jy, T, I, Jp, Jb. Ip Ipy Jp. r d b 1 r
Value 10 80 30 0.32 0.64 10.03 12.40 13.39 0.26 0.39 0.35 037 05 025 0.6 042
Unit kg kg kg kgm? kegm? kgm? kem? kegm? kgm? kgm? kgm? m m m m m

0.02 0.1
——CM & PM| ——CM & PM|
. 0.01 “»n 0.05
= ~_
S o T o
= Na¥
= .0.01 & 0.05
-0.02 ‘ ‘ : -0.1 ‘ ‘ ‘ :
0 5 10 15 20 25 0 5 10 15 20 25
Time(sec) Time(sec)

(a): Pitch angle

(b): Pitch angular velocity

FIGURE 4. Response of the pitch angle and its angular velocity in the conventional method (CM) and the proposed method (PM).

B. PROPOSED METHOD
From Equation (11), Equation (13), and Equation (14), we
have

uy = Ap, +Mpz1 r—i— an + pu — by +cre2,

hy =By, u= _[Apz +( pu le)T’

+( Ap_lzl o Pzz)Tl + (1, P14 - P24)TI’] de T c2es,
r

hy = EBPZ'

19)

To assist the wheels for stability and direction control,
the input torque of added movable mechanism is defined as

=Bt + 1) (20)

where 8 > 0. From Equation (16) - Equation (20), the input
torque of right and left wheels and added mechanism can be
obtained as

Tr FI’]
u | =W F, 21
p 0
where
Or—1 or—1 Or—1
M 31 M 32 M 34
W= ( Pll PZI) ( Plz pzz) ( Pl4 p24) ’
Fp, = —Ap, + 6, — cres — A1 | o1 %3 sign(or) + vy,
d .. .
Fy, = —Ap, + 7(9»1 —creq — Ay | op |0'5 sign(oy) + v2).

IV. SIMULATION RESULTS

To demonstrate through simulations the superiority of the
proposed control method over conventional ones, the physical
dimensions of the TWRW are chosen and listed in Table 2.
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TABLE 3. Control parameter values.

Control parameter c¢; A a & A B

Value 1 399 05 3 99 08

The values selected for the control parameters can be found
in Table 3. The following initial conditions are assumed:

Opy = ébo = by, = 6.’yo =0.

The following control objectives are set: 6, = 0, ébd =0,
by, = Zrad, b,, = 0.

The stability and direction control performances of the
TWRW through conventional and the proposed methods are
evaluated when the system is subject to the uncertainties of
the mass of the body and its CoG which are respectively
assumed as

0<xp<5cm 5<t<]15

Amy, = 40 kg, .
Xp =

elsewhere

Fig. 4 shows the response of pitch and its angular velocity.
The results show that under the both controllers, system can
keep its stability as the range of pitch angle and its rate is
acceptable and after a period it converges to zero. It can be
seen in Fig. 5 that the TWRW can reach its desired yaw angle
and yaw angular velocity. The variation of pitch and yaw
angle and their rates under the conventional and the proposed
method are similar. The required input torque of right and left
wheels can be seen in Fig. 6.

The results show that the required torque through the
proposed method is lower than the conventional control
approach. Similarly, the input power of wheels in the pro-
posed approach is much lower than the conventional one (see
Fig. 7). Fig. 8 depicts the input torque and power needed by
the added mechanism which is lower than those needed by
the right and left wheels.
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2.5 w 1 ‘
2 —CM & PM —CM & PM
— —-—Desired v —-—Desired
o] o o s o o o ~ 0.5
s 1.5 =
— <
= Nab
S R 0F—=—=—= =
0.5 >
0 : : -0.5 : : :
0 5 10 15 20 25 5 10 15 20 25
Time(sec) Time(sec)
(a): Yaw angle (b): Yaw angular velocity
FIGURE 5. Response of the yaw angle and its angular velocity in the conventional method (CM) and the proposed method (PM).
40 40
—CM| —CM
— 20 === PM — 20~ === PM |
g . g
z, 0 =z 0
= 20 v & 20 v
-40 : ‘ -40 : : : :
0 5 10 15 20 25 0 5 10 15 20 25
Time(sec) Time(sec)

(a): Input torque of right wheel

FIGURE 6. Input torque of right and left wheels

1‘0
Time(sec)

5 15

(a): Input power of right wheel

FIGURE 7. Input power of right and left wheels

40
— 20
g
Z. 0
[=9
=20
-40 ‘ ‘ :
0 5 10 15
Time(sec)

(a): Input torque of added movable mechanism

FIGURE 8. Input torque and power of the added

The energy consumption of the motors

ventional and proposed approaches can be found in Table. 4.
It can be seen that the energy consumption of right

VOLUME 8, 2020

(b): Input torque of left wheel

in the conventional method (CM) and the proposed method (PM).

: -200 : : :
20 25 5 10 15 20 25
Time(sec)
(b): Input power of left wheel
in the conventional method (CM) and the proposed method (PM).
40
—PM —PM
= 20
+>
<
= 0
Al 20
L _40 L L
20 25 0 5 10 15 20 25
Time(sec)

(b): Input power of added movable mechanism

movable mechanism in the proposed method (PM).

through the con- and left wheels in the proposed approach are much
lower than that of the conventional controller. The over-

all energy consumption including that for the added

45227



IEEE Access

M. Nikpour et al.: Stability and Direction Control of a TWRW Through a Movable Mechanism

TABLE 4. Energy consumption of motors in the conventional and the proposed method.

Energy consumption  Right wheel motor  Left wheel motor  added movable mechanism motor overall
Conventional method 1256.10J 1256.20J 2512.30J
Proposal method 482.661] 483.111J 119.76 ] 1085.53J

mechanism is also much lower than the conventional
method.

V. CONCLUSION

In this paper, a novel approach is proposed for stability and
direction control of a TWRW. A pendulum-like movable
mechanism is added to the TWRW to assist the driving wheels
to achieve the both control objectives. The Euler-Lagrange
formulation is applied to establish the dynamic model of the
system and a SOSMC which is robust against disturbances
is developed for stability and direction control. The effective-
ness of the proposed approach is simulated while considering
disturbances caused by uncertainties of inertia parameter of
the dynamic model and the rider’s motion. The simulation
results demonstrate that in the proposed approach, the desired
pitch and yaw angles of the TWRW desired for stability and
direction control are achieved, while the input torque and
power consumption for the control system are much lower
than conventional methods.

APPENDIXES

APPENDIX A

DYNAMIC MIODEL ELEMENTS OF THE
CONVENTIONAL METHOD

The components of M, and H, are as below:

! 2 r? 2.2
My, = My, = (myw + Zmb)r +sz + d—z[mbl sin“6y,

1
+2Jw, + Jb, sin%6), + Jb, cos>6p], M., = Zm;,r2

r? 2 2 ) 2
_d_z[mbl sin 91,~|—2JW_‘, + Jp, sin“G + Jp, cos Opl,

1
M., =M, = Emhrl coslp, My, = mblz +Jb,,

.. 1 .
H. = :—leye,, SIn20 (1”4 Iy, = Jb,) = Smprid sind,
r . . . 2 l .
H., = _Eeyeb sin20p, (mpl= + Jp, — J;,y) — Embrleb sin6p,

L,
H, = _Eeyz Sin20p(mpl* + Jp, — Jp,).

AM,., AH,, and R, elements are
B R, )
AMi1 = AMy = (Z + d_2 sin“6p) Amypr-,
2

AM _(1 ! in%6),) Amy,r?
= (- — — sin mpr~,
=0 b) Amp,

1
AMi3 = AMy3 = EAmbrl costp, AMz3 = Amblz,
l. 1. .
AH| = (;Gy sin26;, — 59;, sinfp) Amyrl6p,
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. 1. .
AH, = —(Eey sin26p, + 50" sinfp) Amyprl6p,
2

1., 2 . r 2
AH3 = —Eey Ampl” sin26,, Ry = d_Zmbxb(xb cos“Op

+1 sin26,)(6, — 6;) — Emhxhr(sinebeb + COS@beg)

—gmbxbébéy(xb $in26), — 21 cos26),

2
Ry = :?mbxb(x,, 020 + 1 sin26,)(@ — 6,)

1 . . ..
—Embxbr(siné’b@b + COS@[,@%) + gmbxbebey

1
(xp sin26p, — 21 cos26p), R3 = —Embxbr
Sin@b(ér +§1)+mbxl%éb

1 .
+§mbxh6y2(xh sin26;, — 21 cos20p) + mpgxp cosbp.

The definition of A, B, A¢,, and B, are as below
Aey =M} (He,+Ge))—M,) (He, +Gey)

_MS313(HC3+GC3)’ B, =M (D¢, +Re,)

“Mes

_AArCSlz (De, +Rey) _ML_;; (De;+Re3),

Ac, = (M} =M )He, +Ge,)
HML =ML Y(Hey +Gey)+ (ML =M ) (Hey 4Gy,

€22 c12 €23 €13
Be, = (M) —M_' )(D¢, +Re,)
HM ), =M )(Dey +Rey) + (M), =M )(Dey +Re).
APPENDIX B

DYNAMIC MIODEL ELEMENTS OF PROPOSED MIETHOD
The components of My, Hp, and Gp are as below:

1 1
Mp“ = Mp22 = (mw =+ ZH’Eb =+ Zmp)rz +JWZ

+;—2[me2 sin%6p, + 2Jw, + Jb, sin’0), + JIb, cos20),
+mpb? sin’6, + mpl/2 sin® (0 + 6)
+Jp, sin®(Gp + 6,)
+pr 0052(9;, +6p) — 2mpbl’ sindj, sin(6p + 0)],
1 ) 1 2 2
My, = Z(mb + mp)rT — d_Z[mbl sin“6p, + 2Jwy
+Jp, sin29b + Jp, 005291, + mpb2 sinzé?b
+mpl? sin2(B + ) + T, sin* (6 + 6,)
+Jp, c0s*(Op + 6,) — 2mpbl’ sind, sin(@p + 6)],

1
My, =M,,, = 3" cosOp(mpl + myb)
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1
—Em,,rl/ cos(0p + 6,),

<

1
s = Mpy, = —Em,,rl/ cos(Op + 6p),

= mpl® + my(? + 12+ Jy, +J,, — 2mpbl’ cost,

£ X

= mpl > —mpbl' cosOy +Jp., My, =myl? + 1.,

Em
I

.. 1 .
29 G sin26,(mpl> + Jy, — Jp,) — zrebz sinfy (mp
1 o
mpb) + Smprl' (6, + 6,)% sin( + 6,)
+ 2y, [6%0y sin26y + 126 + 6,) sin(20, + 26,)

d
—2b1'0) Sin(20p + 6,) — 21'bB, sindy, cos( + 6,)]

r . . . .
+ =000 + Op)p, — Jp,) Sin265 +26p),
r . .
Hp, = == 6,6) sin20p(mpl® + Jp, — Jp,)
1.
—§r9b2 sindy(mpl + myb)
1 L C
+5mprl' 6 + 6,)% sin(0p+6,) — gmpey[bzeb sin26),

+12(6), + 6,) sin(26), + 26,) — 2bI'6), sin(26), + 6,)
—2b1'6), sinbj cos(Bp + 6,)]

—séy(éb + 6,y — Jp,) SIN205 +26,),

Hy, = —%éyz sin20p(mpl* + Jp, — Jp,)
+mpbl'[(6; + 26,6),) sin6)] — %mpéjbz sin26),
—%éf[sin(%’b + 20,)(mpl ? — 2mpbl’ + T — Jp)],

Gp, = —(mpl + mpb)g sinb) + my,gl’ sin(6), + 6,),
Gp, = mpgl’ sin(6p, + 6,).

The definition of Ay, By,, Ap,, and B, are as below

A

Ap = —m,! (Hp, + Gp,) — M, (Hy, + Gpy)

p31 P32
M,m (Hp, + Gpy) — },34 (Hp, + Gp,),
B, = ml(D,,1 +Rp,) — M, }(Dy, + Rp))
m s (Dp; + Ryy) — M, | (D, + Ry,),
Ap, =( ml — p”)(Hpl + Gyp))
L) — plz)(sz+G2)+( o~ Mp0)
(H, +Gp3>+( o = M, D(Hy, + Gy,),

Bp, _( P21 - [711)(D1’1 + Rp)

—1 —1 —1 (7 —1
+(MP22 Mplz)(Dl’Z T Rp) + (Mp23 —Mp;)

(DP3 + RP%) + ( p24 - p14)(Dp4 + Rp4)
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