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ABSTRACT A two-wheeled robotic wheelchair (TWRW) has a better manoeuvrability than a conventional
four-wheeled wheelchair. However, it is not statically stable near the upright posture or a posture desired by
the rider, and an active stability controller is required. Stability control becomes more challenging when a
TWRW is also required to move in a desired direction. To rely on wheels’ motions to achieve both stability
and direction control tend to impose a large burden on the wheels’ driving motors or other types of actuators
in terms of their driving torque and power consumption. Various disturbances in the system also affect the
performance of the controller. To solve these problems, this paper presents a stability and direction controller
based on the motion of a pendulum-like movable mechanism added to assist the wheels to produce control
actions. The dynamic model of the TWRW is established through the Euler-Lagrange formulation in which
the disturbances caused by model uncertainties and rider’s motion are considered. A robust second-order
sliding mode control is then developed for the stability and the direction control of a TWRW. Simulation
results are presented to validate the effectiveness of the proposed method.

INDEX TERMS Two-wheeled robotic wheelchair, stability control, direction control, added movable
mechanism, second-order sliding mode control.

I. INTRODUCTION
A conventional robotic wheelchair consists of two driv-
ing wheels and two passive casters, where the driving
wheels move actively for both mobility and stability of the
wheelchair, while the passive casters provide a support for
the wheelchair’s stability [1]–[3]. A two-wheeled robotic
wheelchair (TWRW) without casters can turn on spot, climb
small steps, and thus has a better manoeuvrability than a
conventional wheelchair [4]. It is also compact in structure
and can maneuver in a narrow space [5].

However, a TWRW which can be modelled as a two-
wheeled inverted pendulum, is not statically stable as a
conventional wheelchair at the upright posture (defined by
a pitch angle) and needs an active controller to be sta-
bilized [6]. When a TWRW is also required to follow a
path along a desired direction (defined by a yaw angle),
to achieve both stability and direction control is more
challenging. The TWRW is also subjected to disturbances
caused by the unmodelled dynamics, rider’s motion, sensor
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noises and uneven surface, etc which affect the controller’s
performance [7], [8].

Different motion patterns of a TWRW such as turning,
going straight or standing still are produced from the relative
angular velocity between two driving wheels; this is called
differential wheel drive mechanism [4], [9]–[12]. Such a
mechanism has a high demand on torque and power consump-
tion from the driving motors. Another approach for stability
control is based on the motion of a movable seat or a linearly
moving mass slider under the rider’s seat [13], [14]. Though
it needs less torque and power consumption for stability
control, its operation range is limited, and it tends to cause
unwanted disturbances affecting the comfort of the rider.

For a nonlinear system like a TWRW with different driv-
ing mechanisms, the common nonlinear controller Computed
Torque Control can be applied for stability and direction
control [15]. In this controller, the control inputs (torques)
are derived from nonlinear state feedback and closed loop
tracking errors through the system dynamic model. However,
it requires an accurate dynamicmodel of the system and is not
robust against model and external uncertainties [5]. In com-
parison, sliding mode control (SMC) is more robust against
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disturbances and is more computationally efficient [16]–[18].
In this controller, the closed loop tracking errors are forced
to be near a predefined surface, called sliding surface, in the
state space of the system. For an underactuated systemswhere
the number of inputs is less than the number of controlled
outputs, hierarchical sliding mode control (HSMC) can be
applied [19]. In HSMC, the system is divided into several
subsystems for each ofwhich, a so called layer sliding surface
is designed. The main drawback of SMC control is chattering
phenomenon which leads to high vibration in the system.
This problem can be solved with quasi-sliding mode con-
trol (QSMC) where a smooth sigmoid function is used to
replace a non-smooth sign function found in a SMC con-
troller [20]. Another effective solution is higher order sliding
mode controller like the second order sliding mode controller
(SOSMC) [21]. In this controller, a discontinuous integrator
is added to the control input to eliminates the chattering
phenomenon.

Both stability control and direction control of a TWRW
are required in practice, but this issue has not been addressed
in the existing research. A main challenging is to achieve
the both control targets well when the system is subject to
various disturbances and torques and power consumption are
constrained by the limits of the wheel motors’ capacities.
In this paper, pendulum-like movable mechanism is added
to the TWRW to assist the wheels for stability and direction
control. The dynamic model of the system is established
using Euler-Lagrange formulation. Disturbances from model
uncertainties of system and rider’s motion are also consid-
ered. A SOSMC is developed for stability and direction con-
trol of the TWRW. The proposed approach is shown to be
superior conventional methods in terms of the performance of
the controller and the control torque and power consumption
needed.

The rest of paper is organized as follows. The TWRW
is described and its dynamic model is derived in Sect. II.
In Sect. III, a SOSMC for stability and direction control of
the TWRW is presented. Simulation results to validate the
effectiveness of the proposed control approach are presented
and discussed in Sect. IV. Conclusions are given in Sect. V.

II. WHEELCHAIR MODELLING
A TWRW consists of two wheels and a seat for the rider
which can rotate freely around the wheels axle; the seat and
the rider are combined to form a body. A pendulum like
movable mechanism is placed under the seat to assist the
wheels to control the TWRW. This mechanism consists of a
rod and a mass placed at one end of rod. The mass of rod is
small and is neglected. Fig. 1 shows a prototype of a TWRW.

Fig. 2 shows the schematic view of the TWRW and
the proposed mechanism. The nomenclature can be found
in Table. 1. To derive the dynamic model of the TWRW,
the Euler-Lagrange formulation is used, [22]

d
dt
(
∂L
∂ q̇i

)−
∂L
∂qi
= Qi (1)

FIGURE 1. TWRW prototype.

where L = T − U is known as Lagrangian and T and U
are the kinetic and potential energy of the whole system,
respectively. The system’s generalized coordinates and their
corresponding inputs are denoted by qi and Qi, respectively.
The friction forces between joints are not considered. Also,
it is assumed that the wheels don’t slip on the ground. In con-
ventional control method, the wheels torques are the control
inputs. Therefore, the overall kinetic and potential energy of
system can be obtained as

T = Tr + Tl + Tb, U = Ur + Ul + Ub.

where Tr , Tl and Tb are the kinetic energy of right and left
wheel and body (including rider and seat frame), respectively.
Similarly, Ur , Ul and Ub are their potential energies. The
kinetic energy of right and left wheel can be shown as

Tr =
1
2
mwr2θ̇2r +

1
2
Jwy θ̇

2
y +

1
2
Jwz θ̇

2
r

Tl =
1
2
mwr2θ̇2l +

1
2
Jwy θ̇

2
y +

1
2
Jwz θ̇

2
l

θ̇y which is the yaw angular velocity can be obtained as [23]

θ̇y =
r
d
(θ̇r − θ̇l) (2)

The kinetic energy of body can be obtained as

Tb =
1
2
mb(V 2

+ l2θ̇2b + l
2θ̇2y sin2θb + 2Vlθ̇b cosθb)

+
1
2
(Jbx θ̇

2
y sin2θb + Jby θ̇

2
y cos2θb + Jbz θ̇

2
b )

where V is the linear velocity of center of wheels axle which
is

V =
r
2
(θ̇r + θ̇l) (3)

The potential energy of the right and left wheels and the body
can be shown as

Ur = Ul = 0, Ub = mbgl cosθb.
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FIGURE 2. Model of a two-wheeled wheelchair and proposed mechanism.

TABLE 1. Nomenclature.

Applying Equation (1), the dynamic model of TWRW in the
conventional method can be derived and presented as [24]

Mcq̈c +Hc +Gc = Bcτ c (4)

where qc is the generalized coordinates vector that can be
shown as

qc =
[
θr θl θb

]T
Mc is the symmetric matrix called the inertia matrix.

Mc =


Mc11 Mc12 Mc13

Mc21 Mc22 Mc23

Mc31 Mc32 Mc33


Hc is the Centrifugal and Coriolis forces matrix.

Hc =
[
Hc1 Hc2 Hc3

]T

Mc and Hc components can be found in Appendix A. Gc is
the gravity matrix.

Gc =
[
0 0 −mbgl sinθb

]T
Bc is the control coefficient matrix.

Bc =

[
1 0 0
0 1 0

]T
and τ c is the control input vector.

τ c =
[
τr τl

]T
The input power and energy consumption of right and left
wheel motors can be obtained as [25]

Pr = τr θ̇r , Pl = τl θ̇l, Er =
∫
Prdt, El =

∫
Pldt.
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Considering the disturbances like model uncertainties due
to the varying mass of the rider and the variations of the
body’s center of gravity (CoG) from the motions of the rider,
the dynamic model of system should be reformulated as

M̂cq̈c + Ĥc + Ĝc + Dc + Rc = Bcτ c (5)

where Dc and Rc denotes the disturbances caused by model
uncertainties and change of body’s CoG position, respec-
tively. M̂c, Ĥc and Ĝc are the nominal inertia, centrifugal and
gravity matrices, respectively and can be shown as

M̂c =Mc −1Mc, Ĥc = Hc −1Hc, Ĝc = Gc −1Gc

The disturbance caused by the uncertain mass of the body can
be shown as

Dc = 1Mcq̈c +1Hc +1Gc

where

1Mc =


1M11 1M12 1M13

1M21 1M22 1M23

1M31 1M32 1M33


1Hc =

[
1H1 1H2 1H3

]T
1Gc =

[
0 0 −1mbgl sinθb

]T
1Mc is a symmetric matrix. 1Mc and 1Hc components are
shown in Appendix A. 1mb = mb − m̂b, where mb and m̂b
are the real and nominal values of body’s mass, respectively.

FIGURE 3. Change of body’s CoG position.

The body’s CoG varies when the rider moves on the seat.
Assume its position along the forward direction is defined by
xb as shown in Fig. 3, the kinetic and potential energy of body
are reformulated as

Tb =
1
2
mb[V 2

+ l2θ̇2b + l
2θ̇2y sin2θb + 2Vlθ̇b cosθb + x2b θ̇

2
b

+x2b θ̇
2
y cos2θb + lxbθ̇2y sin2θb − 2xbV θ̇b sinθb]

+
1
2
(Jbx θ̇

2
y sin2θb + Jby θ̇

2
y cos2θb + Jbz θ̇

2
b cos2θb),

Ub = mbg(l cosθb + h sinθb).

The effect of change of body’s CoG can be shown as

Rc =
[
R1 R2 R3

]T
The Rc elements are shown in Appendix A. From Equa-
tion (5), we have

q̈c = M̂−1c (−Ĥc − Ĝc − Dc − Rc + Bcτ c) (6)

Differentiating Equation (2), with respect to time leads to

θ̈y =
r
d
(θ̈r − θ̈l) (7)

From Equation (6), and Equation (7), we have

θ̈b = Ac1 + Bc1 + M̂
−1
c31 τr + M̂

−1
c32 τl,

θ̈y =
r
d
[Ac2 + Bc2 + (M̂−1c11 − M̂

−1
c21 )τr + (M̂−1c12 − M̂

−1
c22 )τl].

(8)

The definition of Ac1 , Bc1 , Ac2 , and Bc2 can be found in
Appendix A.

Considering the added pendulum like movable mecha-
nism, the overall kinetic and potential energy of TWRW is
obtained as

T = Tr + Tl + Tb + Tp, U = Ur + Ul + Ub + Up.

where Tp and Up are the kinetic and potential energy of the
added movable mechanism, respectively. Tp and Up can be
presented as

Tp =
1
2
mp[V 2

+ b2θ̇2b + 2bV θ̇b cosθb + l
′2(θ̇b + θ̇p)2

−2l ′V (θ̇b + θ̇p) cos(θb + θp)− 2bl ′θ̇b(θ̇b + θ̇p) cosθp

+b2θ̇y
2 sin2θb + l

′2θ̇y
2 sin2(θb + θp)

−2bl ′θ̇y
2 sinθb sin(θb + θp)]+

1
2
[Jpx θ̇

2
y sin2(θb + θp)

+Jpy θ̇
2
y cos2(θb + θp)+ Jpz (θ̇b + θ̇p)

2],

Up = mpg(b cosθb − l ′ cos(θp + θb)).

By applying Equation (1), the dynamic model of the whole
system is as follows,

Mpq̈p +Hp +Gp = Bpτp (9)

where

qp =
[
θr θl θb θp

]T

Mp =


Mp11 Mp12 Mp13 Mp14

Mp21 Mp22 Mp23 Mp24

Mp31 Mp32 Mp33 Mp34

Mp41 Mp42 Mp43 Mp44


Gp =

[
0 0 Gp3 Gp4

]T
Bp =

 1 0 0 0
0 1 0 0
0 0 0 1

T , τp =
[
τr τl τp

]T
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Mp, Hp and Gp components can be found in Appendix B.
The input power and energy consumption of added movable
mechanism motor can be obtained as [25]

Pp = τpθ̇p, Ep =
∫
Ppdt.

Considering model uncertainties and change of body’s
CoG position, the dynamic model is rewritten as

M̂pq̈p + Ĥp + Ĝp + Dp + Rp = Bpτp (10)

where

Dp = 1Mpq̈p +1Hp +1Gp

1Mp =


1M11 1M12 1M13 0
1M21 1M22 1M23 0
1M31 1M32 1M33 0
0 0 0 0


1Hp =

[
1H1 1H2 1H3 0

]T
1Gp =

[
0 0 −1mbgl sinθb 0

]T
Rp =

[
R1 R2 R3 0

]T
1Mp, 1Hp and Rp elements are similar to the disturbances
matrices derived in conventional method and can be found
in Appendix A. In proposed method, θ̈b and θ̈y can be
obtained as

θ̈b = Ap1 + Bp1 + M̂
−1
p31 τr + M̂

−1
p32 τl + M̂

−1
p34 τp,

θ̈y =
r
d
[Ap2 + Bp2 + (M̂−1p11 − M̂

−1
p21 )τr

+(M̂−1p12 − M̂
−1
p22 )τl + (M̂−1p14 − M̂

−1
p24 )τp]. (11)

The definition of Ap1 , Bp1 , Ap2 , and Bp2 are presented in
Appendix B.

III. CONTROLLER DESIGN
A. CONVENTIONAL METHOD
The control objective is to track the desired yaw angle by
the TWRW, while the pitch angle remains zero. To control
the pitch and yaw angle through SOSMC, the sliding surface
vector is defined as

σ =
[
σ1 σ2

]T
, σ1 = e2+c1e1, σ2 = e4+c2e3. (12)

where σ1 and σ2 are the sliding surfaces defined for pitch
and yaw angle control, respectively. e1, e2, e3, and e4 are
the tracking errors of pitch angel, pitch angular velocity, yaw
angle, and yaw angular velocity, respectively. c1 and c2 are
positive design parameters. e1 = θb−θbd , e2 = θ̇b−θ̇bd , e3 =
θy − θyd , e4 = θ̇y − θ̇yd . θbd , θ̇bd , θyd , and θ̇yd are the desired
values of pitch angle, pitch angular velocity, yaw angle, and
yaw angular velocity, respectively. From Equation (12), we
have

σ̇1 = ė2 + c1ė1 = (θ̈b − θ̈bd )+ c1e2,

σ̇2 = ė4 + c2ė3 = (θ̈y − θ̈yd )+ c2e4. (13)

According to the structure of SOSMC, we have [26]

σ̇1 = u1 + h1, σ̇2 = u2 + h2. (14)

where u1 and u2 are the equivalent control inputs. h1 and h2
are the disturbances. Comparing Equation (8), Equation (13),
and Equation (14), for conventional method we have
u1 = Ac1+M̂

−1
c31τr+M̂

−1
c32τl−θ̈bd+c1e2, h1 = Bc1 ,

u2 =
r
d
[Ac2+(M̂

−1
c11−M̂

−1
c21 )τr+(M̂

−1
c12−M̂

−1
c22 )τl]

−θ̈yd+c2e4, h2 =
r
d
Bc2 .

(15)

To develop the SOSMC, Km1 and KM1 which are two positive
constants are chosen as

0 ≤ Km1 ≤ 1 ≤ KM1

There exists two positive constants q1 and UM1 which are
selected as

| h1 |< q1UM1 , 0 < q1 < 1

Also, the positive constant value C1 is chosen as

| ḣ1 |≤ C1

Considering the assumptions above, the equivalent control
input u1 is defined as

u1 = −λ1 | σ1 |0.5 sign(σ1)+ ν1,

ν̇1 =

{
−u1, | u1 |> UM1

−α1sign(σ1), | u1 |≤ UM1

(16)

where, λ1 and α1 are two positive constants. Selecting

λ1 >

√
2

(Km1α1 − C1)
(Km1α1 + C1)KM1 (1+ q1)

K 2
m1
(1− q1)

and α1 > C1/Km1 , all tracking errors converge to zero in
finite time. The stability proof of SOSMC can be found
in [27].

Similar to u1, u2 is defined as

u2 = −λ2 | σ2 |0.5 sign(σ2)+ ν2,

ν̇2 =

{
−u2, | u2 |> UM2

−α2sign(σ2), | u2 |≤ UM2

(17)

From Equation (15) - Equation (17), the input torque of
right and left wheels in conventional method can be obtained
through

[
τr
τl

]
=

[
M̂−1c31 M̂−1c32

(M̂−1c11 − M̂
−1
c21 ) (M̂−1c12 − M̂

−1
c22 )

]−1[
Fc1
Fc2

]
(18)

where

Fc1 = −Ac1 + θ̈bd − c1e2 − λ1 | σ1 |
0.5 sign(σ1)+ ν1,

Fc2 = −Ac2 +
d
r
(θ̈yd − c2e4 − λ2 | σ2 |

0.5 sign(σ2)+ ν2).
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TABLE 2. Physical parameters of the TWRW for simulation.

FIGURE 4. Response of the pitch angle and its angular velocity in the conventional method (CM) and the proposed method (PM).

B. PROPOSED METHOD
From Equation (11), Equation (13), and Equation (14), we
have

u1 = Ap1 + M̂
−1
p31 τr + M̂

−1
p32 τl + M̂

−1
p34 τp − θ̈bd + c1e2,

h1 = Bp1 , u2 =
r
d
[Ap2 + (M̂−1p11 − M̂

−1
p21 )τr

+(M̂−1p12 − M̂
−1
p22 )τl + (M̂−1p14 − M̂

−1
p24 )τp]− θ̈yd + c2e4,

h2 =
r
d
Bp2 .

(19)

To assist the wheels for stability and direction control,
the input torque of added movable mechanism is defined as

τp = β(τr + τl) (20)

where β > 0. From Equation (16) - Equation (20), the input
torque of right and left wheels and added mechanism can be
obtained as  τrτl

τP

 =W−1

Fp1Fp1
0

 (21)

where

W =

 M̂−1p31 M̂−1p32 M̂−1p34
(M̂−1p11−M̂

−1
p21 ) (M̂−1p12−M̂

−1
p22 ) (M̂−1p14−M̂

−1
p24 )

β β −1

 ,
Fp1 = −Ap1 + θ̈bd − c1e2 − λ1 | σ1 |

0.5 sign(σ1)+ ν1,

Fp2 = −Ap2 +
d
r
(θ̈yd − c2e4 − λ2 | σ2 |

0.5 sign(σ2)+ ν2).

IV. SIMULATION RESULTS
To demonstrate through simulations the superiority of the
proposed control method over conventional ones, the physical
dimensions of the TWRW are chosen and listed in Table 2.

TABLE 3. Control parameter values.

The values selected for the control parameters can be found
in Table 3. The following initial conditions are assumed:

θb0 = θ̇b0 = θy0 = θ̇y0 = 0.

The following control objectives are set: θbd = 0, θ̇bd = 0,
θyd =

π
2 rad , θ̇yd = 0.

The stability and direction control performances of the
TWRW through conventional and the proposed methods are
evaluated when the system is subject to the uncertainties of
the mass of the body and its CoG which are respectively
assumed as

1mb = 40 kg,

{
0 ≤ xb ≤ 5cm 5 ≤ t < 15
xb = 0 elsewhere

Fig. 4 shows the response of pitch and its angular velocity.
The results show that under the both controllers, system can
keep its stability as the range of pitch angle and its rate is
acceptable and after a period it converges to zero. It can be
seen in Fig. 5 that the TWRW can reach its desired yaw angle
and yaw angular velocity. The variation of pitch and yaw
angle and their rates under the conventional and the proposed
method are similar. The required input torque of right and left
wheels can be seen in Fig. 6.

The results show that the required torque through the
proposed method is lower than the conventional control
approach. Similarly, the input power of wheels in the pro-
posed approach is much lower than the conventional one (see
Fig. 7). Fig. 8 depicts the input torque and power needed by
the added mechanism which is lower than those needed by
the right and left wheels.
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FIGURE 5. Response of the yaw angle and its angular velocity in the conventional method (CM) and the proposed method (PM).

FIGURE 6. Input torque of right and left wheels in the conventional method (CM) and the proposed method (PM).

FIGURE 7. Input power of right and left wheels in the conventional method (CM) and the proposed method (PM).

FIGURE 8. Input torque and power of the added movable mechanism in the proposed method (PM).

The energy consumption of the motors through the con-
ventional and proposed approaches can be found in Table. 4.
It can be seen that the energy consumption of right

and left wheels in the proposed approach are much
lower than that of the conventional controller. The over-
all energy consumption including that for the added
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TABLE 4. Energy consumption of motors in the conventional and the proposed method.

mechanism is also much lower than the conventional
method.

V. CONCLUSION
In this paper, a novel approach is proposed for stability and
direction control of a TWRW. A pendulum-like movable
mechanism is added to the TWRW to assist the drivingwheels
to achieve the both control objectives. The Euler-Lagrange
formulation is applied to establish the dynamic model of the
system and a SOSMC which is robust against disturbances
is developed for stability and direction control. The effective-
ness of the proposed approach is simulated while considering
disturbances caused by uncertainties of inertia parameter of
the dynamic model and the rider’s motion. The simulation
results demonstrate that in the proposed approach, the desired
pitch and yaw angles of the TWRW desired for stability and
direction control are achieved, while the input torque and
power consumption for the control system are much lower
than conventional methods.

APPENDIXES
APPENDIX A
DYNAMIC MODEL ELEMENTS OF THE
CONVENTIONAL METHOD
The components ofMc and Hc are as below:

Mc11 = Mc22 = (mw +
1
4
mb)r2 + Jwz +

r2

d2
[mbl2 sin2θb

+2Jwy + Jbx sin
2θb + Jby cos

2θb], Mc12 =
1
4
mbr2

−
r2

d2
[mbl2 sin2θb+2Jwy + Jbx sin

2θb + Jby cos
2θb],

Mc13 = Mc23 =
1
2
mbrl cosθb, Mc33 = mbl2 + Jbz ,

Hc1 =
r
d
θ̇yθ̇b sin2θb(mbl2 + Jbx − Jby )−

1
2
mbrlθ̇2b sinθb,

Hc2 = −
r
d
θ̇yθ̇b sin2θb(mbl2 + Jbx − Jby )−

1
2
mbrlθ̇2b sinθb,

Hc3 = −
1
2
θ̇2y sin2θb(mbl2 + Jbx − Jby ).

1Mc, 1Hc, and Rc elements are

1M11 = 1M22 = (
1
4
+

l2

d2
sin2θb)1mbr2,

1M12 = (
1
4
−

l2

d2
sin2θb)1mbr2,

1M13 = 1M23 =
1
2
1mbrl cosθb, 1M33 = 1mbl2,

1H1 = (
l
d
θ̇y sin2θb −

1
2
θ̇b sinθb)1mbrlθ̇b,

1H2 = −(
l
d
θ̇y sin2θb +

1
2
θ̇b sinθb)1mbrlθ̇b,

1H3 = −
1
2
θ̇2y1mbl

2 sin2θb, R1 =
r2

d2
mbxb(xb cos2θb

+l sin2θb)(θ̈r − θ̈l)−
1
2
mbxbr(sinθbθ̈b + cosθbθ̇2b )

−
r
d
mbxbθ̇bθ̇y(xb sin2θb − 2l cos2θb),

R2 =
r2

d2
mbxb(xb cos2θb + l sin2θb)(θ̈l − θ̈r )

−
1
2
mbxbr(sinθbθ̈b + cosθbθ̇2b )+

r
d
mbxbθ̇bθ̇y

(xb sin2θb − 2l cos2θb), R3=−
1
2
mbxbr

sinθb(θ̈r+θ̈l)+mbx2b θ̈b

+
1
2
mbxbθ̇2y (xb sin2θb − 2l cos2θb)+ mbgxb cosθb.

The definition of Ac1 , Bc1 , Ac2 , and Bc2 are as below

Ac1 =−M̂
−1
c31 (Hc1+Gc1 )−M̂

−1
c32 (Hc2+Gc2 )

−M̂−1c33 (Hc3+Gc3 ), Bc1 =−M̂
−1
c31 (Dc1+Rc1 )

−M̂−1c32 (Dc2+Rc2 )−M̂
−1
c33 (Dc3+Rc3 ),

Ac2 = (M̂−1c21−M̂
−1
c11 )(Hc1+Gc1 )

+(M̂−1c22−M̂
−1
c12 )(Hc2+Gc2 )+(M̂

−1
c23−M̂

−1
c13)(Hc3+Gc3 ),

Bc2 = (M̂−1c21−M̂
−1
c11 )(Dc1+Rc1 )

+(M̂−1c22−M̂
−1
c12 )(Dc2+Rc2 )+(M̂

−1
c23−M̂

−1
c13)(Dc3+Rc3 ).

APPENDIX B
DYNAMIC MODEL ELEMENTS OF PROPOSED METHOD
The components ofMp, Hp, and Gp are as below:

Mp11 = Mp22 = (mw +
1
4
mb +

1
4
mp)r2 + Jwz

+
r2

d2
[mbl2 sin2θb + 2Jwy + Jbx sin

2θb + Jby cos
2θb

+mpb2 sin2θb + mpl
′2 sin2(θb + θp)

+Jpx sin
2(θb + θp)

+Jpy cos
2(θb + θp)− 2mpbl ′ sinθb sin(θb + θp)],

Mp12 =
1
4
(mb + mp)r2 −

r2

d2
[mbl2 sin2θb + 2Jwy

+Jbx sin
2θb + Jby cos

2θb + mpb2 sin2θb

+mpl
′2 sin2(θb + θp)+ Jpx sin

2(θb + θp)

+Jpy cos
2(θb + θp)− 2mpbl ′ sinθb sin(θb + θp)],

Mp13 = Mp23 =
1
2
r cosθb(mbl + mpb)
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−
1
2
mprl ′ cos(θb + θp),

Mp14 = Mp24 = −
1
2
mprl ′ cos(θb + θp),

Mp33 = mbl2 + mp(b2 + l
′2)+ Jbz + Jpz − 2mpbl ′ cosθp,

Mp34 = mpl
′2
− mpbl ′ cosθp + Jpz , Mp44 = mpl

′2
+ Jpz ,

Hp1 =
r
d
θ̇yθ̇b sin2θb(mbl2 + Jbx − Jby )−

1
2
r θ̇b

2 sinθb(mbl

+mpb)+
1
2
mprl ′(θ̇b + θ̇p)2 sin(θb + θp)

+
r
d
mpθ̇y[b2θ̇b sin2θb + l

′2(θ̇b + θ̇p) sin(2θb + 2θp)

−2bl ′θ̇b sin(2θb + θp)− 2l ′bθ̇p sinθb cos(θb + θp)]

+
r
d
θ̇y(θ̇b + θ̇p)(Jpx − Jpy ) sin(2θb + 2θp),

Hp2 = −
r
d
θ̇yθ̇b sin2θb(mbl2 + Jbx − Jby )

−
1
2
r θ̇b

2 sinθb(mbl + mpb)

+
1
2
mprl ′(θ̇b + θ̇p)2 sin(θb+θp)−

r
d
mpθ̇y[b2θ̇b sin2θb

+l
′2(θ̇b + θ̇p) sin(2θb + 2θp)− 2bl ′θ̇b sin(2θb + θp)

−2bl ′θ̇p sinθb cos(θb + θp)]

−
r
d
θ̇y(θ̇b + θ̇p)(Jpx − Jpy ) sin(2θb + 2θp),

Hp3 = −
1
2
θ̇2y sin2θb(mbl2 + Jbx − Jby )

+mpbl ′[(θ̇2p + 2θ̇bθ̇p) sinθp]−
1
2
mpθ̇2y b

2 sin2θb

−
1
2
θ̇2y [sin(2θb + 2θp)(mpl

′2
− 2mpbl ′ + Jpx − Jpy )],

Gp3 = −(mbl + mpb)g sinθb + mpgl
′ sin(θb + θp),

Gp4 = mpgl ′ sin(θb + θp).

The definition of Ap1 , Bp1 , Ap2 , and Bp2 are as below

Ap1 = −M̂
−1
p31 (Hp1 + Gp1 )− M̂

−1
p32 (Hp2 + Gp2 )

−M̂−1p33 (Hp3 + Gp3 )− M̂
−1
p34 (Hp4 + Gp4 ),

Bp1 = −M̂
−1
p31 (Dp1 + Rp1 )− M̂

−1
p32 (Dp2 + Rp2 )

−M̂−1p33 (Dp3 + Rp3 )− M̂
−1
p34 (Dp4 + Rp4 ),

Ap2 = (M̂−1p21 − M̂
−1
p11 )(Hp1 + Gp1 )

+(M̂−1p22 − M̂
−1
p12 )(Hp2 + Gp2 )+ (M̂−1p23 − M̂

−1
p13 )

(Hp3 + Gp3 )+ (M̂−1p24 − M̂
−1
p14 )(Hp4 + Gp4 ),

Bp2 = (M̂−1p21 − M̂
−1
p11 )(Dp1 + Rp1 )

+(M̂−1p22 − M̂
−1
p12 )(Dp2 + Rp2 )+ (M̂−1p23 − M̂

−1
p13 )

(Dp3 + Rp3 )+ (M̂−1p24 − M̂
−1
p14 )(Dp4 + Rp4 ).
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