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ABSTRACT Let p be a prime, s, m be positive integers, and λ be a nonzero element of the finite field Fpm .
In this paper, the algebraic structures of constacyclic codes of length 5 ps (p 6= 5) are obtained, which
provide all self-dual, self-orthogonal and dual containing codes. Moreover, the exact values of the Hamming
distances of all such codes are completely determined. Among other results, we obtain the degrees of the
generator polynomials of all MDS repeated-root constacyclic codes of arbitrary length. As applications,
several new and optimal codes are provided.

INDEX TERMS Constacyclic code, generator polynomial, repeated-root code, simple-root code, Hamming
distance.

I. INTRODUCTION
Cyclic codes over finite fields have been well studied because
of their rich algebraic structures and practical implemen-
tations, which explains their preferred role in engineering.
Constacyclic codes are a direct generalization of cyclic codes,
and they also play a very significant role in the theory of error-
correcting codes.

For a prime p, let Fpm be the finite field of order pm. Given
a nonzero element λ ∈ Fpm , λ-constacyclic codes of length
n over Fpm are defined by the ideals 〈g(x)〉 of quotient ring
Fpm [x]
〈xn−λ〉 , where the generator polynomial g(x) is the unique
monic polynomial of minimum degree in the code, which
is a divisor of xn − λ. In general, constacyclic codes are
grouped into two classes: simple-root constacyclic codes,
where the generator polynomial g(x) has no repeated irre-
ducible roots, and repeated-root constacyclic codes, where
the code length n is divisible by the characteristic p of the
finite field. In 1991, Castagnoli et al. [2] and Van Lint [24]
showed that repeated-root cyclic codes have a concatenated
construction and are asymptotically bad. However, it turns
out that optimal repeated-root cyclic codes still exist, which
have motivated the researchers to further study these codes
(see, e.g., [1], [5]–[11], [22].)
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approving it for publication was Khmaies Ouahada .

In a series of papers [3], [4], [6]–[9], [15] and [22],
the authors determined the algebraic structures in terms of
polynomial generators of all constacyclic codes over Fpm
of different lengths. However, litter work has been done on
determining the Hamming distances of constacyclic codes as
it is a very hard task in general. By now, only a few results
have been obtained.

In [6], Dinh determined the Hamming distances of cyclic
codes of length ps over Fpm . In 2013, by using the ‘‘weight-
retaining’’ property of polynomials (see [19, Theorem 1.1]),
[17] determined the Hamming distances of constacyclic
codes of length ηps with generator polynomials xη + γ

and (xη
′

+ γ ′)(xη
′

− γ ′), where η = 2η′, γ ′ and
γ are the nonzero elements in the finite field. Later,
based on the relationships of Hamming distances between
simple-root cyclic codes and repeated-root cyclic codes (see
[2, Theorem 1]), in [20] and [15], the authors computed
the Hamming distances of cyclic codes of length 2ps and
the Hamming distances of cyclic codes of length 3ps for the
case gcd(3, pm − 1) = 1, respectively. Continuing this line of
research, recently, we determined the Hamming distances of
all constacyclic codes of length 3ps for the remainder case
of gcd(3, pm−1) = 2 [12], and those of all constacyclic codes
of length 4ps [13]. Moreover, all MDS constacyclic codes of
length 3ps and 4ps are obtained in [12] and [13].
Motivated by these, in this paper, we aim to establish the

Hamming distances of all constacyclic codes of length 5ps.
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We first obtain the relationships about Hamming distances
between simple-root constacyclic codes and repeated-root
constacyclic codes to give the degrees of generator poly-
nomials of all MDS repeated-root λ-constacyclic codes of
arbitrary length. It is known that MDS constacyclic codes can
be used to construct quantum MDS codes using well known
constructions such as CSS construction. Hence, obtaining
MDS code is very important for practical application. Let `
be a prime different from p, based on the algebraic structures
of constacyclic codes of length `ps, which is given by [3],
we provide the precise algebraic structures of constacyclic
codes of length 5 ps explicitly, then the Hamming distances
of all such constacyclic codes are given. As applications,
we obtain some codes which are optimal with respect to
the online databases of best codes known maintained at
http://www.codetables.de, see Example 3.5, Example 5.10.

The remainder of this paper is organized as follows.
Section II recalls some preliminary results. In Section III,
the degrees of generator polynomials of all MDS repeated-
root constacyclic codes are given. In Section IV, the algebraic
structures of all constacyclic codes of length 5ps are estab-
lished, this structure also provides the necessary and suffi-
cient conditions for the existence of self-dual, self-orthogonal
and dual containing codes. In Section V, we obtain the
Hamming distances of all constacyclic codes of length 5ps.
Section VI concludes the paper.

II. PRELIMINARIES
Let Fpm be the finite field of order pm, where p is a prime
and m is a positive integer. A code C of length n over Fpm
is a nonempty subset of Fnpm . A linear code C over the
finite field Fpm is a linear subspace of Fnpm . Moreover, for a
nonzero element λ of Fpm , if (c0, c1, · · · , cn−1) ∈ C implies
(λcn−1, c0, · · · , cn−2) ∈ C ,C is called a λ-constacyclic code.
In light of this definition, λ-constacyclic codes are called
cyclic codes if λ = 1, and λ-constacyclic codes are called
negacyclic codes if λ = −1. The following fact is well-known
and straightforward.
Proposition 2.1 ([14], [18], [21]): A linear codeC of length

n over Fpm is a λ-constacyclic code if and only if C is an ideal

of
Fpm [x]
〈xn−λ〉 .

For a codeword a = (c0, c1, · · · , cn−1) ∈ C , the Hamming
weight of a is denoted by the number of nonzero components
ci for 0 ≤ i ≤ n−1. For two codewords a and b, the Hamming
distance dH(a,b) is the Hamming weight wtH(a−b) of a−b.
For a code C of length n over Fpm , the Hamming distance of
C is defined as:

dH(C) = min{wtH(a− b) | (a,b) 6= (0, 0), a,b ∈ C}.

Clearly, for a linear code C , the smallest Hamming weight
and the Hamming distance dH(C) are the same, i.e.,

dH(C) = min{wtH(x) | x 6= 0, x ∈ C}.

From that, it is easy to see the following simple lemma.

Lemma 2.2: Let C be a nonzero constacyclic code and C 6=
Fpm [x]
〈xn−λ〉 . Then dH(C) ≥ 2.

In [3], Chen et al. considered the algebraic structures of
constacyclic codes of length `ps over Fpm , where ` is a prime
different from p. They showed that all constacyclic codes of
length `ps over Fpm have the following algebraic structures.
Proposition 2.3 ( [3, Theorem 4.1]): Let ` be a prime

integer with gcd(`, pm − 1) = 1. Then all λ-constacyclic
codes of length `ps are `ps-equivalent to the cyclic codes;
in other words, there exists a unique element a ∈ F∗pm such
that a`p

s
λ = 1. Further, the map

ϕa :
Fpm [x]〈
x`ps − 1

〉 → Fpm [x]〈
x`ps − λ

〉 ,
f (x) 7→ f (ax),

which maps f (x) to f (ax) is a ring isomorphism.
Proposition 2.4 ( [3, Theorem 4.2]): Assume that ` is a

prime divisor of q−1. Let µ ∈ Fpm be a primitive `-th root of
unity in Fpm , and F∗pm = 〈ξ〉. Let C be a λ-constacyclic code
of length `ps over Fpm . Then one of the following two cases
holds:
I . either λ ∈

〈
ξ `
〉
, then there exists b ∈ F∗pm such that

b`p
s
λ = 1, and we have

C =

〈
(
`−1∏
i=0

(x − b−1µi)ςi
〉
, 0 ≤ ςi ≤ ps,

for any i = 0, 1, · · · , `− 1.
II . or λ /∈

〈
ξ `
〉
, then there exists d ∈ F∗pm and a unique

integer j, 1 ≤ j ≤ `− 1 such that λd`p
s
= ξ jp

s
, and we have

C =
〈
(x` − d−1ξ j)ς

〉
, 0 ≤ ς ≤ ps.

In order to compute the Hamming distances of λ-
constacyclic codes, we will use the so-called ‘‘weight-
retaining’’ property of polynomial xn−c, which was initiated
in [19].
Lemma 2.5 ( [19, Theorem 6.3]): Let N , n be positive inte-

gers, then for any polynomial P(x) over Fpm , and any nonzero
element c of Fpm , the Hamming weight of P(x)(xn + c)N

satisfies

wtH(P(x)(xn + c)N )

≥ wtH
(
P(x) (mod xn + c)

)
· wtH((xn + c)N ).

Let N < ps and 0 ≤ b0, b1, · · · , bs−1 ≤ p− 1 be positive
integers such thatN = bs−1ps−1+· · ·+b1p+b0, 0 ≤ bi < p,
is the p-adic expansion of N . By Lemma 1 of [19], we have

wtH((xn + c)N ) =
s−1∏
i=0

(bi + 1). (1)

Clearly, for any positive integer s and 0 ≤ θ ≤ s− 1, ps −
ps−θ = (p−1)ps−1+(p−1)ps−2+· · ·+(p−1)ps−θ+1+(p−
1)ps−θ . Then, combining with Theorem 7.5 of [17], we have
the following lemma.
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Lemma 2.6: Let 0 ≤ ϕ ≤ p−2, and 0 ≤ θ ≤ s−1. Assume
that ps−ps−θ+ϕps−θ−1+1 ≤ i ≤ ps−ps−θ+(ϕ+1)ps−θ−1,
then wtH((xn+ c)i) ≥ (ϕ+ 2)pθ and the equality holds when
i = ps − ps−θ + (ϕ + 1)ps−θ−1. Moreover, if i ≤ j ≤ ps − 1,
we have wtH((xn + c)j) ≥ (ϕ + 2)pθ .

III. HAMMING DISTANCES OF REPEATED-ROOT
CONSTACYCLIC CODES OF ARBITRARY LENGTH
Let C = 〈g(x)〉 be a repeated-root λ-constacyclic code
of length lps over Fpm , where l is a positive integer and
gcd(l, p) = 1. By Proposition 2.1, such code can be seen as
an ideal of the ambient ring

Rlps, λ =
Fpm [x]〈
x lps − λ

〉 .
Clearly, for any nonzero element λ ∈ Fpm , there exists a

unique element γ ∈ Fpm such that λ = γ p
s
since gcd(ps,

pm − 1) = 1. Let

x l − γ =
t∏
i=1

mi(x) (2)

be the factorization of x l−γ into product of pairwise coprime
irreducible factors. Then the generator polynomial g(x) of C
can be expressed as g(x) =

∏t
i=1 mi(x)

ei , where 0 ≤ ei ≤ ps.
Let C̄z = 〈ḡz(x)〉 be a simple-root γ -constacyclic code of
length l over Fpm , where ḡz(x) is defined as the product of
those irreducible factors mi(x) of g(x) that occur with times
z < ei in g(x) (If z ≥ ei for i = 1, 2, · · · , t , then ḡz(x) = 1.)
Example 3.1: Assume that 5 | pm − 1 and ε ∈ Fpm is a

primitive 5th root of unity in Fpm . Let C be a constacyclic
code of length 5 ps with the generator polynomial

g(x) = (x − 1)i(x − ε)j(x − ε2)y(x − ε3)u(x − ε4)v,

where 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps. Then the generator
polynomial of C̄z is

ḡz(x) =



1,
if v ≤ u ≤ y ≤ j ≤ i ≤ z,

x − 1,
if v ≤ u ≤ y ≤ j ≤ z < i,

(x − 1)(x − ε),
if v ≤ u ≤ y ≤ z < j ≤ i,

(x − 1)(x − ε)(x − ε2),
if v ≤ u ≤ z < y ≤ j ≤ i,

(x − 1)(x − ε)(x − ε2)(x − ε3),
if v ≤ z < u ≤ y ≤ j ≤ i.

We start with the following result.
Theorem 3.2: Let constacyclic codes C and C̄z be defined

as above. Then dH(C) = min{wtH((x l − γ )z) · dH(C̄z)}, where
min{e1, e2, · · · , et } ≤ z ≤ ps − 1.

Proof:Obviously, the theorem holds trivially for the zero
code. Now, we assume that C is not zero. Let c0(x) be the

nonzero element of C̄z such that dH(C̄z) = wtH(c0(x)). Then
the generator polynomial g(x) of C satisfies

g(x) | (x l − γ )z(c0(x))p
s
,

where min{e1, e2, · · · , et } ≤ z ≤ ps − 1.
It is easy to see that c1(x) = (x l−γ )z(c0(x))p

s
(mod x lp

s
−

λ) belongs to C. Hence,

dH(C) ≤ wtH(c1(x))

= wtH
(
(x l − γ )z · c0(x)p

s
(mod x lp

s
− λ)

)
≤ wtH((x l − γ )z) · wtH(c0(x)p

s
)

= wtH((x l − γ )z) · wtH(c0(x))

= wtH((x l − γ )z) · dH(C̄z). (3)

Therefore, we have dH(C) ≤ min{wtH((x l − γ )z) · dH(C̄z)},
where min{e1, e2, · · · , et } ≤ z ≤ ps − 1.

We now show that dH(C) ≥ min{wtH((x l − γ )z) · dH(C̄z)},
wheremin{e1, e2, · · · , et } ≤ z ≤ ps−1. Let c(x) be a nonzero
element of C such that dH(C) = wtH(c(x)). Clearly, there exist
an integer r and a polynomial f (x) such that

c(x) = (x l − γ )r f (x),

where r is the largest integer such that (x l − γ )r | c(x).
Clearly, we have min{e1, e2, · · · , et } ≤ r ≤ ps − 1.
Let v(x) = f (x) (mod x l − γ ), then v(x) ∈ C̄r . Hence,
by Lemma 2.5, we have

wtH(c(x)) = wtH((x l − γ )r · f (x))

≥ wtH((x l − γ )r ) · wtH(f (x) (mod x l − γ ))

= wtH
(
(x l − γ )r

)
· wtH(v(x))

≥ wtH
(
(x l − γ )r

)
· dH(C̄r ).

Therefore, dH(C) ≥ wtH
(
(x l − γ )r

)
· dH(C̄r ) ≥

min{wtH((x l − γ )z) · dH(C̄z)}, where min{e1, e2, · · · , et } ≤
z ≤ ps − 1. Combining with (3), the result follows. �
Remark 3.3: In the special case that C is a cyclic code,

Theorem 3.2 was proved in [2]. We generalize their result
for cyclic codes to constacyclic codes in general. The idea
of Theorem 3.2 comes from [2], but the proof of Theorem 3.2
is more concise than the proof in [2].

If C is a linear code with length n, dimension k and Ham-
ming distance dH over the finite field Fpm , then the Singleton
bound holds true that dH ≤ n− k + 1.
If the equality holds, i.e., dH = n− k + 1, then C is called

an MDS code. It is well known that MDS codes have the
best possible error-correction capability. Hence, constructing
MDS codes is one of the central topics in coding theory.
We now determine the degrees of generator polynomials of
all MDS repeated-root constacyclic codes of arbitrary length.
Theorem 3.4: Let notions be as in Theorem 3.2 and g(x) be

the generator polynomial of C. Then the code C is an MDS
code if and only if one of the following conditions holds:
• If l = s = 1, then deg(g(x)) = i, for 0 ≤ i ≤ p − 1; in

this case, dH(C) = i+ 1.
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• If l ≥ 2, then
◦ deg(g(x)) = 0; in this case, dH(C) = 1.
◦ deg(g(x)) = 1; in this case, dH(C) = 2.
◦ deg(g(x)) = lps − 1; in this case, dH(C) = lps.

Proof: It is easy to check that if s, l and the degree of
g(x) satisfies above conditions, then C is an MDS code. In the
following, we only need to show that if C is an MDS code,
g(x) must satisfy above conditions. We consider two cases.

Case 1: l = 1. Clearly, in this case, C is a λ-constacyclic
code of length ps, and the ambient ring

Fpm [x]
〈xp

s
−λ〉

is a chain ring,

whose ideals are precisely
〈
(x − γ )i

〉
, where 0 ≤ i ≤ ps and

γ p
s
= λ. There are two possibilities.

Case 1.1: s = 1. By (1) and Lemma 2.5, we get that if
C =

〈
(x − γ )i

〉
, then dH(C) = i+ 1 for 0 ≤ i ≤ p− 1, and if

C = 〈(x − γ )p〉 = 〈0〉, then dH(C) = 0. By the definition of
MDS codes, it is easy to check that if C is an MDS code, then
0 ≤ i ≤ p− 1.

Case 1.2: s > 1. Obviously, C can be expressed as C =〈
(x − γ )i

〉
, where 0 ≤ i ≤ ps. For the trivial case, when i = 0

and i = ps, it is easy to see that C is an MDS code if and only
if i = 0, i.e., C is an MDS code if and only if deg(g(x)) = 0,
implying dH(C) = 1.

Now, we consider 1 ≤ i ≤ ps − 1. Let 0 ≤ β ≤ p − 2
and 0 ≤ τ ≤ s − 1, clearly, there exist β and τ such that
ps − ps−τ + βps−τ−1 + 1 ≤ i ≤ ps − ps−τ + (β + 1)ps−τ−1

for any i. By Theorem 4.11 of [6], we have that if ps−ps−τ +
βps−τ−1+1 ≤ i ≤ ps−ps−τ + (β+1)ps−τ−1, then dH(C) =
(β + 2)pτ .
Obviously, the dimension of C =

〈
(x − γ )i

〉
is ps− i. Then

ps − (ps − i)+ 1 = i+ 1

≥ ps − ps−τ + βps−τ−1 + 1+ 1

= ps−τ (pτ − 1)+ βps−τ−1 + 2

≥ p(pτ − 1)+ βps−τ−1 + 2

(equality when τ = s− 1, or τ = 0)

≥ (β + 2)(pτ − 1)+ βps−τ−1 + 2

(equality when p = β + 2)

= (β + 2)pτ + (ps−τ−1 − 1)β

= dH(C)
(equality when τ = s− 1, or β = 0.)

Therefore, ps − (ps − i) + 1 ≥ dH(C) with equality holds
if and only if p = β + 2 and τ = s − 1 (in this case i =
deg(g(x)) = ps − 1, dH(C) = ps;) or β = τ = 0 (in this case
i = deg(g(x)) = 1, dH(C) = 2.)

Case 2: l > 1. By (2), since C is an ideal of
the ambient ring

Fpm [x]
〈xlp

s
−λ〉

, then C can be expressed as
〈m1(x)e1m2(x)e2 · · ·mt (x)et 〉, where 0 ≤ e1, e2, · · · , et ≤ ps

and m1(x),m2(x), · · · ,mt (x) are defined in (2).
Obviously, the degree of generator polynomial g(x) of C

satisfies

deg(g(x)) = e1 · deg(m1(x))+ e2 · deg(m2(x))

+ · · · + et · deg(mt (x)).

So, the dimension of C is

k(C) = lps − (e1 · deg(m1(x))+ e2 · deg(m2(x))

+ · · · + et · deg(mt (x))). (4)

If t = 1, then C can be expressed as C =
〈
(x l − γ )i

〉
.

By Theorem 7.5 of [17], we obtain that no matter l = 1 or
l > 1, C =

〈
(x l − γ )i

〉
has the same Hamming distance.

Hence, using the same technique as Case 1.2, we get C is
an MDS code if and only if deg(g(x)) = 0. In the following,
we always assume that t > 1. There are three possibilities.
Case 2.1: Some of ei = 0, where 1 ≤ i ≤ t . Without

loss of generality, we can suppose that e1 = 0 and ei > 0
for 2 ≤ i ≤ t . Then m2(x)p

s
m3(x)p

s
· · ·mt (x)p

s
must be a

codeword of C. Hence,

dH(C) ≤ wtH(m2(x)p
s
m3(x)p

s
· · ·mt (x)p

s
)

= l − deg(m1(x))+ 1. (5)

On the other hand, it is easy to see

dH(C) = lps − (lps − e2 · deg(m2(x))

+ · · · + et · deg(mt (x)))+ 1

= e2 · deg(m2(x))+ · · · + et · deg(mt (x))+ 1

≥ deg(m2(x))+ · · · + deg(mt (x))+ 1

(equality when e2 · · · = et = 1)

= l − deg(m1(x))+ 1. (6)

Combining with (5) and (6), if C is anMDS code, then e1 = 0
and e2 = e3 = · · · = et = 1. Hence, the generator
polynomial g(x) of C can be expressed as

g(x) = m2(x)m3(x) · · ·mt (x).

Obviously, m2(x)m3(x) · · ·mt (x) | x l − γ , then dH(C) ≤
wtH(x l − γ ) = 2. So, combining with Lemma 2.2, we have
dH(C) = 2. If C is an MDS code, then 2 = l−deg(m1(x))+1,
i.e., l − deg(m1(x)) = 1, implying

l − deg(m1(x)) = deg(m2(x)m3(x) · · ·mt (x))

= deg(g(x)) = 1.

Case 2.2: 0 < ei < ps, where 1 ≤ i ≤ t . By Theorem 3.2,
we obtain dH(C) = min{wtH((x l − γ )z) · dH(C̄z)}, where
min{e1, e2, · · · , et } ≤ z ≤ ps− 1. Without loss of generality,
we assume that et ≥ max{e1, e2, · · · , et−1}. Let z = et ,
by the definition of C̄z, we have dH(C̄z) = 1. Then, dH(C) ≤
wtH((x l − γ )z) ≤ z+ 1. Obviously, if

z+1= lps−(lps−(e1 ·deg(m1(x))+· · ·+z · deg(mt (x))))+1,

then e1 = e2 = · · · = et−1 = 0 and deg(mt (x)) = 1, which
is contradictory to 0 < ei < ps and t > 1. Therefore, there is
no MDS code.

Case 2.3: ps = max{e1, · · · , et } and min{e1, · · · , et } > 0.
Without loss of generality, we assume that eh = eh+1 = · · · =
et = ps and ps > eh−1 ≥ max{e1, e2, · · · , eh−2}, where
1 ≤ h ≤ t .
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By Theorem 3.2, we obtain dH(C) = min{wtH((x l − γ )z) ·
dH(C̄z)}, where min{e1, e2, · · · , et } ≤ z ≤ ps − 1. From the
definition of C̄z, we have C̄h−1 = 〈mh(x)mh+1(x) · · ·mt (x)〉.
Assume

η = deg(mh(x)mh+1(x) · · ·mt (x)),

then dH(C̄h−1) ≤ η + 1. Hence,

dH(C) = min{wtH((x l − γ )z) · dH(C̄z)}
≤ wtH((x l − γ )eh−1 ) · dH(C̄h−1)
≤ (η + 1) · (eh−1 + 1).

Let eg = e1 · deg(m1(x)) + e2 · deg(m2(x)) + · · · + eh−1 ·
deg(mh−1(x)). Clearly, eg ≥ eh−1. From (4), the dimension
of C can be expressed as k(C) = lps − ηps − eg. Hence,

lps − k(C)+ 1

= ηps + eg + 1

≥ ηps + eh−1 + 1

(equality when eg = eh−1 and deg(mh−1(x)) = 1)

≥ η(eh−1 + 1)+ eh−1 + 1

(equality when eh−1 = ps − 1)

= (η + 1)(eh−1 + 1).

Hence, the equality holds if and only if e1 = ps − 1 and
deg(m1(x)) = 1. Therefore, in this case, C is an MDS code
if and only if the generator polynomial of C can be expressed
as g(x) = m1(x)p

s
−1m2(x)p

s
and deg(m1(x)) = 1. It follows

that C is an MDS code if and only if deg(g(x)) = lps − 1.
Combining all cases, the result follows. �
Example 3.5: Let p = 23, s = l = 1, and deg(g(x)) = i, for

0 ≤ i ≤ 22, then C is a [23, 23−i, i+1] code by Theorem 3.4,
which an MDS code.

IV. STRUCTURES OF CONSTACYCLIC CODES
OF LENGTH 5ps

As discussed in Section III, λ-constacyclic codes of length
5ps over Fpm are ideals of the ring

R5 ps, λ =
Fpm [x]〈
x5ps − λ

〉 .
The purpose of this section is to give the algebraic struc-
tures in term of generator polynomials of all repeated root
λ-constacyclic codes of length 5ps over Fpm . Let a, µ ∈ F∗pm ,
recall from [3] that λ- andµ-constacyclic codes of length 5 ps

are called equivalent if the map

ϕa :
Fpm [x]〈
x5 ps − µ

〉 → Fpm [x]〈
x5 ps − λ

〉 ,
f (x) 7→ f (ax),

which maps f (x) to f (ax) is a ring isomorphism.
From the proof of Theorem 4.1 in [3], when 5 | pm − 1,

we immediate have the following result.
Theorem 4.1: Let Fpm be a finite field satisfying 5 | pm− 1,

ε ∈ Fpm be a primitive 5th root of unity inFpm , andF∗pm = 〈ξ〉.

Assume that C is a λ-constacyclic code of length 5 ps

over Fpm .
I . If λ ∈

〈
ξ5
〉
, then all λ-constacyclic codes are equiva-

lent to

C =
〈
(x − 1)i(x − ε)j(x − ε2)y(x − ε3)u(x − ε4)v

〉
,

where 0 ≤ i, j, y, u, v ≤ ps.
II . If λ /∈

〈
ξ5
〉
, then all λ-constacyclic codes are equiva-

lent to

C =
〈
(x5 − ξπ )i

〉
, where 0 ≤ i ≤ ps and 1 ≤ π ≤ 4.

We now consider the algebraic structures of λ-constacyclic
codes of length 5ps for the case gcd(5, pm − 1) = 1. We first
recall some results from [16].
Definition 4.2 [16, Definition 2.24]: Let Fpm be a finite

field, n be a positive integer not divisible by p, and δ be a
primitive n-th root of unity over Fpm . Then the polynomial

Qn(x) =
n∏

1≤i≤n
gcd(i,n)=1

(x − δi)

is called the n-th cyclotomic polynomial over Fpm .
Proposition 4.3 [16, Theorem 2.47]: Let Fpm be a finite

field, l be a positive integer satisfying gcd(l, pm) = 1. Then
x l − 1 =

∏
n | l Qn(x), and Qn(x) factors into φ(n)/d distinct

monic irreducible polynomials in Fpm [x] of the same degree
d, where d is the least positive integer such that pmd ≡ 1
(mod l).
Here, we give all generator polynomials of λ-constacyclic

codes of length 5ps for the case gcd(5, pm − 1) = 1.
Theorem 4.4: LetFpm be a finite field satisfying gcd(5, pm−

1) = 1, i.e., pm ≡ 2, 3, or 4 (mod 5). Then all λ-constacyclic
codes of length 5 ps are equivalent to the cyclic codes. If pm ≡
4 (mod 5), then

C = 〈(x − 1)i(x2 − (ε + ε4)x + 1)j(x2 − (ε2 + ε3)x + 1)u〉,

where 0 ≤ i, j, u ≤ ps and ε ∈ Fp2m \ Fpm is a 5th root of
unity. If pm ≡ 2 or 3 (mod 5), then

C =
〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
,

where 0 ≤ i, j ≤ ps.
Proof: If gcd(5, pm − 1) = 1, By Proposition 4.3,

we know that the ideals of ring
Fpm [x]
〈x5p

s
−λ〉

and the ideals of ring
Fpm [x]
〈x5p

s
−1〉

are isomorphic. Thus, in order to get the algebraic
structures of all λ-constacyclic codes of length 5 ps, we only
need to get the irreducible factors of x5p

s
− 1. Obviously,

x5 − 1 = Q1(x)Q5(x) = (x − 1)(x4 + x3 + x2 + x + 1),

where Q1(x) and Q5(x) are defined in Definition 4.2. Recall
that from Proposition 4.3, d is the positive integer such that
pmd ≡ 1 (mod 5), i.e., d is a factor of φ(5). As φ(5) = 4,
it is clear that d = 1, 2 or 4. Now, we consider three cases for
these values of d .
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TABLE 1. λ-constacyclic codes of length 5ps.

Case 1: d = 1. By Proposition 4.3, pm ≡ 1 (mod 5),
which is impossible since gcd(5, pm − 1) = 1.
Case 2: d = 2. By Proposition 4.3, p2m ≡ 1 (mod 5).

This means that pm ≡ 1 or 4 (mod 5). However, pm ≡ 1
(mod 5) contradicts to gcd(5, pm−1) = 1. Therefore, pm ≡ 4
(mod 5). Let ε ∈ Fp2m \ Fpm be a 5th root of unity. Then

Q5(x) = (x − ε)(x − ε2)(x − ε3)(x − ε4)

=

(
x2 − (ε + ε4)x + 1

) (
x2 − (ε2 + ε3)x + 1

)
.

By Proposition 4.3, we obtain x2 − (ε + ε4)x + 1 and x2 −
(ε2 + ε3)x + 1 are irreducible polynomials over Fpm . Hence,

C = 〈(x − 1)i(x2 − (ε + ε4)x + 1)j(x2 − (ε2 + ε3)x + 1)u〉,

where 0 ≤ i, j, u ≤ ps.
Case 3: d = 4. By Proposition 4.3, Q5(x) is an irreducible

polynomial over Fpm . Hence,

C =
〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
,

where 0 ≤ i, j ≤ ps.
Combining all cases, the results follows. �
By the classification in Theorem 4.1 and Theorem 4.4,

each λ-constacyclic code of length 5ps overFpm is isomorphic
to one specific constacyclic code via a ring isomorphism.
We now list the structures of all λ-constacyclic codes of
length 5ps over Fpm in Table 1.
For a linear codeC over Fpm , its dual code C⊥ is defined as

C⊥ = {x ∈ Fnpm | x · y = 0,∀y ∈ C}.

Clearly, C is called self-orthogonal if C ⊆ C⊥, and C is
dual-containing if C⊥ ⊆ C . Moreover, C called self-dual
if C = C⊥. These kinds of codes have been an interesting
class with a lot of applications in coding theory for a long
time. We now give the necessary and sufficient conditions for
λ-constacyclic codes of length 5ps over Fpm to be self-dual,
self-orthogonal, or dual containing.
Theorem 4.5: Let C be a nonzero λ-constacyclic code of

length 5ps over Fpm . If pm ≡ 4 (mod 5), then
(a) C is dual containing if and only if λ2 = 1 and 0 ≤

i, j, k ≤ ps/2.
(b) C is self-orthogonal if and only if λ2 = 1 and ps/2 ≤

i, j, k ≤ ps.
(c) C is self-dual if and only if λ2 = 1, p = 2, and i = j =

k = 2s−1.
If pm ≡ 2 or 3 (mod 5), then

(a) C is dual containing if and only if λ2 = 1 and 0 ≤ i,
j ≤ ps/2.

(b) C is self-orthogonal if and only if λ2 = 1 and ps/2 ≤
i, j ≤ ps.

(c) C is self-dual if and only if λ2 = 1, p = 2, and
i = j = 2s−1.
If pm ≡ 1 (mod 5), then

(a) C is dual containing if and only if λ2 = 1, 0 ≤ i ≤ ps/2,
j+ v ≤ ps and y+ u ≤ ps.
(b) C is self-orthogonal if and only if λ2 = 1, 0 ≤ i ≤ ps/2,

j+ v ≥ ps and y+ u ≥ ps.
(c) C is self-dual if and only if λ2 = 1, p = 2, and i = j =

y = u = v = 2s−1.
Proof: It is well-known that the dual of a λ-constacyclic

code is a λ−1-constacyclic code. Then, by
[9, Proposition 2.5], we can obtain that if λ2 6= ±1, there do
not exist the λ-constacyclic codes of length 5ps over Fpm to
be self-dual, self-orthogonal, or dual containing. This means
if there exist self-dual, self-orthogonal, or dual containing
codes, then these constacyclic codes must be cyclic or nega-
cyclic codes, i.e., λ = ±1.

Let ε be defined in Table 1 and i = 1, 2, 3, 4, assume
that (x − εi)∗ is the reciprocal of x − εi, then (x − εi)∗ =
x(x−1− εi) = −εix + 1 = −εi(x − ε5−i). By Table 1 and [9,
Proposition 2.4], if pm ≡ 4 (mod 5), we have

C⊥ =
〈
(x − 1)p

s
−i(x2 − (ε + ε4)x + 1)p

s
−j

(x2 − (ε2 + ε3)x + 1)p
s
−u〉
;

if pm ≡ 2 or 3 (mod 5), we obtain

C⊥ =
〈
(x − 1)p

s
−i(x4 + x3 + x2 + x + 1)p

s
−j
〉
;

if pm ≡ 4 (mod 5), we get

C⊥ =
〈
(x − 1)p

s
−i(x − ε)p

s
−v(x − ε2)p

s
−u

(x − ε3)p
s
−y(x − ε4)p

s
−j〉.

From the generator polynomial of C⊥, the result follows.

V. HAMMING DISTANCES OF CONSTACYCLIC
CODES OF LENGTH 5ps

In this section, we give the Hamming distances of all
λ-constacyclic codes of length 5ps. The Hamming distances
of Case 4 in Table 1 have been given in Theorem 7.5 of [17].
We present this result in simplified forms here.
Lemma 5.1 ( [17, Theorem 7.9]): Assume 0 ≤ β0 ≤ p− 2,

and 0 ≤ τ0 ≤ s − 1. Let p be a prime, m be a positive
integer, 1 ≤ π ≤ 4, ξ be a primitive element of Fpm . If the
constacyclic codes of length 5ps over Fpm are of the form
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C =
〈
(x5 − ξπ )i

〉
for 0 ≤ i ≤ ps, then the Hamming distances

dH(C) are determined by:

dH(C)=


1, if i = 0,
(β0 + 2)pτ0 , if ps − ps−τ0 + β0 ps−τ0−1+1 ≤ i

≤ ps − ps−τ0 + (β0 + 1)ps−τ0−1,
0, if i = ps.

5.1 Case 1
As discussed in Section III, recall that z is an integer such

that min{i, j, u} ≤ z ≤ ps−1. Let ez,t = 1 if t > z, otherwise,
ez,t = 0, where t = i, j, or u. Then the generator polynomial
of simple-root γ -constacyclic code C̄z can be expressed as

ḡz(x) = (x − 1)ei,z (x2 − (ε + ε4)x + 1)ej,z

(x2 − (ε2 + ε3)x + 1)eu,z , (7)

where ε is a 5th root of unity in ε ∈ Fp2m \ Fpm . Here,
we consider the Hamming distance of C̄z = 〈ḡz(x)〉.
Proposition 5.2: Assume 0 ≤ u ≤ j ≤ i ≤ ps. Let C̄z =
〈ḡz(x)〉 be a γ -constacyclic code of length 5 over Fpm , where
ḡz(x) is defined in (7). Then

dH(C̄z) =

1, if u ≤ j ≤ i ≤ z,
2, if u ≤ j ≤ z < i,
4, if u ≤ z < j ≤ i.

Proof: There are three possibilities.
Case 1: u ≤ j ≤ i ≤ z. In this case, clearly, C̄z = 〈1〉. Then

dH(C̄z) = 1.
Case 2: u ≤ j ≤ z < i. In this case, obviously, C̄z =
〈x − 1〉. Then, by Lemma 2.2, dH(C̄z) = 2.

Case 3: u ≤ z < j ≤ i. In this case, we have,

ḡz(x) = (x − 1)(x2 − (ε + ε4)x + 1)
= x3 − (1+ ε + ε4)x2 + (1+ ε + ε4)x + 1
= x3 + (ε2 + ε3)x2 − (ε2 + ε3)x + 1.

Let c(x) be an arbitrary nonzero codeword of C̄z, by the
Division Algorithm, then c(x) can be expressed as c(x) =
(x3 + (ε2 + ε3)x2 − (ε2 + ε3)x + 1)(ax + b) = ax4 + (b +
a(ε2 + ε3))x3 + (ε2 + ε3)(b− a)x2 + (a− (ε2 + ε3)b)x + b,
where (a, b) 6= (0, 0). There are two possibilities.
If a = 0, obviously, wtH(c(x)) = 4.
If a 6= 0, clearly, b + a(ε2 + ε3) = 0 if and only if b =
−a(ε2 + ε3); (ε2 + ε3)(b − a) = 0 if and only if b = a;
a− (ε2+ ε3)b = 0 if and only if b = a

ε2+ε3
. Through simple

calculations, it is easy to see that a 6= −a(ε2 + ε3) 6= a
ε2+ε3

,
implying c(x) ≥ 4. Hence, we have dH(C̄z) = 4.
Combining all the cases, the result follows. �
Proposition 5.3: Assume 0 ≤ u ≤ i ≤ j ≤ ps. Let C̄z =
〈ḡz(x)〉 be a γ -constacyclic code of length 5 over Fpm , where
ḡz(x) is defined in (7). Then

dH(C̄z) =


1, if u ≤ i ≤ j ≤ z,
3, if u ≤ i ≤ z < j,
4, if u ≤ z < i ≤ j.

Proof:We consider three cases.

Case 1: u ≤ i ≤ j ≤ z. In this case, clearly, C̄z = 〈1〉. Then
dH(C̄z) = 1.
Case 2: u ≤ i ≤ z < j. In this case, clearly, ḡz(x) =

x2−(ε+ε4)x+1. Combiningwith Lemma 2.2, obviously, 2 ≤
dH(C̄z) ≤ 3. If dH(C̄z) = 2, then there exists a polynomial
x t − a ∈ Fpm [x] such that x2 − (ε + ε4)x + 1 | x t − a. By the
Division Algorithm, we can assume that t < 5. From x2 −
(ε + ε4)x + 1 | x t − a, we obtain ε and ε4 are solutions of
x t − a. It follows that ε3t = 1, which contradicts to t < 5.
So, dH(C̄z) = 3.
Case 3: u ≤ z < i ≤ j. By the same way as Case 3 of

Proposition 5.2, we get dH(C̄z) = 4.
Combining all the cases, the result follows. �
Proposition 5.4: Assume 0 ≤ i ≤ u ≤ j ≤ ps. Let C̄z =
〈ḡz(x)〉 be a γ -constacyclic code of length 5 over Fpm , where
ḡz(x) is defined in (7). Then

dH(C̄z) =


1, if i ≤ u ≤ j ≤ z,
3, if i ≤ u ≤ z < j,
5, if i ≤ z < u ≤ j.

Proof:We consider three cases.
Case 1: i ≤ u ≤ j ≤ z. In this case, clearly, C̄z = 〈1〉. Then

dH(C̄z) = 1.
Case 2: i ≤ u ≤ z < j. By the same way as Case 2 of

Proposition 5.3, we get dH(C̄z) = 3.
Case 3: i ≤ z < u ≤ j. In this case, obviously, the elements

of C̄z are precisely r(x4 + x3 + x2 + x + 1), where r ∈ Fpm .
So, dH(C̄z) = 5.
Combining all the cases, the result follows. �
We now compute the Hamming distances of C for the

case 0 ≤ u ≤ j ≤ i ≤ ps. Firstly, we consider the case
for u = 0.
Lemma 5.5: Let u = 0 and 0 ≤ j ≤ i ≤ ps be integers.

Then,

dH(C)=


1, if i = j = 0,
2, if j = 0 and 0 < i ≤ ps, or 0 < j≤ i≤ps−1,
3, if 0 < j ≤ 2ps−1 and ps−1 < i ≤ 2ps−1,
4, if 0 < j ≤ ps and 2ps−1 < i ≤ ps.

Proof: By Theorem 3.2 and Proposition 5.2, we have

dH(C) = min{wtH((x5 − γ )z) · dH(C̄z) | 0 ≤ z ≤ ps − 1}

≤ wtH((x5 − γ )0) · dH(C̄0) ≤ 4.

So, dH(C) = 1, 2, 3 or 4. Thus, we only need to find out what
values of i, j such that dH(C) = 1, 2 or 3 (the remaining values
of i, j will give dH(C) = 4.) We consider two cases.
Case 1: z = 0. In this case, by Proposition 5.2, we have

wtH((x5 − γ )0) · dH(C̄0) =
{
1, if i = j = 0,
2, if j = 0 and 0 < i ≤ ps

(8)

and wtH((x5−γ )0) ·dH(C̄0) = 4 for the other values of i, j.
Case 2: 1 ≤ z ≤ ps − 1. There are three possibilities.
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Case 2.1: j ≤ i ≤ z. From Proposition 5.2, we get
dH(C̄z) = 1. By Lemma 2.6, we obtain

min{wtH((x5 − γ )z) · dH(C̄z) | 0 < z ≤ ps−1} = 2,

min{wtH((x5 − γ )z) · dH(C̄z) | ps−1 < z ≤ 2ps−1} = 3,

and

min{wtH((x5 − γ )z) · dH(C̄z) | 3ps−1 < z ≤ ps − 1} ≥ 4.

Case 2.2: j ≤ z < i. From Proposition 5.2, clearly,
dH(C̄z) = 2. By Lemma 2.6, we havewtH((x5−γ )z)·dH(C̄z) ≥
2wtH((x5 − γ )z) ≥ 4 for any 1 ≤ z ≤ ps − 1.

Case 2.3: z < j ≤ i. From Proposition 5.2, obviously,
dH(C̄z) = 4. By Lemma 2.6, we havewtH((x5−γ )z)·dH(C̄z) ≥
4wtH((x5 − γ )z) ≥ 8 for any 1 ≤ z ≤ ps − 1.

Therefore, combining with Case 2.1, Case 2.2 and
Case 2.3, we get

min{wtH((x5 − γ )z) · dH(C̄z) | 1 ≤ z ≤ ps − 1}

=

{
2, if 0 ≤ j ≤ i ≤ ps−1,
3, if 0 ≤ j ≤ 2ps−1 and ps−1 < i ≤ 2ps−1

(9)

and wtH((x5− γ )z) · dH(C̄z) ≥ 4 for the other values of i, j.
Combining with Theorem 3.2, (8) and (9), the result

follows. �
In the following, we always assume that 0 ≤ β0, β1, β2 ≤

p− 2, and 0 ≤ τ2 ≤ τ1 ≤ τ0 ≤ s− 1.
Lemma 5.6: Let 0 < k ≤ j ≤ i ≤ ps − 1 be integers

such that ps − ps−τ0 + β0 ps−τ0−1 + 1 ≤ i ≤ ps − ps−τ0 +
(β0 + 1)ps−τ0−1, ps − ps−τ1 + β1 ps−τ1−1 + 1 ≤ j ≤ ps −
ps−τ1 + (β1 + 1)ps−τ1−1 and ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤
k ≤ ps − ps−τ2 + (β2 + 1)ps−τ2−1. Then dH(C) = min{(β0 +
2)pτ0 , 2(β1 + 2)pτ1 , 4(β2 + 2)pτ2}.

Proof:We consider three cases.
Case 1: u ≤ j ≤ i ≤ z. In this case, we get dH(C̄z) = 1.

By Lemma 2.6, we have wtH((x5−γ )z)·dH(C̄z) ≥ (β0+2)pτ0
since i ≤ z. Moreover, when z = ps−ps−τ0+(β0+1)ps−τ0−1

the equality holds.
Case 2: u ≤ j ≤ z < i. In this case, we get dH(C̄z) = 2.

By Lemma 2.6, we havewtH((x5−γ )z)·dH(C̄z) ≥ 2(β1+2)pτ1
since j ≤ z. Moreover, when z = ps−ps−τ1+(β1+1)ps−τ1−1

the equality holds.
Case 3: u ≤ z < j ≤ i. In this case, we get dH(C̄z) = 3.

By Lemma 2.6, we havewtH((x5−γ )z)·dH(C̄z) ≥ 4(β2+2)pτ2
since u ≤ z. Moreover, when z = ps−ps−τ2+(β2+1)ps−τ2−1

the equality holds.
Therefore, by Theorem 3.2, dH(C) = min{(β0 +

2)pτ0 , 2(β1 + 2)pτ1 , 4(β2 + 2)pτ2}. �
By similar argument as Lemma 5.6, we obtain the follow-

ing lemmas immediately.
Lemma 5.7: Let u ≤ j ≤ i be integers with i = ps, ps −

ps−τ1 + β1 ps−τ1−1 + 1 ≤ j ≤ ps − ps−τ1 + (β1 + 1)ps−τ1−1,
ps−ps−τ2+β2 ps−τ2−1+1 ≤ u ≤ ps−ps−τ2+(β2+1)ps−τ2−1.
Then dH(C) = min{2(β1 + 2)pτ1 , 4(β2 + 2)pτ2}.

Lemma 5.8: Let u ≤ j ≤ i be integers with i = j = ps,
ps−ps−τ2+β2 ps−τ2−1+1 ≤ u ≤ ps−ps−τ2+(β2+1)ps−τ2−1.
Then dH(C) = 4(β2 + 2)pτ2 .
Now, we summarize the Hamming distances dH(C) for the

case 0 ≤ u ≤ j ≤ i ≤ ps as follows.
Theorem 5.9: Assume that 0 ≤ β0, β1, β2 ≤ p−2, and 0 ≤

τ2 ≤ τ1 ≤ τ0 ≤ s−1. Let 0 ≤ u ≤ j ≤ i ≤ ps. Then the codes
C =

〈
(x − 1)i(x2 − (ε + ε4)x + 1)j(x2 − (ε2 + ε3)x + 1)u

〉
have the following Hamming distances:

dH(C)

=



1, if i= j=u=0,

2, if u= j=0 and 0< i≤ps,

õr u=0 and 0< j≤ i≤ps−1,

3, if u=0, 0< j≤2ps−1

and ps−1< i≤2ps−1,

4, if u=0, 0< j≤ps and 2ps−1< i≤ps,

min{(β0 + 2)pτ0 , if ps−ps−τ0+β0 ps−τ0−1+1≤ i≤ps

2(β1 + 2)pτ1 , −ps−τ0+(β0+1)ps−τ0−1,

4(β2 + 2)pτ2}, ps−ps−τ1+β1 ps−τ1−1+1≤ j≤ps

−ps−τ1+(β1+1)ps−τ1−1,

ps−ps−τ2+β2 ps−τ2−1+1≤u≤ps

−ps−τ2+(β2+1)ps−τ2−1,

min{2(β1 + 2)pτ1 , if i=ps,

4(β2 + 2)pτ2}, ps−ps−τ1+β1 ps−τ1−1+1≤ j≤ps

−ps−τ1+(β1+1)ps−τ1−1,

ps−ps−τ2+β2 ps−τ2−1+1≤u≤ps

−ps−τ2+(β2+1)ps−τ2−1,

4(β2 + 2)pτ2 , if i= j=ps,

ps−ps−τ2+β2 ps−τ2−1+1≤u≤ps

−ps−τ2+(β2+1)ps−τ2−1,

0, if i= j=u=ps.

Example 5.10: Let p = 7, i = 3, j = 1 and u =
0, then C is a [35, 30, 4] code by Theorem 5.9, which is
optimal respect to the tables of best codes known maintained
at http://www.codetables.de.
Remark 5.11: Using the above technique, it is easy to check

that the corresponding case 0 ≤ j ≤ u ≤ i ≤ ps has the same
Hamming distances as the case 0 ≤ u ≤ j ≤ i ≤ ps. For
example, in case 0 ≤ j ≤ u ≤ i ≤ ps, if i = u = ps and
ps−ps−τ2+β2 ps−τ2−1+1 ≤ j ≤ ps−ps−τ2+(β2+1)ps−τ2−1,
the Hamming distance dH(C) is 4(β2 + 2)pτ2 .
We now state the Hamming distances of C for the case 0 ≤

u ≤ i ≤ j ≤ ps. Using the same argument as Lemmas 5.5 to
5.8, combining with Proposition 5.3, the Hamming distances

VOLUME 8, 2020 46249



H. Q. Dinh et al.: On the Hamming Distances of Constacyclic Codes of Length 5pS

of C are easy to obtain for this case. We summarize the result
here.
Theorem 5.12: Assume that 0 ≤ β0, β1, β2 ≤ p −

2, and 0 ≤ τ2 ≤ τ1 ≤ τ0 ≤ s − 1.
Let 0 ≤ u ≤ i ≤ j ≤ ps. Then the codes
C =

〈
(x − 1)i(x2 − (ε + ε4)x + 1)j(x2 − (ε2 + ε3)x + 1)u

〉
have the following Hamming distances:

dH(C)

=



1, if i = j = u = 0,

2, if u = 0 and 0 < i ≤ j ≤ ps−1,

3, if u = i = 0 and ps−1 < j ≤ ps, or u = 0,

0 < i ≤ 2ps−1 and ps−1 < j ≤ 2ps−1,

4, if u = 0, 0 < i ≤ ps and 2ps−1 < j ≤ ps,

min{(β0+2)pτ0 , if ps−ps−τ0+β0 ps−τ0−1+1≤ j≤ps

3(β1 + 2)pτ1 , −ps−τ0+(β0+1)ps−τ0−1,

4(β2 + 2)pτ2}, ps−ps−τ1+β1 ps−τ1−1 + 1 ≤ i ≤ ps

−ps−τ1 + (β1 + 1)ps−τ1−1,

ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ u ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,

min{3(β1 + 2)pτ1 , if j = ps,

4(β2 + 2)pτ2}, ps − ps−τ1 + β1 ps−τ1−1 + 1 ≤ i ≤ ps

−ps−τ1 + (β1 + 1)ps−τ1−1,

ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ u ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,

4(β2 + 2)pτ2 , if i = j = ps,

ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ u ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,

0, if i = j = u = ps.

Example 5.13: Let p = 7, j = 2 and i = u = 0, then
C is a [35, 31, 3] code by Theorem 5.12, which is optimal
respect to the tables of best codes known maintained at
http://www.codetables.de.
Remark 5.14: Using the above technique, it is easy to check

that the corresponding case 0 ≤ j ≤ i ≤ u ≤ ps has the same
Hamming distances as the case 0 ≤ u ≤ i ≤ j ≤ ps. For
example, in case 0 ≤ j ≤ i ≤ u ≤ ps, if i = u = ps and
ps−ps−τ2+β2 ps−τ2−1+1 ≤ j ≤ ps−ps−τ2+(β2+1)ps−τ2−1,
the Hamming distance dH(C) is 4(β2 + 2)pτ2 .
We here state the Hamming distances of C for the case 0 ≤

i ≤ j ≤ u ≤ ps. Using the same way as Lemmas 5.5 to 5.8,
combining with Proposition 5.4, the Hamming distance of C
for this case also can be obtained. We summarize the result in
the following theorem.
Theorem 5.15: Assume that 0 ≤ β0, β1, β2 ≤

p − 2, and 0 ≤ τ2 ≤ τ1 ≤ τ0 ≤ s − 1.

Let 0 ≤ i ≤ j ≤ u ≤ ps. Then the codes
C =

〈
(x − 1)i(x2 − (ε + ε4)x + 1)j(x2 − (ε2 + ε3)x + 1)u

〉
have the following Hamming distances:

dH(C)

=



1, if i = j = u = 0,
2, if i = 0 and 0 < j ≤ u ≤ ps−1,
3, if j = i = 0 and ps−1 < u ≤ 2ps−1,

õr i = 0, 0 ≤ j ≤ 2ps−1

and ps−1 < u ≤ 2ps−1,
4, if i = 0, 0 < j ≤ 3ps−1

and 2ps−1 < u ≤ 3ps−1,
5, if i = 0, 0 < j ≤ ps and 3ps−1 < u ≤ ps,
min{(β0+2)pτ0 , if ps−ps−τ0+β0 ps−τ0−1+1≤u≤ps

3(β1 + 2)pτ1 , −ps−τ0 + (β0 + 1)ps−τ0−1,
5(β2 + 2)pτ2}, ps−ps−τ1+β1 ps−τ1−1 + 1 ≤ j ≤ ps

−ps−τ1 + (β1 + 1)ps−τ1−1,
ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ i ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,
min{3(β1 + 2)pτ1 , if u = ps,
5(β2+2)pτ2}, ps−ps−τ1+β1 ps−τ1−1 + 1 ≤ j ≤ ps

−ps−τ1 + (β1 + 1)ps−τ1−1,
ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ i ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,
5(β2 + 2)pτ2 , if j = u = ps,

ps − ps−τ2 + β2 ps−τ2−1 + 1 ≤ i ≤ ps

−ps−τ2 + (β2 + 1)ps−τ2−1,
0, if i = j = u = ps.

Example 5.16: Let p = 7, i = 0 j = 1 and u = 4, then C is
a [35, 25, 5] code by Theorem 5.15.
Remark 5.17: Using the above technique, it is easy to check

that the corresponding case 0 ≤ i ≤ u ≤ j ≤ ps has the same
Hamming distances as the case 0 ≤ i ≤ j ≤ u ≤ ps. For
example, in case 0 ≤ i ≤ u ≤ j ≤ ps, if j = u = ps and
ps−ps−τ2+β2 ps−τ2−1+1 ≤ i ≤ ps−ps−τ2+(β2+1)ps−τ2−1,
the Hamming distance dH(C) is 5(β2 + 2)pτ2 .
5.2 Case 2
Here, we consider the Hamming distances of C =〈

(x − 1)i(x4 + x3 + x2 + x + 1)j
〉
. Let ez,t = 1 if t > z,

otherwise, ez,t = 0, where t = i, j and 1 ≤ z ≤ ps − 1. Then
the generator polynomial of simple-root γ -constacyclic code
C̄z can be expressed as

ḡz(x) = (x − 1)ei,z (x4 + x3 + x2 + x + 1)ej,z .

Clearly, if i ≤ z < j, then ḡz(x) = x4 + x3 + x2 + x + 1
and the elements of C̄z are precisely r(x4+ x3+ x2+ x + 1),
where r ∈ Fpm . It follows that

dH(C̄z) =
{
1, if i ≤ j ≤ z,
4, if i ≤ z < j.

(10)
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Similarly, if j ≤ z < i, then ḡz(x) = x − 1. By Lemma 2.2,
we have

dH(C̄z) =
{
1, if j ≤ i ≤ z,
2, if j ≤ z < i.

(11)

Using the same technique for us to prove Theorem 5.15,
combining with (10) and (11), the Hamming distances of C =〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
are given as follows.

Theorem 5.18: Assume that 0 ≤ β0, β1 ≤ p − 2, and
0 ≤ τ1 ≤ τ0 ≤ s − 1. Let 0 ≤ j ≤ i ≤ ps. Then the codes
C =

〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
have the following

Hamming distances:

dH(C)

=



1, if i= j=0,
2, if j=0 and 0 < i≤ps,
min{(β0 + 2)pτ0 , if ps−ps−τ0+β0 ps−τ0−1 + 1≤ i≤ps

2(β1 + 2)pτ1}, −ps−τ0+(β0+1)ps−τ0−1,
ps − ps−τ1+β1 ps−τ1−1+1≤ j≤ps

−ps−τ1+(β1+1)ps−τ1−1,
2(β1 + 2)pτ1 , if j=ps,

ps−ps−τ1+β1 ps−τ1−1+1≤ i≤ps

−ps−τ1 + (β1 + 1)ps−τ1−1,
0, if i= j=ps.

Example 5.19: Let p = 7, i = 2 and j = 1, then C is a
[35, 29, 3] code by Theorem 5.18.
Theorem 5.20: Assume that 0 ≤ β0, β1 ≤ p − 2, and

0 ≤ τ1 ≤ τ0 ≤ s − 1. Let 0 ≤ i ≤ j ≤ ps. Then the codes
C =

〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
have the following

Hamming distances:

dH(C)

=



1, if i= j=0,
2, if i=0 and 0< j≤ps−1,
3, if i=0 and ps−1< j≤2ps−1,
4, if i = 0 and 2ps−1< j≤3ps−1,
5, if i = 0 and 3ps−1< j≤ps,
min{(β0 + 2)pτ0 , if ps−ps−τ0+β0 ps−τ0−1+1≤ i≤ps

5(β1 + 2)pτ1}, −ps−τ0+(β0 + 1)ps−τ0−1,
ps−ps−τ1+β1 ps−τ1−1+1≤ j≤ps

−ps−τ1+(β1+1)ps−τ1−1,
5(β1 + 2)pτ1 , if j=ps,

ps−ps−τ1+β1 ps−τ1−1+1≤ i≤ps

−ps−τ1+(β1+1)ps−τ1−1,
0, if i= j=ps.

Example 5.21: Let p = 7, i = 0 and j = 4, then C is a
[35, 19, 5] code by Theorem 5.20.
5.3 Case 3
We now consider the Hamming distances of C =〈

(x − 1)i(x − ε)j(x − ε2)y(x − ε3)u(x − ε4)v
〉
, where ε ∈ Fpm

is a 5th root of unity. Recall that ez,t = 1 if t > z, otherwise,
ez,t = 0, where t = i, j, y, u, or v and 1 ≤ z ≤ ps−1. Then the

generator polynomial of simple-root γ -constacyclic code C̄z
can be expressed as

ḡz(x) = (x − 1)ei,t (x − ε)ej,t (x − ε2)ey,t

(x − ε3)eu,t (x − ε4)ev,t , (12)

where C̄z is defined in Theorem 3.2. In order to determine
the Hamming distances of C, we first consider the Hamming
distances of C̄z for the case 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps.
Proposition 5.22: Assume 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps.

Let C̄z = 〈ḡz(x)〉 be a γ -constacyclic code of length 5 over
Fpm , where ḡz(x) is defined in (12). Then

dH(C̄z) =



1, if v ≤ u ≤ y ≤ j ≤ i ≤ z,

2, if v ≤ u ≤ y ≤ j ≤ z < i,

3, if v ≤ u ≤ y ≤ z < j ≤ i,

4, if v ≤ u ≤ z < y ≤ j ≤ i,

5, if v ≤ z < u ≤ y ≤ j ≤ i.

Proof:We consider five cases.
Case 1: v ≤ u ≤ y ≤ j ≤ i ≤ z. In this case, clearly,

C̄z = 〈1〉. Then dH(C̄z) = 1.
Case 2: v ≤ u ≤ y ≤ j ≤ z < i. In this case, obviously,

C̄z = 〈x − 1〉. Then, by Lemma 2.2, dH(C̄z) = 2.
Case 3: v ≤ u ≤ y ≤ z < j ≤ i. In this case,

we have C̄z = 〈(x − 1)(x − ε)〉. By the same way as Case 2
of Proposition 5.3, we get dH(C̄z) = 3.
Case 4: v ≤ u ≤ z < y ≤ j ≤ i. In this case, we get C̄z =〈

(x − 1)(x − ε)(x − ε2)
〉
. By the same argument as Case 3 of

Proposition 5.2, we have dH(C̄z) = 4.
Case 5: v ≤ z < u ≤ y ≤ j ≤ i. In this case,

we obtain C̄z =
〈
(x − 1)(x − ε)(x − ε2)(x − ε3)

〉
. In this case,

obviously, the elements of C̄z are precisely r(x−1)(x−ε)(x−
ε2)(x − ε3), where r ∈ Fpm . So, dH(C̄z) = 5.

Combining all the cases, the result follows. �
We now compute the Hamming distances of C for the case

0 ≤ v ≤ u ≤ k ≤ j ≤ i ≤ ps. Firstly, we consider the case
for v = 0.
Lemma 5.23: Let v = 0 and 0 ≤ u ≤ y ≤ j ≤ i ≤ ps be

integers. Then,

dH(C)

=



1, if i = j = y = u = 0,
2, if j = y = u = 0 and 0 < i ≤ ps, or

0 ≤ u ≤ y ≤ j ≤ i ≤ ps−1

(but not i = j = y = u = 0),
3, if y = u = 0, 0 < j ≤ ps and ps−1 < i ≤ ps, or

0 ≤ u ≤ y ≤ 2ps−1, 0 < j ≤ 2ps−1

and ps−1 < i ≤ 2ps−1,
4, if u = 0, 0 < y ≤ j ≤ ps and 2ps−1< i≤ps, or

0 < u ≤ y ≤ j ≤ 3ps−1 and 2ps−1< i≤3ps−1,
or 0 < u ≤ y ≤ j ≤ ps−1 and 2ps−1< i≤ps,

5, if 0 < u ≤ y ≤ ps, ps−1 < j ≤ ps

and 3ps−1 < i ≤ ps.
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Proof: By Theorem 3.2 and Proposition 5.22, we have

dH(C) = min{wtH((x5 − γ )z) · dH(C̄z) | 0 ≤ z ≤ ps − 1}
≤ wtH((x5 − γ )0) · dH(C̄0)
≤ 5.

So, dH(C) = 1, 2, 3, 4 or 5. Thus, we only need to find
out what values of i, j, y, u such that dH(C) = 1, 2, 3 or 4
(the remaining values of i, j, y, u will give dH(C) = 4.) We
consider two cases.

Case 1: z = 0. In this case, by Proposition 5.22, we have

wtH((x5 − γ )0) · dH(C̄0)

=


1, if i = j = y = u = 0,
2, if j = y = u = 0 and 0 < i ≤ ps,
3, if y = u = 0 and 0 < j ≤ i ≤ ps,
4, if u = 0 and 0 < y ≤ j ≤ i ≤ ps

(13)

and wtH((x5 − γ )0) · dH(C̄0) = 5 for the other values of
i, j, y, u.

Case 2: 1 ≤ z ≤ ps − 1. There are five possibilities.
Case 2.1: u ≤ y ≤ j ≤ i ≤ z. From Proposition 5.22,

we get dH(C̄z) = 1. By Lemma 2.6, we obtain

min{wtH((x5 − γ )z) · dH(C̄z) | 0 < z ≤ ps−1} = 2,
min{wtH((x5 − γ )z) · dH(C̄z) | ps−1 < z ≤ 2ps−1} = 3,
min{wtH((x5 − γ )z) · dH(C̄z) | 2ps−1 < z ≤ 3ps−1} = 4,

and

min{wtH((x5 − γ )z) · dH(C̄z) | 3ps−1 < z ≤ ps − 1} ≥ 5.

Case 2.2: u ≤ y ≤ j ≤ z < i. From Proposition 5.22,
clearly, dH(C̄z) = 2. By Lemma 2.6, we have

min{wtH((x5 − γ )z) · dH(C̄z) | 0 < z ≤ ps−1} = 4,

and

min{wtH((x5 − γ )z) · dH(C̄z) | 3ps−1 < z ≤ ps − 1} ≥ 6.

Case 2.3: u ≤ y ≤ z < j ≤ i. From Proposition 5.22,
obviously, dH(C̄z) = 3. By Lemma 2.6, we obtain wtH((x5 −
γ )z) · dH(C̄z) ≥ 3wtH((x5− γ )z) ≥ 6 for any 1 ≤ z ≤ ps− 1.

Case 2.4: u ≤ z < y ≤ j ≤ i. From Proposition 5.22,
clearly, dH(C̄z) = 4. By Lemma 2.6, we have wtH((x5−γ )z) ·
dH(C̄z) ≥ 4wtH((x5 − γ )z) ≥ 8 for any 1 ≤ z ≤ ps − 1.

Case 2.5: u ≤ z < y ≤ j ≤ i. From Proposition 5.22,
we get dH(C̄z) = 5. By Lemma 2.6, we obtain wtH((x5−γ )z)·
dH(C̄z) ≥ 5wtH((x5 − γ )z) ≥ 10 for any 1 ≤ z ≤ ps − 1.
Therefore, combining with Cases 2.1-2.5, we get

min{wtH((x5 − γ )z) · dH(C̄z) | 1 ≤ z ≤ ps − 1}

=



2, if 0 ≤ u ≤ y ≤ j ≤ i ≤ ps−1,
3, if 0 ≤ u ≤ y ≤ j ≤ 2ps−1

and ps−1 < i ≤ 2ps−1,
4, if 0 ≤ u ≤ y ≤ j ≤ 3ps−1

and 2ps−1 < i ≤ 3ps−1,
õr 0 ≤ u ≤ y ≤ j ≤ ps−1

and 3ps−1 < i ≤ ps

(14)

dH(C)=



1, if i = j = y = u = v = 0,
2, if j = y = u = v = 0 and 0 < i ≤ ps,
or 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps−1

(but not i = j = y = u = v = 0),
3, if y = u = v = 0, 0 < j ≤ ps

and ps−1 < i ≤ ps, or v = 0,
0 ≤ u ≤ y ≤ 2ps−1, 0 < j ≤ 2ps−1

and ps−1 < i ≤ 2ps−1,
4, if u = v = 0, 0 < y ≤ j ≤ ps and
2ps−1 < i ≤ ps, or v = 0,
0 < u ≤ y ≤ j ≤ 3ps−1 and
2ps−1 < i ≤ 3ps−1, or v = 0, 0 < u ≤
y ≤ j ≤ ps−1 and 2ps−1 < i ≤ ps,

5, if v = 0, 0 < u ≤ y ≤ ps, ps−1 < j ≤ ps

and 3ps−1 < i ≤ ps,
min{(β0+2)pτ0 ,

if ps−ps−τ0+β0 ps−τ0−1+1≤ i≤ps

2(β1 + 2)pτ1 , −ps−τ0 + (β0 + 1)ps−τ0−1,
3(β2+2)pτ2 , ps−ps−τ1+β1 ps−τ1−1+1≤ j≤ps

4(β3+2)pτ3 , −ps−τ1 + (β1 + 1)ps−τ1−1,
5(β4+2)pτ4}, ps−ps−τ2+β2 ps−τ2−1+1≤y≤ps

−ps−τ2 + (β2 + 1)ps−τ2−1,
ps − ps−τ3 + β3 ps−τ3−1 + 1 ≤ u ≤ ps

−ps−τ3 + (β3 + 1)ps−τ3−1,
ps − ps−τ4 + β4 ps−τ4−1 + 1 ≤ v ≤ ps

−ps−τ4 + (β4 + 1)ps−τ4−1,
min{2(β1 + 2)pτ1 , if i = ps,
3(β2+2)pτ2 , ps−ps−τ1+β1 ps−τ1−1+1≤ j≤ps

4(β3 + 2)pτ3 , −ps−τ1 + (β1 + 1)ps−τ1−1,
5(β4+2)pτ4}, ps−ps−τ2+β2 ps−τ2−1+1≤y≤ps

−ps−τ2 + (β2 + 1)ps−τ2−1,
ps − ps−τ3 + β3 ps−τ3−1 + 1 ≤ u ≤ ps

−ps−τ3 + (β3 + 1)ps−τ3−1,
ps − ps−τ4 + β4 ps−τ4−1 + 1 ≤ v ≤ ps

−ps−τ4 + (β4 + 1)ps−τ4−1,
min{3(β1 + 2)pτ1 , if i = j = ps,
4(β2+2)pτ2 , ps−ps−τ2+β2 ps−τ2−1+1≤y ≤ ps

5(β4 + 2)pτ4}, −ps−τ2 + (β2 + 1)ps−τ2−1,
ps − ps−τ3 + β3 ps−τ3−1 + 1 ≤ u ≤ ps

−ps−τ3 + (β3 + 1)ps−τ3−1,
ps − ps−τ4 + β4 ps−τ4−1 + 1 ≤ v ≤ ps

−ps−τ4 + (β4 + 1)ps−τ4−1,
min{4(β2 + 2)pτ2 , if i = j = y = ps,
5(β4+2)pτ4}, ps−ps−τ3+β3 ps−τ3−1+1≤u≤ps

−ps−τ3 + (β3 + 1)ps−τ3−1,
ps − ps−τ4 + β4 ps−τ4−1 + 1 ≤ v ≤ ps

−ps−τ4 + (β4 + 1)ps−τ4−1,
5(β4 + 2)pτ4 , if i = j = y = u = ps,
ps − ps−τ4 + β4 ps−τ4−1 + 1 ≤ v ≤ ps

−ps−τ4 + (β4 + 1)ps−τ4−1,
0, if i = j = y = u = v = ps
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and wtH((x5 − γ )z) · dH(C̄z) ≥ 5 for the other values
of i, j, y, u.

Combining with Theorem 3.2, (13) and (14), the result
follows. �
Using the same technique as Lemma 5.6, we can obtain the

Hamming distances of

C =
〈
(x − 1)i(x − ε)j(x − ε2)y(x − ε3)u(x − ε4)v

〉
for the case 0 < v ≤ u ≤ y ≤ j ≤ i ≤ ps, immediately. So,
we omit the proof.

Combining Lemma 5.23, we now summary the Hamming
distances of C for the case 0 ≤ v ≤ u ≤ k ≤ j ≤ i ≤ ps as
follows.
Theorem 5.24: Assume that 0 ≤ β0, β1, β2, β3, β4 ≤

p − 2, and 0 ≤ τ4 ≤ τ3 ≤ τ2 ≤ τ1 ≤ τ0 ≤

s − 1. Let 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps. Then
the codes C =

〈
(x − 1)i(x − ε)j(x − ε2)k (x − ε3)u(x − ε4)v

〉
have the followingHamming distances dH(C), as shown at the
previous page.
Example 5.25: Let p = 7, i = 4, j = 2 y = u = 1 and

v = 0, then C is a [35, 27, 5] code by Theorem 5.24, which
is almost optimal respect to the tables of best codes known
maintained at http://www.codetables.de.
Remark 5.26: Using the above technique, it is easy to

check that the other corresponding cases for the codes C =〈
(x − 1)i(x − ε)j(x − ε2)y(x − ε3)u(x − ε4)v

〉
have the same

Hamming distances as the case 0 ≤ v ≤ u ≤ y ≤ j ≤ i ≤ ps.
For example, in case 0 ≤ i ≤ j ≤ y ≤ u ≤ v ≤ ps,
if j = y = u = v = ps and ps− ps−τ4 +β4 ps−τ4−1+ 1 ≤ i ≤
ps − ps−τ4 + (β4 + 1)ps−τ4−1, the Hamming distance dH(C)
is 5(β4 + 2)pτ4 .

VI. CONCLUSION
Determining the Hamming distances of constacyclic codes
and obtaining MDS constacyclic codes are very important
in error-correcting coding theory. However, not much work
has been done on them as they are very difficult tasks in
general. In this paper, based on the relationships about the
Hamming distances between simple-root constacyclic codes
and repeated-root constacyclic codes, and the algebraic struc-
tures of repeated-root constacyclic codes of length `ps, where
` is a prime, the algebraic structures of constacyclic codes
of length 5 ps are provided explicitly. Among other result,
the necessary and sufficient conditions for the existence of
self-dual, self-orthogonal and dual containing code and the
Hamming distances of all such constacyclic codes are given.
Moreover, we obtained that a repeated-root constacyclic code
of length lps is an MDS code if and only if the degree i of
the generator polynomial of this code is 0 ≤ i ≤ p − 1
for the case l = s = 1, and the degree of the generator
polynomial of this code is 0, 1 or lps − 1 for the case
l ≥ 2. As a future work, taking quantum synchronizable
codes from repeated-root constacyclic codes of length 5ps is
interesting.
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