
Received January 7, 2020, accepted February 11, 2020, date of publication February 27, 2020, date of current version March 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976613

An Advance Reservation System to Improve
Network Resource Utilization in
Software-Defined Networks
ALAITZ MENDIOLA 1, JASONE ASTORGA 2, EDUARDO JACOB 2, (Senior Member, IEEE),
AND JUANJO UNZILLA 2
1Keynetic Technologies, Faculty of Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
2Department of Communications Engineering, Faculty of Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain

Corresponding author: Jasone Astorga (jasone.astorga@ehu.eus)

This work was supported in part by the Spanish Ministry of Economy, Industry, and Competitiveness through the State Secretariat for
Research, Development, and Innovation through the Adaptive Management of 5G Services to Support Critical Events in Cities (5G-City)
under Project TEC2016-76795-C6-5-R and through the Department of Economic Development and Infrastructure of the Basque
Government under the Strategic Research Projects Cognoms4.0 and Ciberprest.

ABSTRACT Research and education networks (RENs) worldwide, attracted by the benefits of
software-defined networking (SDN) for services involving traffic engineering (TE) such as bandwidth
on demand (BoD), have started to include SDN in their network evolution plans. BoD allows users to
request end-to-end connectivity services of known duration with a guaranteed bandwidth. Considering such
a scenario, this paper presents a set of algorithms and two novel data structures for provisioning of the BoD
service in SDN-based RENs. First, network snapshots are used to represent a period of time during which
resource availability remains constant. Second, the network snapshot tree (NSTree) allows for different
network snapshots to be arranged hierarchically using a time-based node aggregation policy. Additionally,
each network snapshot stores multiple alternative paths for each source-destination pair. This innovative
approach allows for the network resource utilization and number of service requests being accepted in the
network to be improved compared to the most common approach of a single shortest path being considered
for each destination. As a result, our approach allows for network resource utilization to be improved
by approximately 30%. Furthermore, the two-phase procedure used to pre-compute alternative paths and
perform admission control makes it possible to achieve response times on the order of milliseconds, enabling
the real-time provision of the service.

INDEX TERMS Advance reservations, bandwidth on demand, software-defined networking, traffic engi-
neering.

I. INTRODUCTION
The appearance of software-defined networking (SDN) has
enabled the development of next-generation networks. In a
nutshell, the SDN approach entails a separation of forwarding
and control planes so that control of the network is performed
by means of a logically centralized control plane that resides
in an external element and programs the forwarding plane
using open interfaces [1]. With this new paradigm in mind,
network operators worldwide have started to evolve their
network architectures [2] to reduce their capital and operating

The associate editor coordinating the review of this manuscript and

approving it for publication was Zehua Guo .

expenditures and more efficiently facilitate the introduction
of new services.

Among the benefits introduced by SDN, its capability to
control the network while taking into account the network’s
overall state is of interest to network operators. This capa-
bility of SDN can revolutionize traffic engineering (TE) [3],
one of the most challenging topics in communication net-
works. First, the logically centralized control plane enables
the utilization of novel TE strategies. Second, being able to
forward packets with fine granularity facilitates the utilization
of alternative load balancing approaches [4].

Moreover, research and education networks (RENs) offer-
ing high-availability and high-quality services to the research

40512 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5572-555X
https://orcid.org/0000-0002-5532-004X
https://orcid.org/0000-0001-7093-0586
https://orcid.org/0000-0002-1766-7958
https://orcid.org/0000-0001-7314-410X

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

and academic community have started to include SDN in
their network evolution plans, again due to the attraction of
the impact of SDN on TE. In RENs, TE plays a key role
in scenarios where the nature of the data being transmitted
requires fast failure recovery capabilities and an efficient
utilization of network resources to cope with the growing
demand.

One of the services typically provided by RENs to the
research community is bandwidth on demand (BoD), which
allows for end-to-end (E2E) connectivity services to be
established during a specific period of time with a guar-
anteed bandwidth. For instance, ESNet [5], a high-speed
computer network serving the United States Department
of Energy, provides BoD through the On-Demand Secure
Circuits and Advance Reservation System (OSCARS) [6].
Similarly, GÉANT [7], a pan-European REN, offers BoD
to its users through the AutoBAHN [8] provisioning tool.
Provisioning of the BoD service requires the utilization of
the advance reservation mechanisms [9] typically used in grid
computing and optical networks [10]. Nonetheless, the emer-
gence of SDNmakes it possible to re-examine howTE should
be supported and how the resource and timing constraints that
facilitate advance reservations should be handled.

Considering such a scenario, this paper presents a set of
algorithms and data structures that support advance reser-
vations to provide an SDN-based BoD service in the REN
environment. The proposed algorithms and data structures
have been specifically designed to leverage the logically
centralized control plane and high programmability available
in SDN. The solution is based on the generation of network
snapshots, a data structure that represents a period of time
during which resource consumption of a given set of con-
current service reservations remains stable. Such network
snapshots are arranged using a hierarchical data structure
called a network snapshot tree (NSTree). An NSTree makes
it possible to represent longer time intervals during which
a subset of common resources is available as a result of
aggregating multiple network snapshots into auxiliary nodes,
taking into account time constraints.

The algorithms and the data structures defined in this
paper (network snapshots and the NSTree) are used for the
optimal advance reservation of bandwidth in SDN networks,
but other parameters of QoS (delay, jitter, loss, etc.) could be
easily accommodated. The NSTree structure is, by definition,
hierarchical and dynamic, so it could be adapted for use
in other scenarios in which not only bandwidth reservation
but also other QoS parameters, or a combination of several
quantities, are needed. This feature would allow for the pri-
oritization of the selected QoS parameter by using weighting
coefficients.

Taking into account that the joint solution of the com-
bined routing and resource allocation problem is NP-hard,
some authors have examined the use of function splits
for achieving QoS in SDN networks [11]. The pursued
goal is to avoid or at least reduce the computational over-
head of path computation (routing) and resource allocation.

To reduce the computational effort of such algorithms,
our approach relies on a path pre-computation phase for
selecting a subset of all possible paths to connect each
source-destination pair. The second phase, in charge of actual
bandwidth allocation, is the on-demand phase. The pro-
posed data structures (network snapshots and the NSTree)
could also be useful in the wider context of function split
frameworks for QoS in SDN as a mechanism for rep-
resenting the dynamic resource allocation status on the
network.

Therefore, the main contribution and novelty of this paper
entail a formal definition and assessment of these algorithms
and data structures. To prove the suitability of the solution
for the REN environment, the data structures and algorithms
presented in this paper have been included in DynPaC,
a framework for TE in software-defined networks that has
already been used in experimental deployments [12]. It is
worth pointing out that although the proposed algorithms and
data structures are currently integrated in DynPaC, they are
general enough to be extrapolated to other frameworks. Addi-
tionally, the performance of the solution has been evaluated
using the topology of the ESNet network. The experiments
show that the proposed solution satisfies the requirements
of RENs and that the data structures and algorithms used
to handle advance reservations are able to accept or reject a
service reservation request within a time interval on the order
of milliseconds.

The remainder of this paper is structured as follows.
Section II presents the related studies, in which existing data
structures used to handle advance reservations are analysed.
Section III summarizes the architecture of the DynPaC frame-
work. Section IV introduces the reservation model supported
by the framework, and Section V describes the path compu-
tation algorithms used. Section VI details the proposed data
structures, and SectionVII presents the admission control and
update procedures. Section VIII demonstrates the suitability
of the solution by means of a performance evaluation, and
Section IX concludes the paper.

II. RELATED STUDIES
The main contribution of this paper is the presentation and
evaluation of a set of algorithms and data structures specif-
ically tailored for efficient provisioning of the BoD service
and to support advance reservations in SDN. General uni-
cast QoS routing mechanisms have been extensively stud-
ied in the past, and several papers have been published
more recently, re-examining these mechanisms in the light
of the SDN paradigm [13]. One of the most analysed topics
is resource reservation mechanisms; it is the focus of our
proposal. As a consequence, this section reviews a com-
prehensive list of advance reservation approaches and the
impact of the network resource being managed, the timing
constraints being considered and the data structures being
used in such approaches. In addition, it also presents vari-
ous techniques designed to increase the number of accepted
services.

VOLUME 8, 2020 40513

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

A. IMPACT OF THE MANAGED NETWORK RESOURCE
In an analysis of advance reservations, the resource being
managed plays a key role. The first solutions dealing with
advance reservations considered link-based resource man-
agement [14], given that the bandwidth of a link is typically
the resource being shared by the reservations. However, keep-
ing track of the bandwidth utilization profile of each link in
the network requires the utilization of multiple instances of
the data structure [15]. This imposes a penalty in terms of
memory usage and the running time of the admission control
process. The reason for this is that to compute the path that
satisfies the reservation constraints, the admission control
process must be repeated k times, where k is the number of
links in the network.

Although this approach is required by distributed archi-
tectures, centralized architectures can benefit from a more
efficient approach to advance reservations. For instance,
Andreica [16] propose a solution that can be used on a
per-path basis, whereas Balman et al. introduce a graph-based
resource management approach [17]. However, Andreica’s
per-path proposal is less efficient than per-link approaches.
Additionally, the Balman’s proposal relies on linked lists that
as described later in this section, are not the most suitable data
structures to be used for advance reservations.

In the case of SDN networks, apart from bandwidth,
a scarce resource that must be efficiently used is the space
in the flow table. In a related study, Guo et al. propose
a real-time routing solution for OpenFlow-based SDN net-
works called STAR [18]. In STAR, the cost of each path
is computed as a combination of the delay introduced by
the flow table’s utilization level and the actual length of the
path. The final objective of the proposed solution is to use
the scarce flow table resources of the OpenFlow switches
in an efficient and balanced manner. The authors demon-
strate that as a result, the overall network performance is
improved, compared to classic routing approaches, in terms
of the controller’s workload, end-to-end packet delay and
server throughput. The proposed architecture is based on
path pre-computation, following an approach similar to that
used in the DynPaC framework, as detailed in Section III-A.
However, the STAR approach does not support advance reser-
vations and therefore lacks a scheduling mechanism and the
corresponding data structures and algorithms.

B. TIMING CONSTRAINTS
A very important issue to consider in advance reservation
systems is how the timing constraints are handled, as they
directly affect the efficiency of the solution. Supporting
advance reservations requires taking into account the evolu-
tion of resource consumption over time. To this end, there
are two different approaches. The first utilizes fixed time
slots [19] that divide the time spectra equally, and the second
uses dynamic time slots of variable length [20].

If fixed time slots are used, then their granularity plays a
key role in the efficiency of the solution. If time slots are

large, then the number of time slots to be analysed will be
lower. Thus, memory will be saved and response time will
be reduced; however, as a result, the reservations may last
more than the requested time [15]. In addition, the size of
fixed time slots can result in unnecessary resource and time
fragmentation and impact the optimality of the solution. For
all of these reasons, the current trend is to rely on dynamic
time slots, even though their management is more complex.

In fact, if dynamic time slots are used, then the reservations
can be tailored to the specific time intervals requested, and
memory usage will be reduced. However, the data structures
that need to be used are more complex, and their utiliza-
tion may affect the running time of algorithms. In [21],
Zuo et al. present a bandwidth reservation service as an
enabler of the transfer of large amounts of data with guaran-
teed performance. More specifically, the researchers propose
two optimization algorithms: one that minimizes cost and
another that minimizes the data transfer time. The proposed
system model is based on the concepts of time step and time
window. A time step is defined as a time lapse in which the
available bandwidth does not change for any of network links.
A time window, in turn, consists of a single time step or
multiple consecutive time steps, and the available bandwidth
of each link during a time window corresponds to the smallest
bandwidth available among all the time steps contained in that
time window.

In [22], Barshan et al. present a bandwidth reservation
model specifically tailored to the characteristics of media
production networks. The proposed solution is based on time
slots of variable size, and a timeslot is a time interval in
which reservations remain invariant. The authors define the
concept of a scenario as a set of video transfers that are
dependent on each other. The proposed advance bandwidth
reservation algorithm sorts all scenarios according to the
earliest average start time of all of the scenario’s requests.
Then, for each scenario, requests are prioritized according
to, first, the estimated hard deadline and, next, the traffic
volume. For the bandwidth reservation, two algorithms are
used for comparison: one is based on fixed-size timeslots, and
another is based on variable-size timeslots. The evaluation’s
results show that the solution based on variable-size timeslots
executes faster and allows for slightly increasing the request
admittance ratio.

Also using dynamic time slots, Wang et al. [23] inves-
tigate bandwidth reservation requests that imply the maxi-
mum available bandwidth within a fixed-length floating time
window and with a deadline constraint. This scenario rep-
resents the case of very large amounts of data that must
be transferred in a timely manner. The authors formulate a
periodic bandwidth request problem and attempt to maximize
the number of successfully accepted requests over an already
provisioned path. Each request is defined by a floating win-
dow size, an earliest possible start time and a deadline. Since
the objective is to maximize the number of accepted requests,
the proposed algorithm prioritizes requests that consume less
resources.

40514 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

Following a different approach, in [24], Chung et al. pro-
pose an architecture to allow for advance reservations in
multi-domain environments based on per-domain reservation
agents and a centralized orchestrator. The proposed system
allows for exploiting different reservation options available
in different domains. As a result, it is possible to benefit
from the flexibility provided by novel advance reservation
schemes while maintaining compatibility with more rigid
legacy systems. In this regard, the proposed multi-domain
orchestrator complements intra-domain reservation systems,
such as the ones analysed previously.

C. IMPACT OF DATA STRUCTURES
A major aspect to take into account when dealing with
advance reservations is the data structure that is used
to keep track of resources’ consumption or availability.
If arrays [25] or linked lists with fixed time slots are used,
then the running times of algorithms are always linearly
dependent on m, the number of time slots considered in the
book-ahead interval. In addition, time intervals where no
reservations at all exist need to be handled as well, increas-
ing memory usage. Nonetheless, although the utilization of
dynamic time slots may solve the aforementioned problems,
it results in more complex data structures. Schneider et al.
report this issue in [26] and propose using a list of free
blocks to support dynamic time slots. Using hierarchical
data structures presents some benefits. First, allowing for the
analysis of wider time slots leads to the running time of the
algorithms being reduced to a logarithmic function [14], [27],
[28]. Second, hierarchical data structures are able to support
non-consecutive time slots, therefore reducing the need to
keep track of resources during the entire book-ahead interval.
The latter results in an additional benefit: there is no need for
a book-ahead interval [27].

In summary, there are currently no solutions based on
hierarchical structures such that resource management is
performed on a per-graph basis. Nevertheless, SDN relies
on a logically centralized control plane that facilitates an
automatic abstraction of the network graph. Therefore, it rep-
resents the perfect environment for rethinking how advance
reservations are handled and for leveraging the lessons
learned throughout the preceding decades about the impact
of data structures on such systems.

D. TECHNIQUES USED TO INCREASE THE NUMBER OF
ACCEPTED SERVICES
Among the techniques proposed to increase the number of
accepted services, establishing multi-path traffic flows over
SDN-based networks is a common trend. However, such
operations result in increased signalling overhead between
the SDN controller and the networking devices and a high
workload of the SDN controller related to admission con-
trol tasks. This affects the scalability of the solutions.
To cope with these issues, researchers in [29] leverage path
pre-computation as an approach to achieving scalability in
their SDN-based routing and resource management system.

Therefore, instead of computing paths for each flow request,
paths are pre-determined offline and fixed for certain time
periods (e.g., 15 minutes), which results in the controller
not having to perform time-consuming tasks. The obtained
results show that the admission control time is barely affected
by the traffic load, while the proposed multi-path approach
allows for increasing the number of accepted services.

A related approach is that of Hou et al. [30], where the
authors propose a multi-path solution to improve the through-
put and robustness of large data transfers. For each trans-
fer, the authors select two node-disjoint paths and consider
two alternatives for the selection of these paths: (1) fixed
paths with bandwidth fixed during the entire duration of the
data transfer and (2) fixed paths with variable bandwidth
availability during the duration of the data transfer. In both
cases, the optimization objective is to minimize the data
transfer’s completion time. Therefore, in the case of a variable
bandwidth, the data transfer should always start immediately.
However, in the case of a fixed bandwidth, it might be con-
venient to delay the start of the data transfer to be able to
reserve a larger bandwidth for the transfer. A simulation-
based performance evaluation shows that the factors that have
the greatest impact on the transfer’s end time are the data size
and the bandwidth, while the effect of network size is not as
noticeable. The proposed algorithms outperform commonly
used greedy algorithms and attain near-optimal performance.

Similarly, in [31], Chung et al. propose a multi-domain
advance reservation system that takes advantage of ser-
vices provided by software-defined exchanges (SDXs),
which allows different domains to share computing, stor-
age and networking resources. Due to this information
and the development of a negotiation protocol, it is possi-
ble to perform multi-path splitting of bandwidth requests.
Accordingly, the proposed system allows for the success
rate of multi-domain advance reservation requests to be
increased from approximately 50% to almost 99% using four
paths.

A different alternative approach to improving the service
acceptance ratio is to provide requesting users with some
degree of flexibility. In [32], Zuo et al. provide the user with
two alternative reservation options if the network does not
have sufficient available resources during the time interval
specified by the user. The two alternatives are the closest
time intervals before and after the time interval specified by
the user, in which there are sufficient available resources for
accepting the request. In a similar study [33], the authors deal
with the problem of multiple bandwidth reservation requests
received by the network at the same time and propose two
alternatives: to maximize the number of accepted requests
and to maximize the overall amount of transferred data. Nei-
ther of the proposed solutions considers traffic engineering
mechanisms to reorder already established services and thus
make room for new requests.

In [34], Barshan et al. add reliability guarantees to their
previous approach. To this end, apart from the primary data
transmission path, a totally disjoint backup path is also

VOLUME 8, 2020 40515

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

computed for each reservation request. To mitigate the band-
width waste effect resulting from the reservation of backup
paths when there is no link failure, the authors propose a
dynamic adaptation algorithm. This algorithm operates in
two phases, executed at the end of every time slot. The
first phase—a periodic update—consists of monitoring the
current actual network status. Then, the second phase—
periodic adaptation—analyses and reschedules data transfers
during the next time slot to improve efficiency by using
idle bandwidth capacity. Additionally, whenever a failure is
detected, the algorithm is automatically invoked to adapt the
network transfers to the current state. The results obtained
through a simulation show that the proposed algorithm
allows for increased performance of the advance bandwidth
reservation algorithm. Additionally, the execution times of
the algorithm allow it to react timely to sudden network
changes.

Similarly, in [35], Zuo investigates bandwidth preemp-
tion strategies in bandwidth reservation systems, considering
two alternatives when a bandwidth reservation request with
a higher priority arrives: to minimize first the number of
preempted bandwidth reservations or the total amount of
preempted bandwidth. Using simulations, the author shows
that the proposed algorithms outperform the basic greedy
algorithm. In a related paper [36], the authors aim atmaximiz-
ing the number of accepted bandwidth reservation requests.
To this end, they propose dividing the requested bandwidth
among different paths when it is impossible to provide
the requested bandwidth by using a single path. For the
multi-path solution, they select link-disjoint paths and pro-
pose two optimization algorithms: to minimize the average
earliest completion time and tominimize the average duration
of data transfers.

III. ARCHITECTURE OF THE DYNPAC FRAMEWORK
Since the proposed data structures and algorithms have been
integrated in the DynPaC framework, this section briefly
reviews its architecture. As previously mentioned, DynPaC
is a generic framework aiming to facilitate the adoption of
TE strategies in software-defined networks; its architecture
is depicted in Figure 1. It consists of 6 well-defined mod-
ules and a REST API that facilitates its integration with
external elements, such as traffic analysers, NFV orchestra-
tors or multi-domain agents [12]. The following subsections
describe the modules of the DynPaC architecture.

A. PATH COMPUTATION ELEMENT (PCE)
PCE is a dedicated element in charge of path computation
that enables an easy introduction of different routing algo-
rithms such as Dijkstra’s or Ford-Fulkerson algorithms. This
element makes it possible to utilize novel and customized
path computation algorithms with various objective func-
tions. For example, power consumption can be minimized
if the framework is used for green computing, or the QoE
can be maximized if the framework is used to provide video
on-demand services.

FIGURE 1. Architecture of the DynPaC framework for advance path
computation in SDN.

B. TOPOLOGY ABSTRACTOR
PCE requires a model of the network to perform path compu-
tation. Once the topology has been discovered (in SDN, this
is usually achieved by means of the LLDP and BDDP proto-
cols), the optimal way of representing it may vary depending
on network type, the use case and especially the routing
algorithm being used. In such a scenario, the main objective
of the topology abstractor is to construct the correct network
model that will facilitate path computation.

C. RESILIENCE MODULE
The DynPaC framework includes a resilience module that
aims to minimize the service disruption and packet loss in the
event of network failure. Thismodulemonitors the state of the
network and informs the remaining modules when it receives
an event notifying it about a node or a link failure. Thus,
a failure can be mitigated by installing alternative routes in
the network to continue providing the affected connectivity
services.

D. MONITORING MODULE
A monitoring module keeps track of resources consumed
by each connectivity service provisioned in the network.
It allows for verifying that the SLAs to which the user sub-
scribed are being fulfilled. This module does not impose any
particular mechanism for obtaining the QoS metrics, which
could be done bymeans of the southbound protocol [37] or by
retrieving the data from a NetFlow or sFlow collector. Upon
a violation of a given SLA or detection of an anomaly on
the network (i.e., congestion), themonitoringmodule informs
the remaining modules so that the appropriate mitigation
procedure is executed.

40516 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

E. NETWORK PROGRAMMER
The network programmer module is in charge of program-
ming the network elements involved in the provisioning of
a given service. In summary, it translates the information
contained in the form of a path, i.e., a sequence of net-
work elements, into the appropriate messages to program
the network devices. For instance, in the case of OpenFlow
devices, this implies the generation of the necessary flow
modification messages to install or remove the flow entries
at the OpenFlow switches.

F. SERVICE MANAGER
The Service Manager is the core module of the DynPaC
framework. All modules of the framework and the REST
API communicate with the Service Manager that orchestrates
the interaction of various modules to provide the requested
connectivity service. This module also handles the lifecy-
cle of services and keeps track of the state of services
(if they are reserved, installed in the network or have expired).
In addition, since the framework has been designed to sup-
port advance reservations, the Service Manager keeps track
of resource consumption over time. Therefore, it acts as a
stateful PCE described in RFC 4655 [38]. This feature allows
for the path computation to be performed using information
not only on topology but also on the resources consumed by
already accepted connectivity services.

IV. RESERVATION MODEL
This section describes the reservation model used in the
DynPaC framework and the timing conditions that need to be
fulfilled for acceptance of new service reservation requests
into the system.

A. DEFINITION
In the DynPaC framework, a new service reservation request
between two endpoints for a certain amount of time is defined
as follows:
Definition 1: Every new service reservation request is

identified by the source and destination endpoints (node and
port), the start time at which the service needs to be pro-
visioned and the end time at which the service needs to be
terminated. In addition, a service reservation request is also
characterized by the peak bandwidth that will be available
through the E2E circuit and the desired failure recovery
policy, which can be either path protection or path restora-
tion. It is, therefore, a ‘‘specified time specified duration’’
reservation [39].

B. TIMING CONSTRAINTS
Each new service reservation request requires the execu-
tion of two different phases: check and update, as depicted
in Figure 2. First, it is necessary to check whether there
are enough resources (i.e., bandwidth, VLANs, etc.) in the
network to satisfy the service request. This phase takes the
amount of time denoted by tcheck and results in the new
service request being accepted or rejected.

FIGURE 2. Service request being accepted by the DynPaC framework.

Second, the optimal path is selected among all available
paths satisfying the connectivity requirements, and the nec-
essary data structures are updated. This takes the amount of
time denoted by tupdate. The second phase is only executed
for accepted services. Variable pA denotes the probability
of a service being accepted by DynPaC, also known as the
service acceptance ratio (SAR). SAR is one of parameters
most commonly used to evaluate advance reservation sys-
tems. It measures the number of service reservation requests
that are accepted by the system relative to the total number of
service reservations requested from the system, as described
in equation 1:

SAR =
∑

serviceaccepted /
∑

servicerequested (1)

The time required to execute both check and update phases
is denoted by tsetup and is the minimum time that must elapse
between two consecutive service requests to avoid inconsis-
tencies during snapshot updates. In fact, service requests are
always handled in the order of arrival, and an amount of time
of at least tsetup must pass after a service request has been
received and before the next one can be processed. In this
case, it is possible to guarantee that the system is stable and
that the data structures represent the network state correctly
when the second request is processed.

Furthermore, tsetup also delimits the time at which
the requested service can be committed to the network,
which is commonly referred to as the book-ahead interval
(tbook_ahead) [25]. Therefore, two conditions must be met for
a service request to be accepted in the system: (1) at least tsetup
has passed since the last service request, and (2) no tbook_ahead
time exists between the time at which the request was received
and the start time of the service. The relationships among
tcheck , tupdate, tsetup and tbook_ahead are defined by equations 2
and 3.

tsetup = tcheck + tupdate (2)

tsetup ≤ tbook_ahead (3)

Since tsetup for a given service depends on whether the
service has been accepted, we define the average tsetup as
follows:

t〈setup〉 = tcheck + pA ∗ tupdate (4)

VOLUME 8, 2020 40517

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

V. PATH COMPUTATION ALGORITHMS
As previously mentioned, having an advance reservation
solution that leverages the centralized nature of the SDN
control plane allows for per-network resource management,
as opposed to the classic per-link approach. This characteris-
tic of the advance reservation solution presented in this paper
makes it possible to utilize path pre-computation strategies.
In a nutshell, the approach followed for the DynPaC applica-
tion for BoD consists of pre-computation of a set of possible
paths for all pairs of source and destination nodes. Then,
once a particular service reservation is requested, the possible
paths are checked against the available resources until a valid
path has been found.

It is worth noting that prior to path pre-computation,
it is necessary to retrieve and abstract the network topology.
In this regard, once the topology has been retrieved, an undi-
rected graph is formed. This approach allows for a simplifi-
cation of path computation since usually in BoD, the service
requests are considered symmetric and bidirectional. In other
words, for a given service, the same bandwidth is reserved for
both directions of communication.

This section describes both algorithms: the first is used in
the pre-computation phase, and the second is used in the on-
demand phase.

A. PRE-COMPUTATION PHASE
The first phase of the computation of the optimal path for a
given service reservation request consists of the computation
of a subset of all possible paths that will be used to estab-
lish the connecting circuits between particular source and
destination nodes. The most basic approach would consist
of a computation of all possible paths between all possi-
ble combinations of source and destination nodes. However,
this approach is infeasible since obtaining all possible paths
between two nodes is a well-known NP-hard problem [40].

To be computationally feasible, the path pre-computation
algorithm needs to compute only a subset of possible paths
in the network. Although this approach makes using path
pre-computation feasible, it also presents several drawbacks
that need to be taken into account. First, by pruning the
list of possible paths, the DynPaC algorithm can reject a
service reservation request even in the case of available
resources. Therefore, a request can result in a false negative,
a typical problem when using heuristics. Second, the path
pre-computation phase will depend on the use case and the
topology of the network. The better the selection of possible
paths is, the lower the number of false negatives. In the
particular case of BoD, the path pre-computation algorithm
has been customized, taking into account two requirements
particular to the use case.

First, services are provided E2E between two endpoints,
where an endpoint is represented either by a combination
of a node and a port or by a combination of a node, a port
and a VLAN tag. In terms of path computation, what this
requirement represents is that only the possible paths between

Algorithm 1 Path Pre-Computation
1: function PathPreComputation(topology) F

Computes a set of possible paths between pairs of source
and destination nodes

2: nodes← filterEgressNodes(topology)
3: for all pair of nodes do
4: paths← kShortestPaths(srcNode, dstNode)
5: for i← 1,max_cost do
6: pathLists[i]← paths.getPathsOfLength(i)
7: end for
8: pathMap[srcNode, dstNode]← pathLists
9: end for
10: end function

Algorithm 2 On-Demand Path Computation
1: function OndemandPathComputation(srcNode,
dstNode) F Provides an ordered list of possible paths
between the given source and destination nodes

2: pairOfNodes← [srcNode, dstNode]
3: listPaths← pathMap(pairOfNodes)
4: pathsList ← []
5: for i← 1,max_cost do
6: paths← randomizePathList(listPaths.get(i))
7: pathsList.append(paths)
8: end for
9: return pathsList
10: end function

pairs of ingress or egress nodes must be computed. It is
unnecessary to go through every combination of nodes since
only those facing users or external administrative domains
can be selected in service reservation requests. Second, it is
desirable to consume the least possible amount of network
resources to provide a connectivity service. Therefore, we are
interested in the paths with the lowest cost. Hence, to pre-
compute a set of alternative paths between the source and
destination nodes, the K-shortest path algorithm [41] is used.

As described in algorithm 1, for each pair of ingress and
egress nodes the K-shortest paths are computed. Next, these
K paths are stored in a map called pathsLists that groups
the paths of the same length. Finally, all pre-computed paths
are stored in a map called pathMap, where the source and
destination nodes are used as a key to retrieve the path lists.

B. ON-DEMAND PHASE
The second phase of path computation consists of a random-
ization of lists of possible paths of the same length provided
by PCE for a given pair of source and destination nodes.
As previously mentioned, PCE in the pre-computation phase
generates a map in which it stores a list of possible paths
for each combination of ingress and egress nodes. This list
is arranged from the smallest to the largest number of hops.

When a new service reservation is made, the service
manager requests the list of possible paths to PCE by

40518 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

simply specifying the source and destination nodes. Next,
PCE checks pathMap and returns the list of possible paths
for that pair of nodes. It is worth noting that this approach
results in PCE providing identical path lists for services orig-
inating and terminating at the same nodes. As a consequence,
there is an increasing probability of congesting some network
resources, while others remain underutilized. Algorithms of
this kind are usually referred to as greedy algorithms since
they always try to provide the best path for every request,
which in turn results in the congestion of those paths.

To solve the greedy algorithm problem, the algorithm used
in the on-demand phase randomizes the list of possible paths.
As a result, requests with the same source and destination
nodes are assigned different lists of possible paths. Note that
the set of possible paths is the same, and what varies is the
order in which the paths are listed. A randomization is applied
to the set of paths of the same length to prioritize the short-
est paths at all times. This is precisely the reason pathMap
arranges the list of paths for each source and destination pair
using blocks of paths of the same length. The procedure used
to obtain a randomized list of possible paths is described in
algorithm 2.

As previously mentioned, the architecture proposed in this
paper includes a resilience module. To support link failures,
and when the user requests protection, the on-demand path
computation phase generates a pair of disjoint paths. This
approach ensures that in the case of a link failure, the backup
path will not be affected. Although this approach guarantees
a restoration of service in the case of a single link failure,
it requires an execution of the path pre-computation phase to
accurately reflect the new state of the network in subsequent
service reservation requests.

VI. DATA STRUCTURES FOR ADVANCE RESERVATIONS
IN SDN
This section presents the data structures that make it possible
to support advance reservations for provisioning of the BoD
service. First, the network snapshot data structure is used to
represent the network state in terms of resource availability at
a specific period of time. Second, the NSTree data structure
provides the means to arrange multiple network snapshots
hierarchically to ease the admission control and update pro-
cesses.

A. NETWORK SNAPSHOT
One of the main contributions of the proposed solution is the
utilization of network snapshots, defined as follows:
Definition 2: A network snapshot represents the state of

the network during a specific period of time in terms of
network resource availability for a set of concurrent services
that have been assigned an optimal path. It is identified by
a unique identifier and its start and end times. A network
snapshot stores the following information:

• Identifier (ID): A unique identifier.
• Start Time (sT): The time at which the network snapshot
starts.

• End Time (eT): The time at which the network snapshot
ends.

• Concurrent Services: Connectivity services to be pro-
vided simultaneously during the specific period of time
that the network snapshot represents.

• Availability Vector: A vector that summarizes resource
availability in terms of available bandwidth per network
edge and VLAN tag availability.

• Optimal Paths: A map that stores the optimal path for
each service in a given network snapshot.

In other words, leveraging the centralized nature of SDN,
a network snapshot represents the available resources in
the entire network and provides information about concur-
rent services during a specific period of time. For instance,
Figure 3 depicts the evolution of network resource availability
when two services are requested. In this case, three different
network snapshots are generated: the first when only service 1
of 20 Mbps exists, the second when service 1 and service 2,
of 5 Mbps, coexist and the third when only service 2 exists.
Network resource availability is represented by means of a
vector, where each index represents bandwidth availability
for a given link. The maximum available bandwidth of all
links is 100 Mbps.

B. NSTREE
The need to keep track of all bookable resources over time
is a characteristic of advance reservation systems. As a con-
sequence, one of the main problems of systems of this kind
is that checking for available resources needs to be done for
each time interval affected by the new service request and,
in this case, for each network snapshot. For such a scenario,
we present the NSTree, a custom hierarchical data structure
designed to facilitate the admission control of new service
reservation requests and the corresponding update of the data
structure when a request is accepted into the network.

The NSTree arranges network snapshots in a way that
reduces the number of network snapshots being analysed
in the check phase to minimize the response time to the
user. Additionally, a minimal penalty in terms of memory
consumption is achieved due to the utilization of auxiliary
nodes. The structure of the NSTree is depicted in Figure 4.

1) NODE TYPES
Three different types of nodes are used to construct the
NSTree, namely, root, network snapshot (NS) and common
ancestor (CA) nodes. Each node in the NSTree keeps track
of the information specified in the network snapshot’s defi-
nition. In addition, each node keeps pointers to the next node
in chronological order, to the parent node, and to the child
nodes. These pointers facilitate arranging various nodes and
make traversal of the NSTree feasible.

a: ROOT
The root node is an auxiliary node that represents the root of
the NSTree. By definition, only a single node of this type may

VOLUME 8, 2020 40519

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 3. Network resource consumption’s evolution represented by network snapshots. The maximum bandwidth available in
each link is 100 Mbps.

FIGURE 4. Representation of the NSTree data structure used to keep track of resource availability over time in the network
depicted in the lower right corner. For each node, the green box represents the start time, and the red box signifies the end time.
At the bottom of each node, a vector represents resource availability for each link in the network.

exist; it does not have a parent node. To ease computation,
the start and end times of the root are equal to infinity (which
in practice takes the highest value of the data type used to
represent time). This allows for the root node to be treated as
a regular node in the NSTree and facilitates the insertion of
the first and last nodes. In contrast to NSs and CAs, it does not
keep track of any resource availability, concurrent services or
optimal paths.

b: NETWORK SNAPSHOT
A network snapshot node is a node in the NSTree that repre-
sents a network snapshot. Resource availability is represented
by means of an availability vector, where each index repre-
sents a network link. Each position of the availability vector
provides information about the amount of available band-
width and the set of available VLAN tags in a specific link.
It is worth noting that an NS represents resource availability

40520 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

for a given set of coexisting services, where each service is
assigned to an optimal path. Each NS points to the next node
in the chronological order, which can be either another NS or
a CA. In addition, it also points to its parent node, which in
this case can be the root node or a CA but never an NS node.
A particular feature of NS nodes is that they do not have any
children since they are always leaf nodes in the NSTree.

c: COMMON ANCESTOR
A common ancestor node is an auxiliary node that aggre-
gates a set of consecutive child nodes (both NS and CA
nodes). Each CA contains a list of child nodes arranged in the
chronological order and keeps track of available resources by
using an availability vector built using the minimum values
of each index in the availability vectors of all child nodes it
aggregates. It represents a longer time interval where a set
of common resources are guaranteed to be available. It is
identified by a start time equal to the start time of the first
child and an end time equal to the end time of the last child.
The next node is equal to the next node of its last child in the
chronological order. It is worth noting that a CA node does
not keep a list of optimal paths since the same service can
be provided through different paths in NS nodes aggregated
under the same CA.

2) NODE AGGREGATION POLICY
Using CA nodes imposes a penalty in terms ofmemory usage,
and they are only useful when they allow for a reduction
in the number of NSs being analysed when a new service
reservation is requested. Hence, the number of CA nodes
created in the NSTree needs to be kept to a minimum to
improve tsetup. The criteria used to aggregate multiple NSTree
nodes into a CA depend on the nature of the connectivity
service being provided and the use case. As such, this section
presents the node aggregation policy used in the advanced
reservation system presented in this manuscript to provide
BoD in the REN environment.

In advance reservation systems, particularly those used in
the REN environment, services are usually requested for a
long period of time. As a result, it is highly probable for ser-
vice reservations separated by less than the average duration
of service requests to be simultaneously overlapped by new
requests. Hence, the choice has beenmade to use a time-based
aggregation policy. Two consecutive nodes—either two NSs,
two CAs or an NS and a CA—are paired together into the
same CA as defined below:
Definition 3: Two consecutive nodes can be aggregated

into a CA if and only if there is less than δ of separation
between the end time of the former and the start time of the
latter.

Therefore, δ defines the minimum amount of time that
needs to exist between two consecutive nodes that are not to
be aggregated into a common CA.With such a strategy, every
time a new node is created in the NSTree, it is necessary to
check whether a rearrangement of the NSTree is necessary.
In other words, it is necessary to check if new CAs have to be

created or if existing ones have to be updated with new child
nodes. The rearrangement of the NSTree is described in the
next section.

VII. ADMISSION CONTROL AND THE STATE UPDATE
PROCEDURE
Every time a new service reservation is requested, the system
must first check in every affected network snapshot whether
there are sufficient resources available to meet demand. This
phase, called the check phase, implements the actual admis-
sion control procedure. If the check phase returns a posi-
tive response, then the NSTree must be updated accordingly
to reflect the new conditions of network usage over time.
This second phase is known as the update phase.

As previously mentioned, the NSTree has been designed
to make both the admission control and update procedures
for advance reservations in software-defined networks more
efficient even for large network topologies. For this reason,
this section describes in detail the algorithms used in such
procedures.

A. PHASE I: CHECK
The approach followed to determine whether there are suffi-
cient resources consists of traversing the NSTree chronolog-
ically. Every time a node overlaps in time with the service
reservation request, it is necessary to check whether the node
has enough resources to accept the request during the time
interval it represents. This is achieved by comparing the
availability vector of the node with the vector describing
the resource consumption of the service using a specific
path. Since PCE provides a set of possible paths for every
service request, ordered according to the number of hops,
the algorithm checks all possible paths until a suitable one is
found. Once a suitable path has been found, the time interval
being analysed is subtracted from the original service request.
This procedure is repeated until there is no time pending to
be analysed.

The algorithm ends with a negative result when an NS does
not have enough resources to provide the service. Otherwise,
the algorithm presumes that service demand can be satisfied.
The output of the algorithm will be null if the service is
rejected. Conversely, it will be the predecessor node, i.e., the
last node unaffected by the new service reservation request,
if the service is accepted.

To keep track of the time interval pending to be analysed,
we use the remaining service time (RST) variable. RST is a
duple that specifies the start time (sT) and the end time (eT)
of the time interval pending to be analysed. RST is initialized
with the start and end times of the requested service, and sT
is updated every time it has been checked that an NS or a CA
have sufficient resources. The details of the check phase are
shown in Algorithm 3.

It is worth mentioning that prior to the execution of the
algorithm, a procedure is run to discard the service reser-
vation requests that do not satisfy the timing constraints
presented in Section IV or exceed the resources handled by

VOLUME 8, 2020 40521

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

Algorithm 3 Check resource algorithm
1: function Check(service,NSTree)
2: RST ← (service.sT , service.eT)
3: aNode, pNode← root
4: nodes← []
5: predecessorFound ← false
6: children← aNode.getChildren()
7: if !children.isEmpty() then
8: nodes.push(children)
9: end if

10: while !RST .isEmpty() && !nodes.isEmpty() do
11: if !predecessorFound then
12: pNode← aNode
13: end if
14: for all aNode← nodes do
15: if RST .sT < aNode.sT then
16: if RST .eT < aNode.eT then
17: nodes.remove(aNode)
18: end if
19: update RST
20: predecessorFound ← true
21: else
22: if aNode has resources then
23: update RST
24: nodes.remove(aNode)
25: predecessorFound ← true
26: else
27: if aNode is CA then
28: children← aNode.getChildren()
29: nodes.push(children)
30: else
31: return null
32: end if
33: end if
34: end if
35: end for
36: end while
37: return pNode
38: end function

the advance reservation system (i.e., VLAN tags outside of a
specific range or bandwidth reservation requests that exceed
the maximum bandwidth of the network).

B. PHASE II: UPDATE
During this phase, the NSTree is updated to reflect new
resource availability, which results in new NS nodes being
added or updated, and the generation of CA nodes for their
aggregation. This characteristic of the NSTree necessitates
the evaluation of consecutive nodes to determine if they have
to be aggregated into a new CA or an existing one. The
algorithm (described in Algorithm 4) uses the RST variable
initialized with the service start and end times to detect the
termination of this phase.

FIGURE 5. Node generation process, case 0: no overlapping.

FIGURE 6. Node generation process, case 1: back overlapping.

FIGURE 7. Node generation process, case 2: partial overlapping.

Every time a new service reservation is requested, as it hap-
pens during the check phase, it is compared chronologically
to all nodes that it overlaps in time. In every iteration of the
process, a subset of time for which the service reservation has
been requested is processed, which is referred to as analysed
time (aTime). The aTime interval covers the period of time
between the end time of the pNode (the node analysed in the
previous step) and the end time of the aNode (the node being
analysed in the current step). Once the analysis of a given
aTime has finished, that period of time is subtracted from
RST to continue analysing the next node in the chronological
order. It is worth noting that in every iteration, the analysis
encompasses two well-defined phases. First, the lapse of time
between the end time of the pNode and the start time of
the aNode is considered since it requires the generation of
a new NS node. Second, the lapse of time corresponding
to the duration of the aNode itself is analysed. The latter
requires updating the aNode to update resource availability
with resources consumed by the new service reservation, and
the generation of additional NSs and CAs depending on how
the service overlaps the aNode.

This approach allows for a reduction in node generation
or update to five different cases that differ from each other
depending on how the service reservation overlaps aTime.
The five cases considered in this solution are Case 0 No
overlapping (see Figure 5), Case 1 Back overlapping (see
Figure 6), Case 2 Partial overlapping (see Figure 7), Case 3
Front overlapping (see Figure 8) andCase 4 Full overlapping
(see Figure 9). The case of post-overlapping1 is not consid-
ered since it can be regarded as a no-overlapping case over the
next node being analysed. This is achieved by considering the
root as the pNode of the first node in the chronological order
and the last aNode.

1Post-overlapping will correspond to a scenario in which the service
reservation ends after the aNode.

40522 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 8. Node generation process, case 3: front overlapping.

FIGURE 9. Node generation process, case 4: full overlapping.

The following list summarizes the specific procedures
depending on the overlapping case.
• Case 0 requires the creation of a new NS node to reflect
resource availability after service acceptance since a gap
between the pNode and the aNode represents a period
of time in which no services are reserved. During the
analysis of aTime, it is possible to have a service reser-
vation request with end time after the start time of the
aNode. If this happens, the period of time related to the
no-overlapping case is subtracted from RST to continue
the analysis since Case 3 or Case 4 can occur.

• Case 1: First, a new NS is created equal to the aNode,
but with an end time equal to the start time of the service
request minus one. This node is named PredNS and
represents the part of the original aNode in which the
service did not overlap. Second, the aNode is shortened,
with a new start time equal to the start time of the service
request, and resource availability is updated.

• Case 2: First, PredNS is created as a copy of the aNode
but with the end time equal to the service start time
minus one. Second, the aNode’s start and end times
are updated to match those of the service, and resource
availability is updated. Third, SuccNS is created also as
a copy of the aNode prior to the insertion of the new
service, with a start time equal to the service end time.

• Case 3: First, the original aNode is updated with an end
time equal to that of the service reservation request and
the new resource availability. Second, the SuccNS node
is created, which maintains the same resource availabil-
ity as that of the aNode before the addition of the new
service and with a start time equal to the end time of the
requested service.

• Case 4: Resource availability of the aNode is updated.
As previously mentioned, the generation of new NSs

requires a rearrangement of the tree. As such, in Cases 1-3,
the aNode is modified, and additional NSs are created. Since
the created NSs are adjacent in time to the aNode, the gener-
ation of a CA is required. For example, Figure 10 depicts for
Case 2 how a CA would be created from the original aNode
descendant of the root to aggregate a copy of the aNode
(A∗), PredNS (A−) and SuccNS (A+). Note that in Case 1
or Case 3, SuccNS or PredNS, respectively, will be missing.

Algorithm 4 NSTree update for an accepted service
1: functionNSTreeUpdateAccept(service, NSTree, pNode)
2: RST ← (service.sT , service.eT)
3: aNode← pNode.getNext
4: solvedNodes = []
5: while RST is not empty do
6: if aNode is solved then
7: update RST
8: pNode← aNode
9: aNode← aNode.nextNode()
10: else
11: if Case 0 then
12: create newNS
13: add service to newNS
14: rearrangeTree()
15: else
16: if Case 1 then
17: create PredNS from aNode
18: end if
19: if Case 2 then
20: create PredNS from aNode
21: create SuccNS from aNode
22: end if
23: if Case 3 then
24: create SuccNS from aNode
25: end if
26: update times from aNode
27: rearrangeTree()
28: add service to aNode F Includes Case 4
29: pNode← aNode
30: aNode← aNode.nextNode
31: end if
32: update RST
33: end if
34: end while
35: end function

FIGURE 10. Creation of a CA from an NS with a root parent.

Similarly, Figure 112 depicts the case of the aNode already
being the child of a CA. In this case, the rearrangement is
simpler since only PredNS and SuccNS need to be added as
children of the same CA. The process of performing such a
rearrangement is described in Algorithm 5.

2For simplicity, the rest of child nodes of the CA have been omitted from
the figure.

VOLUME 8, 2020 40523

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

Algorithm 5 Creation of a new CA
1: function CreateCA(PredNS, node, SuccNS)
2: parent ← node.parent
3: if parent is not CA then
4: parent ← newCA
5: node.parent ← parent
6: newCA.addChildren(node)
7: end if
8: PredNS.parent ← parent
9: SuccNS.parent ← parent

10: parent.addChildren(PredNS)
11: parent.addChildren(SuccNS)
12: return parent
13: end function

FIGURE 11. Creation of a CA from an NS with a CA parent.

In addition to the immediate creation of CAs as a result
of Cases 1-3, it is also necessary to check whether addi-
tional rearrangements are necessary, considering the sepa-
ration between the pNode and the aNode. An aggregation
is performed if there is at most δ between the end time of
the pNode and the start time of the aNode. The methods
utilized for the rearrangement of the NSTree in this case
are described in Algorithm 6 that distinguishes the following
cases.

a: CASE A: CONSECUTIVE NETWORK SNAPSHOTS
AGGREGATED INTO THE SAME COMMON ANCESTOR
When a new NS is created, if the time span between the
nodes is less than δ, then it inherits the parent of its pNode.
As such, it is possible to have two consecutive nodes sep-
arated by less than δ automatically aggregated into a com-
mon CA. In other words, in this case it is unnecessary to
rearrange the NSTree since the nodes are already arranged
accordingly.

b: CASE B: CONSECUTIVE NETWORK SNAPSHOTS BEING
CHILDREN OF THE ROOT NODE
In this case, as depicted in Figure 12, the pNode labelled by P
and the new node identified as A are both children of the
root node. If spacing of less than δ exists between the two
nodes, then it is necessary to create a new CA to aggregate
them. The approach followed in this solution is to upgrade the
pNode into a CA, which allows for the retention of pointers
that guarantee a chronological ordering. Then, a copy of the
pNode identified as P∗ in the figure is aggregated as the

Algorithm 6 NSTree rearrangement method
1: function RearrangeTree(pNode, aNode)
2: if pNode.eT + δ > aNode.sT then
3: if Case B then
4: pNodeBis← copy(pNode)
5: pNode← upgrade2CA(pNode)
6: pNode.addChildren(pNodeBis, aNode)
7: end if
8: if Case C then
9: ca← pNode.getParent()
10: ca.addChildren(aNode)
11: end if
12: if Case D then
13: pNodeBis← copy(pNode)
14: pNode← upgrade2CA(pNode)
15: ca← aNode.getParent()
16: pNode.addChildren(pNodeBis, ca.getChildren()
17: end if
18: if Case E then
19: ca1← pNode.getParent()
20: ca2← aNode.getParent()
21: ca1bis← copy(ca1)
22: ca← upgrade2CA(ca1)
23: ca.addChildren(ca1bis, ca2)
24: end if
25: end if
26: end function

FIGURE 12. Rearrangement, Case B: Two consecutive NS children of the
root node.

first child of the CA, while the new node is aggregated as
the second child.

c: CASE C: PREDECESSOR NETWORK SNAPSHOT
AGGREGATED INTO A COMMON ANCESTOR
The case where the pNode is aggregated into a CA, but the
new node is a child of the root node is illustrated in Figure 13.
If there is less than δ of separation between the pNode denoted
by P and the new node marked by A, then it is necessary to
convert the new node into a child node of the CA. Once this
has been done, the CA node is updated with the resources
consumed by the new node, and the pointer to the next node
of the CA is retrieved from the new node.

40524 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 13. Rearrangement, Case C: Predecessor network snapshot
aggregated into a common ancestor.

FIGURE 14. Rearrangement, Case D: New node aggregated into a
common ancestor.

d: CASE D: NEW NODE AGGREGATED INTO A COMMON
ANCESTOR
In this case, the pNode identified asP in Figure 14 is a child of
the root node, while the new node denoted by A is aggregated
into a CA. To ensure a chronological ordering, it is necessary
to upgrade the pNode to a CA. Then, a copy of the pNode
labelled as P∗ is added as the first child of the newly created
CA. Additionally, the new node and the rest of the children
of the initial CA are transferred to the new one. Once all
children have been aggregated into the new CA, the initial
CA is removed from the NSTree.

e: CASE E: CONSECUTIVE NODES AGGREGATED INTO
DIFFERENT COMMON ANCESTORS
Finally, as depicted in Figure 15, when the pNode identified
as P is aggregated into CA1, but the new node identified as
A is aggregated into a different CA denoted by CA2, it is
necessary to create a higher-level CA to aggregate both CA1
and CA2, with the result labelled by CA3 in the figure. This
situation can occur if Case 0 (no overlapping) is followed by
Case 1 (back), Case 2 (partial) or Case 3 (front) overlapping.
In this case, the new NS node generated in Case 0 can be
aggregated in CA1, and the aNode has resulted in the genera-
tion ofCA2 as a consequence of the aNode overlap. Although
the simplest approach would be to transfer the child nodes of
CA2 to CA1, the algorithm checks whether the numbers of
child nodes in bothCA1 andCA2 are equal or, on the contrary,
are unbalanced. In the latter, it is preferable to keep the

FIGURE 15. Rearrangement, Case E: Consecutive nodes aggregated into
different common ancestors.

pNode aggregated in CA1 and the aNode aggregated in CA2.
Nonetheless, since less than δ of separation exists between
the pNode and the aNode, it is guaranteed that there is less
than δ between CA1 and CA2, and therefore, it is possible to
aggregate these two CA nodes into the higher-level CA3.

Once the new nodes have been created and the rearrange-
ment of the NSTree has been performed, it is necessary to
update the affected nodes with the selection of the optimal
path and the addition of the new service. This means that
as in the previous cases, not only NSs but also CAs of
which NSs are descendants need to be updated, as described
in Algorithm 7.

To ensure that services are not being switched constantly
from one path to another when the network snapshot changes,
the algorithm uses two strategies. First, it always tries to
assign the most stable path to a given service request. This is
achieved by using the aggregate utilization information held
at the CAs for as long as possible. Therefore, it is necessary
to go from the NS being updated to the highest-level CA and
add the service using the CA availability vector. If there is
a common solution, then all children nodes affected by the
service request are marked as solved after the solution for the
service has been propagated downwards.

As previously mentioned, after adding the service to all
possible nodes, it is necessary to update the availability vector
of the CAs affected by the update. To facilitate this task,
when a possible path is found for the highest-level CA, that
CA and the other CAs previously identified in Step 1 of
algorithm 7 are added to a queue. That queue is later used
to update, in the order from the lowest- to highest-level CA,
the aggregated availability vectors. As in the case of the check
phase, the algorithm is executed for each node until RST
becomes empty.

VIII. PERFORMANCE EVALUATION
The objective of this section is to confirm the suitability
of algorithms and the data structure proposed for efficient
provisioning of the BoD service with advance reservations.
To this end, it is shown how the proposed solution improves
the utilization of network resources, while at the same time,

VOLUME 8, 2020 40525

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 16. Topology of the ESNet network.

Algorithm 7 Adding a Service to an NS
1: function AddService(RST , aNode, pNode)
2: CAstack.add(aNode)
3: parent ← aNode.getParent()
4: while parent.overlaps(RST) do F Step 1
5: CAstack.add(parent)
6: parent ← parent.getParent()
7: end while
8: while node← CAstack.peek() do
9: path← node.getOptimalPath()

10: if path exists then
11: propagate solution to descending NSs
12: update CAs
13: else
14: CAstack.pop()
15: end if
16: end while
17: return list of solved nodes
18: end function

the time and computational complexity of the proposed algo-
rithms as well as the storage impact of the proposed data
structures are kept low.

A. EXPERIMENTS
To validate the suitability of the proposed system, two exper-
iments have been performed. The first analyses the impact
of the number of alternative paths on network resources’ uti-
lization, computational complexity and storage requirements,
and the second evaluates the impact of node aggregation
policy on the same performance indicators.

An Ubuntu 14.04 virtual machine with 6 GB of RAM and
an Intel CORE i7 vPro CPU has been used to perform the
experiments. The DynPaC framework has been implemented
as an application running in ONOS 1.7. The ESNet network
comprising 22 nodes and 66 links (see Figure 16) has been
emulated using mininet, where the switches are OVSs with

OpenFlow 1.3 support. Each test has been repeated 30 times
to gather sufficient data for applying statistics for a normal
distribution.

1) EVALUATION OF THE IMPACT OF THE NUMBER OF
ALTERNATIVE PATHS
As described in Section V, path computation is handled by
means of two different algorithms: (1) pre-computation of
K-shortest paths and (2) randomization of the alternative
paths. The first experiment aims to assess the impact of
the number of alternative paths generated during the path
pre-computation phase on the resulting network resource
utilization and on the duration of the admission control and
state update processes.

The tests have been performed for various values of K ,
i.e., the number of alternative paths ranging from 1 to 1000.
For each test, 200 services have been requested with a
peak bandwidth ranging from 300 Mbps to 1 Gbps in steps
of 50 Mbps. To simplify the analysis, all concurrent services
have been requested for the same period of time to have a
single network snapshot.

2) EVALUATION OF THE IMPACT OF THE AGGREGATION
POLICY
This experiment evaluates the impact of the selected δ on the
performance of the solution, where δ refers to the maximum
time that may separate two nodes in the NSTree for them to be
aggregated into a CA. More specifically, four different values
of δ have been used: none,3 one day, oneweek and onemonth.
In this case, 500 services have been requested with a random
bandwidth between 100 Mbps and 2 Gbps, random start and
end times ensuring a duration between 1 day and 4 weeks,
and random source and destination nodes to ensure a uniform
distribution of service requests.

It is worth noting that even if the value of δ is modified,
the number of network snapshots that are generated remains

3Note that for chronologically adjacent nodes, CAs are still created.

40526 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 17. Impact of the number of alternative paths on network resources’ utilization and SAR.

constant (see Figure 22a afterwards). This is the expected
behaviour since the variation of δ does not affect how network
snapshots are generated, which only depends on the service
start and end times and their relative overlapping.

B. DISCUSSION OF NETWORK RESOURCES’ UTILIZATION
AND SAR
To assess the improvement of network resource utilization,
the following parameters are measured: the service accep-
tance ratio (SAR), the overall bandwidth available in the
network and the probability of a service request being rejected
due to a lack of resources. Each of these parameters is evalu-
ated as a function of the number of concurrent services in the
network and for various values of the number of alternative
paths and parameter δ associated with the aggregation policy

Figure 17a shows the evolution of the overall available
network bandwidth with the number of requested services.
As can be anticipated, taking into account that in this test
all services are requested for the same period of time, as the
number of requested services grows, the network is increas-
ingly more congested. Additionally, increasing the number
of alternative paths allows for a higher utilization of network
resources to be achieved since the number of services that
can be accepted in the network increases. As a result, for the
same number of requested services the available bandwidth
decreases with the number of alternative paths.

As to the service rejection rate, it increases with the number
of requested services, as depicted in Figure 17b. The rea-
son is that as previously mentioned, for a higher number of
requested services, there are fewer available resources, and
therefore, services will be rejected more frequently. Never-
theless, this figure shows a less stable tendency than that in
the previous one. The reason is the random selection of source
and destination endpoints and bandwidth capacity for each
service request.

Considering SAR, Figure 17c shows how SAR decreases
with the number of service requests since the network is
increasingly more congested. It is worth noting that the avail-
ability of more alternatives paths reduces the probability of a
new service being rejected and the overall number of rejected
services. Therefore, SAR improves, and more network

capacity is used to route requested services. In other words,
the use of network bandwidth is optimized to improve SAR
and minimize rejection of new service requests. It is worth
mentioning that as also summarized in Table 1, the difference
between utilizing one alternative path or ten paths results in
an improvement of SAR by more than 50%. Nonetheless,
although using more than ten alternative paths continues to
improve SAR, the effect is not as prominent.

This is a consequence of the topology being used, where
only the points that connect ESNet with other RENs have
been included as source and destination endpoints. Given
the low level of path diversity that exists in these nodes,
the links rapidly become oversubscribed, while the inner links
of the topology remain underutilized. This is also the reason
for selecting 40% resource utilization as the optimization
objective for results presented in Table 1 since in RENs such
as GÉANT, the inter-REN traffic is usually close to that
percentage.

Therefore, it can be concluded that using more alternative
paths makes it possible to achieve optimal network resource
utilization earlier and with a lower penalty in terms of the
number of rejected services.

The enhancement achieved in terms of network resource
utilization due to pre-computation of multiple alternative
paths is also depicted in Figure 18. This figure represents
the overall network resource utilization achieved for a given
service rejection rate depending on the number of alternative
paths. As shown in this figure, for a given rejection rate
the overall utilization of network resources increases with
the number of alternative paths being used. This demon-
strates the benefit of pre-computing multiple path alterna-
tives. This figure also shows that the network utilization
level and the rejection rate are positively correlated. In other
words, the remaining available bandwidth corresponding to
a higher network utilization is lower, and therefore, it is
more difficult to accommodate new service requests in the
network.

As to the impact of the aggregation policy on network
resources’ utilization, Figure 19 depicts the number of
rejected services and the overall bandwidth availability in the
network as functions of the number of concurrent services

VOLUME 8, 2020 40527

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 18. Overall network resource utilization depending on service rejection rate.

FIGURE 19. Impact of parameter δ associated with the aggregation policy on network resources’ utilization.

and presents the results for various values of parameter δ
associated with the aggregation policy.

As Figure 19a shows, the average number of rejected ser-
vices increases with the number of service requests since the
overall network utilization is higher. An important outcome
of the results depicted in this figure is that there is no differ-
ence in the number of rejected services for different values
of δ. This is the expected behaviour since the rejection of
a service ultimately depends on the resources available in
each network snapshot, the source and destination endpoints
of the requested service and the requested bandwidth. Since
these parameters behave randomly in the tests, the obtained
results also exhibit a degree of randomness. For example, for
500 concurrent services the number of rejected services varies
between 12 and 20, which represents a difference of 0,016%.
This value is not statistically significant and is due to random
requests of resources. In summary, the generation of CAs
reduces the time needed to determinewhether a service can be
accepted but does not impact the fact that a service reservation
will only be accepted if there are sufficient resources in the
network.

The same is observed for the overall network utilization
presented in Figure 19b. The generation of CAs has the
outcome of easing the admission control process. However,
the network ultimately has a set of specific resources, and the
use of the same service reservation pattern results in the same
overall network utilization.

C. DISCUSSION OF COMPUTATIONAL COMPLEXITY
An assessment of computational complexity of the algorithms
involved in the proposed solution is performed by measuring
the time needed to execute each algorithm. It is evaluated as
a function of the number of concurrent services installed in
the network and for various numbers of alternative paths and
values of parameter δ associated with the aggregation policy.
More specifically, the time needed to execute the on-demand
path computation algorithm as well as the time required by
the check and update phases and the entire setup time are
evaluated.

Considering the setup time (tsetup), it is worth mentioning
that it is clearly affected by the number of alternative paths
being computed. This is a consequence of all measured times

40528 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 20. Impact of the number of alternative paths on the computational complexity of the solution.

(tondemand , tcheck and tupdate) being affected by the number
of alternative paths. Nonetheless, as shown specifically by
Figures 20c and 20d, the impacts on tcheck and tupdate are
minimal, compared to the impact on tondemand , and within a
fraction of a millisecond. The reason is the type of opera-
tion performed in each phase. On the one hand, both tcheck
and tupdate require comparison operations on the array used
to represent the consumption vector, which are not com-
putationally intensive. On the other hand, the on-demand
path computation time is strongly affected by the number
of alternative paths because the randomization process needs
to be performed over the entire set of alternative paths.
Therefore, a larger number of alternative paths leads to a
longer tondemand .
It is also worth mentioning that Figures 20d exhibits a

peak at 40 concurrent services. The reason is that up to
around this point, the creation of CAs increases very rapidly,
as will be explained later in Section VIII-D. As a result,
a rearrangement of the NSTree structure must be performed
at this point. This operation implies a greater consumption
of resources and, as a consequence, an increase in the update
time.

Based on the analysis of charts shown in Figure 21, it can
be concluded that on the one hand, the aggregation policy
does not have a significant impact on the check time (see
Figure 21a). Even if the number of generated CAs varies (see
Figure 22b below), the only operation performed in each of
the nodes is a comparison of availability vectors since there
is no need to create or update the nodes in the NSTree.

On the other hand, the effect on the update phase can be
seen in Figure 21b. It must be taken into account that in
the update phase, a higher number of CAs leads to a lower
number of calls to the algorithm 7 since the selected path can
be propagated downwards to the aggregated NSs. As such,
in the case where no δ is specified, and therefore, a lower
number of CAs are generated, the time required to update
the NSTree is longer. The reason for this is the necessity to
execute the path selection algorithm more frequently.

It is also worth mentioning that both Figures 20 and 21
show several peaks in the initial parts of the charts that repre-
sent the check and on-demand computation times. These out-
of-range values are a product of the specific implementation
of the algorithm and are caused by the setup of the initial data
structures when the tree is first created. Although visually

VOLUME 8, 2020 40529

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 21. Impact of parameter δ associated with the aggregation policy on the computational complexity of the solution.

these points seem to be high, in fact, they represent numer-
ically very low delays. Additionally, the interesting analysis
corresponds to a greater number of requested services. In this
case, all necessary data structures have already been created,
and this effect does not occur.

It can be concluded that using a hierarchical structure,
where the CAs aggregate multiple NSTree nodes and adver-
tise a set of common resources available across a wider
time span, results in a lower tupdate. However, the effect of
aggregation is not very prominent in the case of tcheck due to
the simple operations performed in that phase.

Table 1 provides a summary of the results shown so far
pertaining to network resources’ utilization and computa-
tional complexity of the involved algorithms. In this table,
the average median tsetup, expressed in ms, is presented for
various values of K , along with the 95% confidence inter-
vals’ corresponding minimum and maximum values. Addi-
tionally, the number of concurrent services at which 40%
network resource utilization is achieved is indicated by SAR,
expressed as a percentage. The network resource utilization
target has been set to 40%, as this is the usual value used
by RENs.

Overall, the obtained results are very promising, taking
into account that the average median setup time remains on
the order of milliseconds in the case of an application to a
real-world REN topology. These results validate the suitabil-
ity of the advance reservation mechanism for use in RENs.

D. DISCUSSION OF THE STORAGE IMPACT OF THE USED
DATA STRUCTURES
The aim of this section is to analyse the impact of the pro-
posed hierarchical data structures in the memory of the server
running the proposed system. To this end, we first study the
numbers of CA and NS nodes generated as a function of the
number of concurrent services in the network and the used
aggregation policy. In other words, we explore the numbers of
CAs and NSs created for different values of parameter δ used

TABLE 1. Setup time and SAR depending on K at 40% network utilization.

TABLE 2. Relationships among node types, stored fields and sizes.

to customize the aggregation policy. As can be concluded
from the data represented in Figure 22, the introduction of
a hierarchical data structure and the proposed aggregation
strategy do not have an impact on the number of the generated
network snapshots and have little impact on the number of
generated CAs.

Then, we approximate the memory cost of each type of
node (root, NS and CA) according to the information con-
tained by such nodes. Table 2 details the relationship among
the fields stored in each type of node and their sizes.

The values gathered in Table 2 correspond to a worst-case
scenario with respect to memory usage. In such a case, m
represents the number of links in the network, n is the number
of services, and p is the number of NSs, where p = 2n − 1

40530 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

FIGURE 22. Impact of parameter δ associated with the aggregation policy on storage space required by the used data structures.

is the maximum number of NSs created when n services are
enabled in the network. Additionally, [](::x) denotes a list of
length x, and (::x) represents a dictionary of length x. Taking
into account that short type values use 2 bytes, int values use
4 bytes, and long values use 8 bytes, we can approximate the
maximum size of each node type as shown in equations 5, 6
and 7. Note that the maximum number of VLAN tags avail-
able for each link is 4096 and that the overhead introduced by
lists and dictionaries is not considered in these values because
they are machine- and language-dependent.

Size_root = 4+ 8+ 8+ 4+ 4p = 24+ 4(2n− 1)

= 20+ 8n ' 8n bytes (5)

Size_CA = 4+ 8+ 8+ m(4+ 4096 ∗ 2)+ 4+ 4p

= 24+ 8196m+ 4p = 20+ 8196m+ 8n

' 8196m+ 8n bytes (6)

Size_NS = 4+ 8+ 8+ 4n+ m(4+ 4096 ∗ 2)+ 8n

+4+ 4 = 24+ 4(2n− 1) = 28+ 12n

+8196m ' 8196m+ 12n bytes (7)

Once the maximum sizes of the involved data structures
have been computed, we approximate the number of CA and
NS nodes by linear regressions based on the results depicted
in Figure 22. The amount of memory needed by various data
structures, determined using all of these values, is shown
in Figure 23 for the case of the ESNET topology and as a
function of the number of concurrent services in the network.

The results presented in Figure 23 show that memory usage
is clearly dominated by the storage impact of NS nodes.
The storage impact of CA nodes included to improve the
efficiency of the admission control procedure is close to being
negligible. As to the storage impact of NS nodes, the main
contributing factor is the storage needed by the availability
vector.

Nevertheless, the obtained results show that the memory
needs of the proposed solution are acceptable for any current

FIGURE 23. Maximum amount of memory needed by the proposed data
structures.

commodity server. Additionally, it must be taken into account
that the presented values are maximum values.

E. SUMMARY OF LITERATURE REVIEW AND DISCUSSION
To allow for an easier comparison of all studies analysed in
the ‘‘Related Studies’’ section and the proposal presented in
this paper, Table 3 provides a structured summary of their
main characteristics.

The analysed studies are focused on optimizing data trans-
fers through communication networks, and therefore, the net-
work resource being managed in most of them is bandwidth.
An exception is the study of by Guo et al. [18] that aims at
optimizing a cost parameter computed as a combination of
flow table utilization and path length. To achieve their objec-
tives, most studies follow the link-based resource manage-
ment approach, although some of them [16], [18], [23], [29]
propose path-based approaches. Additionally, two studies by
Chung et al. [24], [31] aim at developing amulti-domain solu-
tion relying on the information provided by software-defined
exchanges where scheduling and actual bandwidth reserva-
tion are performed internally by each domain controller.

VOLUME 8, 2020 40531

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

TABLE 3. Summary of literature review.

As to scheduling, among the studies that allow for
advance reservations, only a few are based on fixed time
slots [17], [34]. Most of them opt for the flexibility provided
by dynamic time slots even if managing such structures is
more complex. In [22], Barshan et al. propose a mechanism
for improving the admittance ratio of video transfers in media
production networks, which are a specific use case character-
ized by an interdependence among different video transfers.

Zuo et al. have published several papers [21], [32], [33],
[35] dealing with the bandwidth reservation service as an
enabler of large amounts of data transfers with a guaranteed
performance. In their successive studies, the authors explore
various optimization options with respect to the schedul-
ing of data transfers: earliest completion vs. shortest dura-
tion, maximization of the overall amount of transferred data
vs. maximization of the number of accepted requests, etc.
In another study [36], researchers also consider the possibility
of splitting traffic requests amongmultiple paths to maximize
the number of accepted requests.

The data structure used by these authors to model their
bandwidth reservation system exhibits some similarities with

the NSTree data structure. In fact, Zuo et al. introduce the
concepts of a time step and a time window. A time step
is defined as a time lapse in which bandwidth availability
remains constant for all network links and therefore is similar
to the network snapshot concept. A time window is a concept
used to aggregate one or multiple consecutive time steps
where the bandwidth availability of each link in the time
window is the smallest among all the grouped time steps.
Therefore, the time window concept is similar to the CA
concept. However, in the cited studies, the authors propose
neither an aggregation policy nor a mechanism to keep the
tree balanced. Additionally, they do not analyse the impact of
the aggregation policy on the execution time of the bandwidth
reservation algorithm.

In fact, execution time is not considered in most of the
papers as a parameter in the evaluation of performance of the
solution and is measured only in [33]. The obtained results
show that the average time needed to process a bandwidth
reservation request increases exponentially with network
size. However, in our proposal, the network size only affects
the pre-computation phase, which is performed only once at

40532 VOLUME 8, 2020

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

the network initialization stage, and not the on-demand phase.
Therefore, in our approach, bandwidth reservation requests
can be processed with a linear rise in execution time as
network size increases.

In fact, for each service reservation request, the on-
demand path randomization and the setup are performed.
As explained above, the setup time considers both the check
time and the update time for the accepted services. These two
times are dependent on the number of links in the network
since to check or update the values of nodes in the NSTree,
it is necessary to operate over the consumption vector. Note
that the latter represents the aggregate available bandwidth
for each unidirectional link in the network graph. Since this
vector is implemented as a one-dimensional array, the check
or update operations are dependent on the size of this array.
Nonetheless, using a consumption vector that summarizes the
availability of network resources allows these operations to
be performed in O(k), where k is the number of unidirectional
links in the network graph. On the one hand, the checking
phase only requires a comparison between the consumption
vector computed for the alternative path being tested and the
consumption vector of the given node in the NSTree. On the
other hand, the update phase only requires a subtraction of
the consumption vector computed for the alternative path
being tested and the consumption vector of the given node in
the NSTree.

As to resource utilization and the number of accepted
services, it must be taken into account that the acceptance
of a bandwidth reservation request ultimately depends on the
available resources in the network for the request’s duration.
This depends heavily on the distribution of service requests
with respect to endpoints and bandwidth as well as on the
mesh level of the network. A popular mechanism for improv-
ing the service acceptance ratio and consequently resource
utilization is splitting bandwidth reservations into multiple
smaller sub-flows that can be routed through different paths.
However, such approaches are mostly limited to the literature,
and practical implementations are scarce due to the additional
complexity and buffering capacity necessary to store and
reorder packets received out of order.

Our approach successfully improves the service accep-
tance ratio and resource utilization by maintaining multiple
alternative paths for each possible source-destination pair in
the network. Accordingly, if it is impossible to route a service
request through the first alternative path due to bandwidth
unavailability, other possible alternative paths will be con-
sidered. The obtained results show that there is a signifi-
cant improvement in the number of accepted services for
up to 3 alternative paths. For higher path counts, the rel-
ative increase is not as prominent. The reason is that the
path randomization algorithm executed in the on-demand
phase results in balanced network usage, and therefore,
if a service request cannot be routed through the pre-
ferred path because the latter does not have available band-
width, the remaining alternative paths are usually similarly
in use.

IX. CONCLUSION
In this paper, an approach to supporting advance reservations
that leverages the SDN paradigm has been proposed. This
approach uses two custom data structures, namely, network
snapshots and the NSTree, and its aim is to evolve BoD
service provisioning in the REN environment.

The novelty of this solution relies on per-network resource
management designed to handle the timing constraints of the
advance reservations support. Network snapshots allow for
representing a constant resource availability during a fixed
period of time. Arranging network snapshots in the NSTree
hierarchically allows for the running time of the admission
control procedure to be kept on the order of milliseconds.
In summary, the utilization of a hierarchical structure, where
the CAs aggregate multiple NSTree nodes and advertise a
set of common resources available during a longer time
span, results in shorter time needed to perform the admis-
sion control procedure. Incidentally, the introduction of this
strategy does not have an impact on the number of generated
network snapshots, the number of rejected services or the
overall network resource utilization since these parameters
are independent of the number of CAs.

The proposed solution has been validated using the ESNet
topology and the DynPaC framework running as an ONOS
application where the data structures and algorithms designed
to support the advance reservations have been included. The
average median setup time, i.e., the time needed to accept or
reject a service, remains on the order of milliseconds in the
case of an application to a real-world REN’s topology. The
path computation strategy followed in this approach relies
on pre-computation and posterior randomization of a set of
alternative paths. The experiments show that it is unnecessary
to pre-compute a very large number of paths to optimize net-
work resource utilization. Moreover, in the case of the ESNet
topology, pre-computation of four paths results in network
resource utilization of 96,25%, a figure that is 33% higher
than that in the case of using a single path, and the service
acceptance ratio is 89 %. As a consequence, these results
validate the suitability of the advance reservation mechanism
for use in the REN environment.

Although the solution presented in this paper has been
demonstrated to be a step forward in the support for advance
reservations in software-defined networks, the authors of this
paper are interested in continuing to improve it. Among
the topics to be studied further, it is worth mentioning the
introduction of new path computation algorithms that will
take into account the actual network congestion or addi-
tional parameters such as latency. Moreover, there are plans
to extend the data structures and algorithms to take into
account not only bandwidth availability but also VLAN
availability.

REFERENCES
[1] Software-Defined Networking: The new norm for networks, Open Netw.

Found., Menlo Park, CA, USA, 2012.
[2] AT&T. (Jan. 2015). AT&T Domain 2.0 Vision White Paper. Accessed:

Jan. 5, 2020. [Online]. Available: http://www.att.com/

VOLUME 8, 2020 40533

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

[3] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus,
Requirements for Traffic Engineering Over MPLS, document RFC 2702,
Internet Requests for Comments, Sep. 1999.

[4] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, ‘‘A survey on the
contributions of software-defined networking to traffic engineering,’’ IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 918–953, 2nd Quart., 2017.

[5] ESnet. Accessed: May 14, 2017. [Online]. Available: http://www.es.net/
[6] ESnet’s OSCARS with FloodLight. Accessed: Jan. 5, 2020. [Online]. Avail-

able: https://github.com/hsr/oscars-gui
[7] Géant. Accessed: Jan. 5, 2020. [Online]. Available: https://www.

geant.org/
[8] AutoBAHN. Accessed: Jan. 5, 2020. [Online]. Available:

http://geant3.archive.geant.net/service/autobahn/pages/home.aspx
[9] M. Degermark, T. Köhler, S. Pink, and O. Schelen, ‘‘Advance reservations

for predictive service,’’ in Network and Operating Systems Support for
Digital Audio and Video. Berlin, Germany: Springer, 1995, pp. 1–15.

[10] N. Charbonneau and V. M. Vokkarane, ‘‘A survey of advance reserva-
tion routing and wavelength assignment in wavelength-routed WDM net-
works,’’ IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1037–1064,
4th Quart., 2012.

[11] J. W. Guck, M. Reisslein, and W. Kellerer, ‘‘Function split between
delay-constrained routing and resource allocation for centrally managed
QoS in industrial networks,’’ IEEE Trans Ind. Informat., vol. 12, no. 6,
pp. 2050–2061, Dec. 2016.

[12] A. Mendiola, J. Astorga, E. Jacob, K. Stamos, A. Juszczyk, K. Dombek,
J. Vuleta-Radoicic, and J. Ortiz, ‘‘Multi-domain bandwidth on demand
service provisioning using SDN,’’ in Proc. IEEE NetSoft Conf. Workshops
(NetSoft), Jun. 2016, pp. 353–354.

[13] M. Karakus and A. Durresi, ‘‘Quality of service (QoS) in soft-
ware defined networking (SDN): A survey,’’ J. Netw. Comput. Appl.,
vol. 80, pp. 200–218, Feb. 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804516303186

[14] T. Wang and J. Chen, ‘‘Bandwidth tree–a data structure for routing in
networks with advanced reservations,’’ in Proc. Conf. Proc. IEEE Int.
Perform., Comput., Commun. Conf., Apr. 2002, pp. 37–44.

[15] R. A. Guerin and A. Orda, ‘‘Networks with advance reservations: The
routing perspective,’’ in Proc. IEEE INFOCOM . Conf. Comput. Commun.,
vol. 1, Mar. 2000, pp. 118–127.

[16] M. I. Andreica and N. Tapus, ‘‘High multiplicity scheduling of file trans-
fers with divisible sizes on multiple classes of paths,’’ in Proc. IEEE Int.
Symp. Consum. Electron., Apr. 2008, pp. 155–158.

[17] M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim, ‘‘A flexible reser-
vation algorithm for advance network provisioning,’’ in Proc. ACM/IEEE
Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2010,
pp. 1–11.

[18] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, ‘‘STAR:
Preventing flow-table overflow in software-defined networks,’’ Com-
put. Netw., vol. 125, pp. 15–25, Oct. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128617301779

[19] M. Barshan, H. Moens, and B. Volckaert, ‘‘Dynamic adaptive advance
bandwidth reservation in media production networks,’’ in Proc. IEEE
NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 58–62.

[20] L. C. Wolf and R. Steinmetz, ‘‘Concepts for resource reservation in
advance,’’Multimedia Tools Appl., vol. 4, no. 3, pp. 255–278, 1997.

[21] L. Zuo, M. M. Zhu, and C.-H. Chang, ‘‘Optimizing trade-off between cost
and performance of data transfers using bandwidth reservation in dedicated
networks,’’ J. Netw. Syst. Manage., vol. 27, no. 1, pp. 166–187, Jul. 2018,
doi: 10.1007/s10922-018-9463-2.

[22] M. Barshan, H. Moens, B. Volckaert, and F. De Turck, ‘‘Design and eval-
uation of a flexible advance bandwidth reservation algorithm for media
production networks,’’ in Proc. IFIP/IEEE Symp. Integr. Netw. Service
Manage. (IM), May 2017, pp. 142–150.

[23] Y. Wang, C. Q. Wu, and A. Hou, ‘‘Periodic scheduling of deadline-
constrained variable slot-bandwidth reservations for scientific collabo-
ration,’’ in Proc. 26th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2017, pp. 1–9.

[24] J. Chung, R. Kettimuthu, N. S. V. Rao, and I. Foster, ‘‘Democratizing net-
work reservations through application-aware orchestration,’’ in Proc. 27th
Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2018, pp. 1–9.

[25] L.-O. Burchard, ‘‘Analysis of data structures for admission control of
advance reservation requests,’’ IEEE Trans. Knowl. Data Eng., vol. 17,
no. 3, pp. 413–424, Mar. 2005.

[26] J. Schneider and B. Linnert, ‘‘Efficiently managing advance reservations
using lists of free blocks,’’ in Proc. 23rd Int. Symp. Comput. Archit. High
Perform. Comput., Oct. 2011, pp. 183–190.

[27] O. Schelen, A. Nilsson, J. Norrgard, and S. Pink, ‘‘Performance of QoS
agents for provisioning network resources,’’ in Proc. 7th Int. Workshop
Qual. Service (IWQoS), Jun. 1999, pp. 17–26.

[28] M. I. Andreica and N. Tapus, ‘‘Efficient data structures for online QoS-
constrained data transfer scheduling,’’ in Proc. Int. Symp. Parallel Distrib.
Comput., 2008, pp. 285–292.

[29] M. R. Celenlioglu, M. F. Tuysuz, and H. A. Mantar, ‘‘An SDN-based scal-
able routing and resource management model for service provider net-
works,’’ Int. J. Commun. Syst., vol. 31, no. 8, p. e3530, Feb. 2018.

[30] A. Hou, C. Q. Wu, D. Fang, Y. Wang, and M. Wang, ‘‘Bandwidth schedul-
ing for big data transfer using multiple fixed node-disjoint paths,’’
J. Netw. Comput. Appl., vol. 85, pp. 47–55, May 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804516303022

[31] J. Chung, R. Kettimuthu, N. Pho, R. Clark, and H. Owen, ‘‘Orchestrating
intercontinental advance reservations with software-defined exchanges,’’
Future Gener. Comput. Syst., vol. 95, pp. 534–547, Jun. 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X18301687

[32] L. Zuo, M. M. Zhu, C. Q. Wu, and A. Hou, ‘‘Intelligent bandwidth reser-
vation for big data transfer in high-performance networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[33] L. Zuo, M. M. Zhu, and C. Q. Wu, ‘‘Bandwidth reservation strate-
gies for scheduling maximization in dedicated networks,’’ IEEE Trans.
Netw. Service Manage., vol. 15, no. 2, pp. 544–554, Jun. 2018,
doi: 10.1109/TNSM.2018.2794300.

[34] M. Barshan, H. Moens, B. Volckaert, and F. D. Turck, ‘‘Design
and evaluation of a dual dynamic adaptive reservation approach
in media production networks,’’ J. Netw. Comput. Appl., vol. 80,
pp. 109–122, Feb. 2017.[Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1084804516303083

[35] L. Zuo, ‘‘Bandwidth preemption for data transfer request with higher prior-
ity,’’ in Proc. IEEE 36th Int. Perform. Comput. Commun. Conf. (IPCCC),
Dec. 2017, pp. 1–2.

[36] X. Zhang, C. Q. Wu, L. Zuo, A. Hou, and Y. Wang, ‘‘Bandwidth schedul-
ing with flexible multi-paths in high-performance networks,’’ in Proc. 18th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018,
pp. 11–20.

[37] C. Argyropoulos, D. Kalogeras, G. Androulidakis, and V. Maglaris,
‘‘PaFloMon - a slice aware passive flow monitoring framework for Open-
Flow enabled experimental facilities,’’ in Proc. Eur. Workshop Softw.
Defined Netw., Oct. 2012, pp. 97–102.

[38] A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element
(PCE)-Based Architecture, document RFC 4655, RFC Editor, Internet
Requests for Comments, Aug. 2006. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4655.txt

[39] J. Zheng and H. T. Mouftah, ‘‘Routing and wavelength assignment for
advance reservation in wavelength-routed WDM optical networks,’’
in Proc. IEEE Int. Conf. Commun. Conf. (ICC), vol. 5, May 2002,
pp. 2722–2726.

[40] F. Keshavarz-Kohjerdi, A. Bagheri, and A. Asgharian-Sardroud,
‘‘A linear-time algorithm for the longest path problem in rectangular
grid graphs,’’ Discrete Appl. Math., vol. 160, no. 3, pp. 210–217,
Feb. 2012.[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0166218X11003088

[41] D. Eppstein, ‘‘Finding the K shortest paths,’’ SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1999.

ALAITZ MENDIOLA received the B.Sc. and
M.Sc. degrees in telecommunication engineering
and the Ph.D. degree from the University of the
Basque Country (UPV/EHU), in 2011 and 2017,
respectively. She worked as a Researcher with the
I2T Research Group, from 2012 to 2017, partici-
pating in the EU-funded projects GN3plus, Dyn-
PaC, and GN4. She joined GEANT in 2018 as an
SDN Developer. She is currently an Research and
Development Manager with the Keynetic Tech-

nologies, University of the Basque Country UPV/EHU focused on digital
identity and SDN-based access control. Her research interests include traffic
engineering, software-defined networking, and network function virtualiza-
tion (NFV).

40534 VOLUME 8, 2020

http://dx.doi.org/10.1007/s10922-018-9463-2
http://dx.doi.org/10.1109/TNSM.2018.2794300

A. Mendiola et al.: Advance Reservation System to Improve Network Resource Utilization in Software-Defined Networks

JASONE ASTORGA received the B.Sc. and M.Sc.
degrees in telecommunication engineering and the
Ph.D. degree from the University of the Basque
Country (UPV/EHU), in 2004 and 2013, respec-
tively. From 2004 to 2007, she worked at Nex-
tel S.A., a telecommunication company. In 2007,
she joined UPV/EHU as a Lecturer and as a
Researcher in the I2T Research Lab. She is
currently an Assistant Professor with the Com-
munications Engineering Department. She has

participated in multiple research projects at the local, national, and Euro-
pean levels, and has supervised two Ph.D. theses. Her research interests
include software-defined networking, network function virtualization, and
IP-enabled wireless sensor networks and cybersecurity.

EDUARDO JACOB (Senior Member, IEEE)
received the B.Sc. degree in industrial engineer-
ing and the M.Sc. degree in industrial commu-
nications and electronics from the University of
the Basque Country (UPV/EHU), in 1991, and
the Ph.D. degree from ICT, in 2001. He worked
for two years in a public Research and Devel-
opment telecommunication enterprise (currently
Tecnalia). Later, he served for several years as an
IT Director in the private sector before returning

to the Faculty of Engineering in Bilbao (UPV/EHU), where he was the
Head of the Communications Engineering Department, from 2012 to 2016.
He is currently an Assistant Professor with the Faculty of Engineering in
Bilbao. He also leads the I2T (Engineering and Research on Telematics)
Research Laboratory. He has directed several Ph.D. theses and managed
several research projects at the local, national, and European levels. His
research interests include applying software-defined networks to industrial
communications, cybersecurity in distributed systems, and IP-enabled wire-
less sensor networks.

JUANJO UNZILLA received the B.S. and M.S.
degrees in electrical engineering and the Ph.D.
degree in communications engineering from the
UPV/EHU, in 1990 and 1999, respectively. Hewas
the Head of the Electronic and Telecommunica-
tions Department, from 2001 to 2004, and the
Vice-Chancellor of UPV/EHU, from 2004 to 2013.
He is currently a Professor with the Communica-
tions Engineering Department, UPV/EHU, where
he teaches subjects related to telecommunication

networks and services. He is a member of the I2T Research Lab, where
he participates in several regional, national, and European Research and
Development projects. His research interests include SDN and NFV in 5G
networks and its applications to industrial communications and cybersecurity
in distributed systems. He is one of the co-founders of the spin-off Keynetic
in 2017 focused on cybersecurity services to SMEs.

VOLUME 8, 2020 40535

