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ABSTRACT Hysteresis is an important nonlinearity effect in piezoelectric materials and is sensitive to
temperature. This paper extends the saturated capacitor model to capture temperature-dependent hysteresis
by replacing the constant parameters with functions of temperature. To obtain these functions, several sets of
constant parameters are identified at different temperatures, and then each term of the parameters is fitted as
a function with respect to temperature. In the curve fitting process, the parameter sensitivity is employed as a
weight factor. The effectiveness of the proposed modeling and parameter determination procedure is verified
with experimental data. The overall normalized root mean square error is approximately 5%, including 3%
error caused by the identified parameters.

INDEX TERMS Temperature-dependent hysteresis, modeling and identification, piezoelectric materials,
saturated capacitor hysteresis model.

I. INTRODUCTION
Despite their advantages such as high stiffness and fast
response, piezoelectric materials also possess some disadvan-
tages, namely, hysteresis, creep, radiation effects, and temper-
ature effect [1], [2]. Hysteresis is generally considered to be a
memory effect in which the output displacement depends on
a combination of the currently applied voltage and on some
past values of the applied voltage. Creep is a slow drift in
the displacement that follows the rapid response to a sudden
change in the input voltage. Hysteresis and creep together
can lead to inaccuracy in open-loop control and instability
in closed-loop control.

Some approaches to handle hysteresis and/or creep include
improving the material [3], charge-driven approach [1],
[4], [5], modeling and compensation (M&C) [6], [7], and
the feedback technique [8]–[10]. Among these approaches,
the M&C approach is one of the most effective ways to
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handle hysteresis and creep and has attracted consider-
able attention. This approach obtains linear performance by
modeling and compensating the nonlinearities. Meanwhile,
the feedback technique can also be applied to the compen-
sated system to enhance the performance [8], [11]–[13]. The
Preisach [14]–[16] and Prandtl-Ishlinskii models [17]–[20]
are widely used tomodel hysteresis in piezoelectric materials.
These models belong to the class of operators with a Preisach
memory and are essentially a mathematical description of
observed hysteresis. The saturated capacitor hysteresis (SCH)
model [21]–[24] is another popular hysteresis model. The
SCH model has physical significance in both the mechanical
and electrical domains. These hysteresis models are quasi-
static. To address the rate-dependent feature caused by creep,
linear time-invariant [19], logarithmic [20], [25], [26], and
fractional-order [23], [27] models have been proposed to
model the creep and introduced into the hysteresis model.

However, the above works mainly focus on the hys-
teresis and creep phenomena at room temperature, which
are assumed to be constant. Unfortunately, the performance
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of piezoelectric materials is quite sensitive to temperature.
Changes in temperature result in expansion of the piezoelec-
tric material and influence the material’s parameters [28].
The former is referred to as the thermomechanical effect, and
the latter causes the nonlinearities of hysteresis and creep to
be temperature-dependent [29]–[31]. The thermomechanical
effect is simple and well studied. This effect can be com-
pensated for in the forward loop or even utilized to design a
hybrid actuator [32]. The effect of temperature on creep is sig-
nificant. Fortunately, creep is quite slow, and thus, operating a
piezoelectric actuator (PEA) fast enough can help reduce the
drift caused by creep. Meanwhile, creep can be weakened by
properly initializing the PEA [23]. The feedback technique
can also be utilized to remove the creep effect [28], [33]. The
effect of temperature on hysteresis is weak if the temperature
varies in a small range [28], [33] and becomes obvious if the
temperature changes in a wide range [29], [31], [34]. The
hysteresis shape and the slope of hysteresis curves clearly
change and should be investigated.

Controlling the environment temperatures can manage the
temperature effect. However, it is quite difficult or expen-
sive to control the environment in some situations, such
as in outer space. Meanwhile, self-heating may also cause
the temperature of the PEA to change. In [32], the author
proposed a hybrid thermopiezoelectric microactuator uti-
lizing the thermomechanical effect. However, the coupling
effect between the hysteresis and temperature was not given.
In [28], [33], the thermal expansion is modeled, and the
effect of temperature on creep is rejected by the closed-loop
controller. However, the effect of temperature on hysteresis
is neglected. A modified Preisach operator was proposed
in [34] by directly including the temperature dependence in
the Preisach operator. In [29], a more complete model was
presented. However, in the above works, the temperature
influence is mainly on the slope of the hysteresis curves.
Thus, the temperature-dependent Preisach density function
is almost linear with respect to temperature. If the temper-
ature varies in a wide range, both the slope of hysteresis
curves [29], [34] and the hysteresis shape are changed.

The contribution of this paper is extending the SCH model
into a temperature dependent model. The SCH model is gen-
eralized to be able to capture non-convex hysteresis, and then,
it is expanded to capture temperature-dependent hysteresis
by replacing the constant parameters of the SCH model by
temperature-dependent ones. A detailed parameter determi-
nation procedure is also provided, in which the parameter
sensitivity are taken into consideration. Based on experi-
mental data, the effectiveness of the proposed model and
procedure are demonstrated. Results show that the proposed
approach guarantees a sufficient precision for a wide temper-
ature range.

II. PHYSICAL MODEL
A. SCH MODEL
The SCH model consists of several saturated capacitors
(SCs) that are connected in series, as shown in Fig. 1. The

FIGURE 1. The SCH model.

FIGURE 2. The charge-voltage property of (a) the original SC and (b) the
new type of SC.

charge-voltage property of an SC is shown in Fig. 2(a). Before
the capacitor is saturated, the SC performs like an ideal capac-
itor. The charge increases linearly with voltage, u, applied on
it. The charge input, denoted as Q, equals the charge stored
on it, denoted as q. Once q is saturated, q and u reach and
remain at the saturation values QS and uS, respectively. The
charge input Q increases as the SC performs like a wire. The
SCH model is governed by

q̇i =

{
Q̇ |qi| < QS,i

0 |qi| ≥ QS,i
(1)

qi = Ciui, Ci ∈ R+ (2)

uSCH =
n∑
i=1

ui (3)

where Ci, ui, qi, and QS,i are the capacitance, the applied
voltage, the stored charge, and the saturation charge of the
i-th SC, respectively. The symbol uSCH represents the voltage
applied to the networks. To avoid the SCH model becoming
saturated, the last SC has a sufficiently large saturation charge
and never saturates. Due to the serial connection, the charge
input to the SCH model equals the charge stored on the last
SC, namely, Q = qn.
The original SCH model can only capture convex hystere-

sis. The reason is explained in the Appendix. To overcome
this limitation, the SCHmodel is generalized in the following
subsection.

B. GENERALIZATION OF THE SCH MODEL
As illustrated in Fig. 3(a), a piece of piezoelectric material
consists of a vast amount of Weiss domains, as observed
under a microscope. Under an applied electric field, the polar-
ization of a Weiss domain causes its capacitance to
increase or decrease, as shown in Fig. 3(b). The capacitance
change is simply assumed to be a piecewise linear switch.
The capacitance increase switch (Fig. 4(a)) is equalized by the
serial connection of an ideal capacitor and an SC (Fig. 4(c)).
The capacitance decrease switch (Fig. 4(b)) is equalized by
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FIGURE 3. Illustration of Weiss domain behavior: (a) under a given
voltage and (b) as the voltage increases.

FIGURE 4. Capacitance change of Weiss domain and equivalent circuit:
(a) capacitance increase switch, (b) capacitance decrease switch,
equivalent circuit for (c) capacitance increase switch, and for
(d) capacitance decrease switch.

the parallel connection of an ideal capacitor and another type
of SC (Fig. 4(d)).

The charge-voltage property of the new type of SC is
shown in Fig. 2(b). Similarly, before the SC is saturated,
the SC performs as an ideal capacitor. The charge increases
linearly with the applied voltage u. However, once it is sat-
urated, it performs as an ideal insulator. The charge remains
at QS, and the voltage can increase to any value that is larger
than uS.
The parallel connected network in Fig. 4(d) can be equal-

ized by a serially connected network in Fig. 4(c). The equiv-
alent capacitance CS is obtained as

CS = −
C2
I

CP
− CI (4)

where CI and CP are the capacitances of the ideal capacitor
and the new type of SC, respectively. Since CI,CP > 0, then
CS < 0, namely, the equivalent capacitance is negative. Then,

FIGURE 5. The temperature-dependent hysteresis loops [31].

the SCHmodel can be generalized by removing the constraint
Ci ∈ R+ in (2).

C. TEMPERATURE-DEPENDENT SCH MODEL
The hysteresis loops under different temperatures are
obtained experimentally and are shown in Fig. 5. As the
temperature increases, the hysteresis loops become narrow,
and the changes in slope become obvious. However, because
the capacitance Ci is constant, the above model can only
capture temperature-independent hysteresis. In fact, rather
than being a constant, the capacitance of ceramics varies with
temperature. To overcome this limitation, constant capaci-
tances are replaced by temperature-dependent ones, namely,
capacitances are functions of temperature. The temperature-
dependent SCH model is expressed as

q̇i =

{
Q̇ |qi| < QS,i(T )
0 |qi| ≥ QS,i(T )

(5)

qi = Ci(T )ui (6)

uSCH =
n∑
i=1

ui (7)

where QS,i(T ) and Ci(T ) are functions of saturation charge
and capacitance, respectively.

III. IDENTIFICATION PROCEDURE
A. PARAMETER IDENTIFICATION PROBLEM
The hysteresis property is solely governed by QS,i(T ) and
Ci(T ), which are obtained by solving the minimization
problem

min
Ci(T ),i =1,...,n

QS,i(T ),i=1,...,n−1

√√√√ 1
N

N∑
k=1

[Q(tk )− SCH[u](tk )]2 (8)

where SCH denotes the SCH model and N is the number of
samples.

It is difficult to identify these functions directly. To sim-
plify the identification procedure, QS,i(Tj) for a fixed Tj and
i ∈ {1, 2, . . . , n} are assumed to follow a given distribution.
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FIGURE 6. The relationship between the maximum charge and
temperature.

Meanwhile, QS,i(T ) for different SCs are assumed to have
similar shapes. Then, QS,i(T ) is determined directly, and the
above problem is simplified as

min
Ci(T ),i =1,...,n

√√√√ 1
N

N∑
k=1

[Q(tk )− SCH[u](tk )]2 (9)

To determine Ci(T ), its values are identified at several
given temperatures Tj, and then the map T 7→ Ci is fitted
to be a function.

B. DETERMINATION OF FUNCTIONS OF
SATURATION CHARGE
The chargeQ is obtained by multiplying the electric displace-
ment by the area. Its maximum value Qmax is normalized
by that at a temperature of 125◦C, i.e., Qmax

125◦C, and plotted
in Fig. 6. The expression of Q

max
(T ) is selected as

Q
max

(T ) =
k1 + k2ek3T

1+ k2ek3T
(10)

where Q
max

(T ) = Qmax(T )/Qmax
125◦C and T = T/125◦C. The

identified parameters are k1 = 1.1205, k2 = 4.2941× 10−1,
and k3 = 9.4193. As shown in Fig. 6, the fitted result closely
follows the experimental values.

As shown in Fig. 5, the switch of the slope has a ‘fast-
slow-fast’ manner. The slope changes once an SC is saturated.
Thus, more SCs with relatively small and relatively large
saturation charges are required. The distribution of QS,i(T )
is selected as

QS,i(T ) = Qmax(T )
arctan(−s+ ids)+ arctan(s)

2 arctan(s)
(11)

where s is a parameter used to determine the distribution
density and ds = 2s/n. Then,

QS,i(T ) = Qmax
125◦C

k1 + k2ek3T

1+ k2ek3T
arctan(−s+ ids)+ arctan(s)

2 arctan(s)
(12)

TABLE 1. Saturation charges for different temperatures.

The saturation charge of the last SC,QS,n(T ), is replaced by a
sufficiently large value to avoid saturation of the SCHmodel.
In this paper, n = 12, and s = 1.5. Then, the saturation
charges are obtained, as presented in Table 1.

C. IDENTIFICATION OF FUNCTIONS OF CAPACITANCE
The capacitances Ci(Tj) are identified by solving

min
Ci(Tj),i =1,...,n

√√√√√ 1
Nj

Nj∑
k=1

[
Qj(tk )− SCH[uj](tk )

]2 (13)

with the initial parameters obtained from the increasing curve
of the hysteresis [22]–[24]. The identified results are shown
in Fig. 7 with two magnified figures for the first 3 and last
4 SCs, respectively. Generally, the parameters have the same
trends for different temperatures. This result is not difficult to
understand because the hysteresis loops have similar shapes.
The first 5 SCs, as well as the last one, have positive capaci-
tances, whereas the others have negative values. The absolute
values for the first 3 and last 4 SCs are extremely small.

The capacitance Ci(T ) is simply treated as an m-order
polynomial function of temperature

Ci(T ) =
m∑
j=0

ai,jT
j

(14)

Then, the optimal coefficients are obtained as

ai = (AT
i Ai)

−1AT
i C i (15)

where C i = [Ci(T1),Ci(T2), · · · ,Ci(TM )]T, ai =

[ai,0, ai,1, · · · , ai,m]T and

Ai =


1 T1 T 2

1 · · · Tm1
1 T2 T 2

2 · · · Tm2
...

...
...

. . .
...

1 TM T 2
M · · · TmM


In (15), all the parameters are treated with the same weight.

In practice, different parameters may have different effects
on the results. The parameter sensitivity, representing the
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FIGURE 7. The identified capacitances and parameter sensitivity.

increase in modeling error caused by the change in the param-
eter’s value, is defined as

Si(Tj) =

∣∣∣∣deNRMS

dCi(Tj)

∣∣∣∣ = ∣∣∣∣1eNRMS

1Ci(Tj)

∣∣∣∣ (16)

where eNRMS is the normalized root mean square (NRMS)
error

eNRMS =
1

Qmax
125◦C

√√√√√ 1
Nj

Nj∑
k=1

[
Qj(tk )− SCH[uj](tk )

]2 (17)

The parameter sensitivity is further normalized by

S i(Tj) =
Si(Tj)∑n
i=1 Si(Tj)

(18)

As shown in Fig. 7, the capacitances of the first 3 and last
4 SCs are small, but the modeling error is quite sensitive to
them, especially for the first 2 and last 3 SCs.

A parameter with a larger sensitivity should have a larger
weight factor as the modeling error is more sensitive to it.
Thus, (15) is modified as

ai = (AT
i W iAi)−1AT

i W iC i (19)

where

W i =

√
diag([S i(T1), S i(T2), · · · , S i(Tn)]T) (20)

The data are obtained at five different temperatures, and
3-order polynomials are utilized, i.e., m = 3 and M = 5.
The coefficients are obtained and, then, the capacitances are
calculated. Some typical results are shown in Fig. 8. The

FIGURE 8. The optimized capacitance functions.

3-order polynomial is capable of fitting curves C6 − T and
C7 − T . It does not fit curves C1 − T , C2 − T , C5 − T , and
C8 − T well. But as it is demonstrated in the next section,
the poor fitting results does not have obvious effect on the
model precision. From the result of C1− T , for the weighted
optimization results, the errors at temperatures 50◦C and
100◦C are smaller, but that at 75◦C is greater. The reason
for this result is that the sensitivity at temperature 75◦C is
smaller. Similar phenomena are more obvious for C2 − T ,
C5 − T , and C8 − T .

IV. EVALUATION AND DISCUSSION
Experimental data are used to verify the proposed model.
The maximum charge at 125◦C, Qmax

125◦C, is employed as a
reference value. Then, Qmax(T ) are obtained by (10). Select
n = 12 and s = 1.5. Then, QS,i(T ) is given by (12) and a
capacitance of a 3-order polynomial function of temperature
are obtained. The simulated results of (5) are compared with
the experimental data in Fig. 9. The results obtained by using
the identified parameters are also plotted in these figures.

The identified results follow the experiment closely, which
indicates that the generalized SCH model has the capability
to capture concave and convex hysteresis at a constant tem-
perature. Although the 3-order polynomial function is not
very suitable for fitting the capacitance-temperature curve,
the results using coefficients with sensitivity-weighted show
an acceptable precision. The NRMS errors are presented
in Table 2. The error of the identified results is less than 5%,
approximately 3%, while the error of the results generated
using parameters without sensitivity-weighted is approxi-
mately 10%. The error with sensitivity-weighted is much
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FIGURE 9. Comparison between the simulated results and experimental data: (a) T = 25◦C, (b) T = 50◦C, (c) T = 75◦C, (d) T = 100◦C, and
(e) T = 125◦C.
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TABLE 2. Modeling errors.

smaller, approximately 5%. Considering that the identified
parameters lead to errors of approximately 3%, this result
demonstrated the superiority of the proposed method.

However, the experimental data was obtained at sev-
eral constant temperatures but not a time-varying temper-
ature. It is hard to verify the capability of the proposed
model on capturing hysteresis behavior under a time-varying
temperature.

V. CONCLUSION
In this paper, the SCH model is extended to describe the
temperature-dependent feature of the hysteresis in piezo-
electric materials. The SCH model is first generalized to
capture convex and concave hysteresis. Then, the constant
parameters are extended as functions of temperature. The
parameter determination procedure is also presented. The
effectiveness is verified by experimental data. The identified
results contain approximately 3% error. Including this error,
the overall error of the proposed model is approximately 5%.
Thus, the proposed model and parameter determination pro-
cedure are capable of describing the temperature-dependent
hysteresis.

APPENDIX
Let n SCs be arranged in the order that the saturation charges
increase. Let j be the maximum number where the j-th SC
is saturated. The moment before the j-th SC is saturated,
the capacitance of the SCH model is

C j−
SCH =

1∑n
i=j

1
Ci

(21)

Once the j-th SC is saturated, the capacitance of the SCH
model becomes

C j+
SCH =

1∑n
i=j+1

1
Ci

(22)

Then, one obtains

C j+
SCH − C

j−
SCH =

1

Cj
∑n

i=j
1
Ci

∑n
i=j+1

1
Ci

> 0 (23)

Thus, the saturation of the j-th SC leads to an increase in the
slope of the charge-voltage curve. In other words, the SCH
model can only capture convex hysteresis.
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