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ABSTRACT Land use classification of high-resolution remote sensing (HRRS) images is a challenging
and prominent problem in which pretrained convolutional neural networks (CNNs) have made amazing
achievements. However, single-structured pretrained CNNs have limitations to obtain high classification
accuracy. Besides, each pretrained CNNs has different classification ability to classify land use. Therefore,
taking advantages of different pretrained CNNs is essential for land use classification. In this study,
we propose a novel classification approach based on multi-structure joint decision-making strategy and
pretrained CNNs. The basic idea is to apply three CNNs to classify land use separately with the final
classification results achieved by joint decision-making strategy. The proposed approach comprises of three
steps. First, we create a new fully connected layer and Softmax classification layer.We combine themwith the
convolutional layers of AlexNet, Inception-v3, and ResNet18. AlexNet also includes the first two layers of
fully connected layers. Secondly, we train these designed CNNs to converge by momentum-driven stochastic
gradient descent. Thirdly, we utilize joint decision-making strategy to obtain the final prediction results by
combining the prediction results of these designed CNNs. The performance of the proposed approach is
evaluated on the UC Merced land use, AID, NWPU-45, OPTIMAL-31 datasets and further compared with
the state-of-the-art methods. Results demonstrate that the proposed approach outperforms other methods.
The benefits of the proposed approach are threefold. First, the multi-structure network maximizes different
pretrained CNN structures to extract rich convolution features. Secondly, it could remarkably improve the
classification accuracy of indistinguishable land use types of the HRRS images. Thirdly, it has great potential
on small dataset with more land use types. The proposed CNN based on multi-structure joint decision
approach achieves accurate and reliable land use classification with these benefits.

INDEX TERMS Land use classification, convolutional neural network, transfer learning, high-resolution
remote sensing images, multi-structure.

I. INTRODUCTION
Land is an indispensable component of human production
and life [1]. Precise and refined land use classification is
essential for land resource management [2], [3], urban plan-
ning [4]–[6], precision agriculture [7], [8], environmental
protection [9], and sustainable development [10]. The same
land use types have complex spatial and structural patterns,
whereas different land use types may have similar reflectance
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spectra and textures [11], [12]. The precise classification of
land use types has become a difficult issue due to high intr-
aclass heterogeneity and low interclass diversity [13]–[15].
With the recent advancement of remote sensing technology
and the increase in the number of satellites, numerous high-
resolution remote sensing (HRRS) images are being obtained.
HRRS images cover substantial land use information, which
not only provides opportunities for land use classification but
also brings new challenges.

Currently, HRRS image land use classification strategies
can be categorized into three classes: (1) low-level visual
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feature-based, (2) midlevel visual representation-based, and
(3) high-level vision information-based methods [14]. The
first classification strategy is based on low-level visual
attributes of remote sensing images. Such attributes include
spectrum, texture, and structure, which rely on the color his-
togram (CH), local binary pattern (LBP), and scale invariant
feature transform (SIFT) to extract features for classifica-
tion [14], [16]–[19]. However, this strategy relies heavily on
low-level features and generally performs poorly in gener-
alization, especially when the scene is complex and diverse.
To compensate, scholars have proposed the second classifica-
tion strategy based on mid-level visual representation. They
designed the bag-of-visual-words model (BOVW), spatial
pyramid co-occurrence kernel (SPM), probabilistic latent
semantic analysis (pLSA), and other approaches to encode
low-level features locally and improve classification accu-
racy [20]–[22]. This strategy requires rich expert experience
and manual design encoding rules, which are difficult and
subjective. Given these challenges, the classification strategy
based on high-level vision information is proposed. The
advantage of this strategy is considered to acquire abstract
and discriminative semantic from HRRS images features
automatically and convert the classification task into an
end-to-end problem. It could avoid the complexity of data
reconstruction in feature extraction and classification. Typi-
cal methods based on high-level vision information include
restricted boltzmann machine (RBN) [23], deep belief net-
works (DBN) [24], stacked autoencoder (SAE) [25], [26],
convolutional neural networks (CNNs) [27]–[33], etc.

Recently, CNNs have achieved remarkable achievements
in the field of HRRS images land use classification [34].Most
of the recent works are accustomed to applying advanced
mathematical methods to enhance the feature representa-
tion ability of a single pretrained CNN and improve overall
classification accuracy. Nevertheless, the ability of a single-
structured pretrained CNN to express image features and
classifications is limited. This limitation brings unbalanced
classification accuracy of different land use types and ‘‘short
board effect’’, which is responsible for an unsatisfactory
overall classification accuracy. It can be solved by finding
alternative ways to promote the classification performance.

In this paper, we propose a multi-structure joint decision
approach based on CNN (MJDCNN) and evaluate its perfor-
mance in four HRRS image datasets of land use. Specifically,
we aim to (1) establishMJDCNN for HRRS image classifica-
tion based on three different pretrained CNNs (i.e. AlexNet,
Inception-v3 and ResNet18) and joint decision-making strat-
egy; (2) explore the effect of network training iterations on
the MJDCNN’s classification performance; (3) evaluate the
performance of MJDCNN and the three pretrained CNNs
in terms of the overall classification accuracy, F1-score, and
the classification accuracy of single land use type; and (4)
compare the overall classification accuracies of MJDCNN
and other state-of-the-art classification methods.

The remainder of this paper is organized as fol-
lows: Section II summarizes related works on CNN-based

methods. Section III introduces experimental methods and
strategies, including pretrained CNNs and the proposed
MJDCNN. Section IV shows the experimental results and
analysis. Section V discusses the classification performance
of MJDCNN. The last section draws the conclusions.

II. RELATED WORKS
CNNs utilize convolution kernels to convolute calculations
on images and extract simple to complex features for clas-
sification. Training a capable and well-learned CNN requires
substantial high-quality training sample data with labels, high
computational performance configuration, and an immense
amount of time. With the progress of technology, problems
related to computing performance and training time can be
mitigated. However, in the case of the explosive growth of
HRRS images, high-quality training sample data with labels
remains scarce and difficult to obtain. The existing land use
HRRS image datasets mostly include UC Merced land use
(21 categories with 2100 images) [22], WHU-RS19 (19 cat-
egories with 1,005 images) [35], RSSCN7 (7 categories with
2,800 images) [24], AID (30 types with 10,000 images)
[14], NWPU-45 (45 categories with 31,500 images) [25]
and OPTIMAL-31 (31 categories with 1,860 images) [36]
datasets, which are all small. Training a new CNN with a
small dataset is prone to overfitting, and the training effect
and practicability are poor.

To overcome this problem, transfer learning can utilize
the similarity between tasks, adapt the parameters of pre-
trained CNNs from the original task to land use classi-
fication tasks, and effectively solve the data scarcity of
land use images [37]. Researchers have trained several
CNNs [38]–[41]. The refined classification of HRRS images
of land use based on pretrained CNNs has become an
important trend in the current research in accordance with
the similarity of image structure and classification tasks.
Currently, two mainstream transfer learning stategies are
available. The first is to depend on the pretrained CNNs
to extract the feature vectors of HRRS images and then
input them into other classifiers for classification [42]–[46].
Boualleg et al. used the well-known VGGNet-16 to extract
deep features and then fed to deep forest classifier for clas-
sification, which saved a considerable amount of training
time [43]. Weng et al. obtained image feature vectors
through AlexNet, then classified images by extreme learn-
ing machine. They further compared its performance with
that of Bayes, KNN, and SVM classifiers [44]. Zhou et al.
explored the effects of feature representations from differ-
ent fully connected layers of pretrained CNNs for SVM
classifiers [45]. The second strategy is to input HRRS
images of land use in fine-tuning pretrained CNNs for
classification [47]–[53]. Liang et al. examined the per-
formance of different pretrained CNNs under different
fine-tuning strategies [47]. Liu et al. and Alias et al.
shared low-level parameters and fine-tuned the upper-level
parameters of VGGNet-16 to achieve land use classifica-
tion, and remarkably improved the accuracy [48], [49].
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Moreover, researchers improved fine-tuning strategies with
other novel methods. For example, Scott et al. combined
fine-tuning DCNNs and data augmentation to increase the
overall accuracies [50]. Yang et al. presented the Drop-
Band technique to prevent fine-tuning CNNs overfitting [53].
Liu et al. first proposed attention mechanism based on CNN
to obtain outstanding classification results by integrating
local and global features [51]. Zhang et al. designed a gra-
dient boosting random method based on CNN that overcome
the limitation of training dataset and reduce the computation
complexity [52]. Korshunova added a fuzzy self organization
layer in the last convolution layer of a pretrained CNN and
named it convolutional fuzzy neural network. This method
brought fuzzy logic in CNN, thereby improving the capacity
of handling uncertainty and impreciseness [54].

Despite the above achievement, the ability of a single
pretrained CNN to express image features and perform image
classifications is limited. Thus, mutli-CNNs are proposed to
compensate for this limitation. For instance, Alhichri et al.
proposed a three-branch deep CNN based on SqueezeNet,
which could accept multi-scale image sizes and improve clas-
sification performance [55]. Liu et al. proposed a random-
scale stretched CNN to classify each image under multiple
times and obtain the final results by voting. In this manner,
multiscale images could be obtained and CNN could learn
additional robust features. This method solved the influence
of image scale variation on classification performance [56].
Liu et al. also combined a fixed-scale net and a varied-scale
net to solve the scale variation for remote sensing image
classification [57]. Sun et al. proposed a gated bidirec-
tional network to merge semantic-assist and appearance-
assist information to perform classification, which could
enhance important representation and reduce interference
information [58]. Zheng et al. utilized multi-scale pooling
to enrich image features that extracted from the last convolu-
tional layer [59]. Lu et al. aggregated different features from
different convolution layers through an end-to-end feature
aggregation CNN [60]. Yang et al. fused different scale
image features that extracted from the convolutional and
fully-connected layers to multi-kernel SVM classifier, which
achieved good classification [61]. Du et al. and Li et al. pro-
posed amultiscale improved Fisher kernel coding approach to
integrate multilayer features from multiple CNNs [62], [63].
Chaib et al. utilized discriminant correlation analysis to fuse
image features that extracted from fully-connected layers
of VGG-Net [46]. They proved that this method had the
advantages of convenient operation, low cost, less training
time and good accuracies. However, these methods only
consider multi-scale and multi-layer visual representations of
HRRS images, with little attention being paid to the influence
of different CNN structures.

CNNs considerably vary in their ability to capture features
from different land-use types. Simple CNNs are likely to
extract features of simple land-use types, such as farmlands
and forests, and cannot express abstractive features, such as
dense residential and sparse residential. Complicated CNNs

TABLE 1. The details of three pretrained CNNs.

are better than simple CNNs at capturing complicated fea-
tures, but suffering from negative effects of redundant fea-
tures. Therefore, it is beneficial to take advantages of different
CNNs through jointing decision-making.

III. PROPOSED METHODS
A. CNNs
CNNs are one of the most widely used methods in deep learn-
ing. They learn the image general features in shallow convolu-
tional layers and combine these features to describe images in
a bottom-up manner. The entire process implements mapping
from low-level features to high-level semantics. It consists
of a multi-layer structure, which is divided into convolu-
tion, pooling, activation, fully connected, and classification
layers [64].

The convolution layers are used to convolve images to
extract their features. They can reduce the number of network
weights through local connection and weight sharing. In the
convolutional layer structure, the obtained features become
increasingly inclined to the images’ specific characteristics as
the convolution layers continue to deepen. The pooling layers
are used to reduce the dimension of the convolutional layers.
Thus, they reduce the size of input data, improve computa-
tional efficiency, and prevent dimensionality disasters. The
activation layers are a nonlinear operation of the results of
the convolutional layers or the pooling layers. The fully con-
nected layers summarize feature vectors obtained from the
convolutional layers, forming image global representation.
The classification layer is used to classify the feature vectors
formed by the fully connected layers into the classifier to
obtain the image class.

B. PRETRAINED CNNs
A mass of differently structured pretrained CNNs with good
classification performance are available. This study selects
three pretrained CNNs with completely different structures,
including AlexNet, Inception-v3, and ResNet18, to create
MJDCNN. The details of three pretrained CNNs are shown
in Table 1.

AlexNet, with a total of 60 million parameters and
650,000 neurons, belongs to the traditional CNN. The
weighted layer composes of five convolutional layers and
three fully connected layers [41].

Inception-v3, with a total of 23.9 million parameters and
a depth of 48 layers, is a sparsely connected CNN. It is
characterized by the inclusion of the inception module. This
module has multiple convolution kernels of different scales in
the same convolutional layer, which balances the width and
depth of the CNN [40].
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FIGURE 1. Flowchart of MJDCNN classification.

ResNet18, with a total of 11.7 million parameters and a
depth of 18 layers, is a CNN of residual structure. It can
solve accuracy degradation, which is caused by the increase
in network depth. A forward neural network with ‘‘short-
cut connections’’ is adopted to train this CNN. Shortcut
connection skips one or more layers. Such strategy does
not add additional parameters or increase computational
complexity [42].

AlexNet has the least number of hidden layers in the cham-
pion networks of ImageNet LSVRC over the years. Its struc-
ture, which only deepens in the longitudinal, is the simplest.
The structure of Inception-v3 is the most complex in terms
of vertical deepening and horizontal widening. The struc-
ture of ResNet18 is moderate in complexity, and its depth
is between the first two CNNs. In addition, the pretrained
CNNs strictly define the size of the input data. The three
selected pretrained CNNs require different sizes of input data.
We can ensure the diversity of the input data and eliminate
the lack of image information by reshaping the image size.
In accordance with the structural characteristics of the three
CNNs, Multi-structure Joint Decision Convolutional Neural
Network (MJDCNN) is developed to obtain final classifica-
tion results.

C. MJDCNN
MJDCNN is proposed through the following five steps: pre-
processing data, transferring pretrained CNN, constructing
T-CNN, retraining T-CNN, and classifying joint decision
(Figure 1).

1) PREPROCESSING DATA
The input size of each pretrained CNN is strictly regulated.
We randomly reshape the HRRS images of land use into
regulated size.

2) TRANSFERRING PRETRAINED CNNs
All convolutional layer parameters of the three pretrained
CNNs are transferred. AlexNet also includes the first two
layers of the fully connected layers.When a CNN implements
the classification task, the starting convolution layer extracts
simple image features, such as textures, edges, and colors.
As the number of convolution layers deepens, the image fea-
tures extracted by the convolutional layers gradually become
increasingly inclined from the general features to the features
of the original dataset. Thus, the parameters of all convolu-
tional layers are transferred [42]. The structure of AlexNet
is relatively simple with less convolution layers. In contrast
to the other two networks, AlexNet has three fully connected
layers. Reducing any layer may result in the degradation of
network classification performance. Therefore, we transfer
the first two fully connected layers from AlexNet to ensure
optimal feature extraction.

3) CONSTRUCTING T-CNNs
We reconstruct a new fully connected layer and a Softmax
classification layer after transferring the pretrained CNNs.
The fully connected layer aggregates the feature vectors
obtained by the convolutional layer and then forms a global
representation of HRRS images. HRRS images of land use
and natural optical images have different global features. The
parameters of the fully connected layers in the pretrained
CNNs are specific to the natural optical images. Therefore,
reconstructing the fully connected layer is necessary. The
Softmax layer outputs the classification results of the CNN.
In this study, we name the redesigned CNNs as T-AlexNet,
T-Inception-v3, and T-ResNet18.

4) RETRAINING T-CNNs
We train the redesigned networks using momentum-driven
stochastic gradient descent algorithms. The transferred lay-
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ers use the initial parameters, whereas the fully connected
layer parameters are randomly initialized. Then we input the
training dataset and the corresponding land use type into
the T-CNNs. Afterward, we calculate the entropy loss as the
cost function to update the weights of T-CNNs. The formula
is as follows:

Loss = −
1
K
6K
k=1

[
yk log(tk )+ (1− yk )log(1− tk )

]
(1)

where tk denotes the kth sample that corresponds to the
predicted land use type, yk denotes the kth sample that corre-
sponds to the actual land use type,K is the number of training
samples, and Loss is the cross entropy of the K samples.

5) CLASSIFYING JOINT DECISIONS
The Softmax classifier is widely used given its has good
application effect in ImageNet classification. In addition, its
classification accuracy and running time have shown satis-
factory results. This classification principle uses the Softmax
function to output the probability of all types of images
according to the feature vectors of the inputted images, and
the image belongs to the categorywith the highest probability.

The Softmax classifier and joint decision-making approach
are used to achieve the joint decision classification function.
According to three classification results from T-AlexNet,
T-Inceptionv3, and T-ResNet18 based on Softmax classi-
fier, we combine the three classification results to deter-
mine the final classification through joint decision-making
approach. The details of joint decision-making approach are
as follows:

(i) if the classification results of T-AlexNet, T-Inception-
v3, and T-ResNet18 are the same, the final classification
result is the classification result of T-ResNet18;

(ii) if the classification results of T-AlexNet, T-Inception-
v3, and T-ResNet18 are not the same, the final classification
result is the land use type which has the maximum weighted
average of prediction probability. The weighted average of
prediction probability is calculated by prediction probability
of T-AlexNet, T-Inception-v3, and T-ResNet18. According to
the performance of these three T-CNNs, we define the weight
ratio of the prediction probability of T-AlexNet, T-Inception-
v3, and T-ResNet18 is 1:2:3. The formulas are as follows:

Rfinali =

{
RRi , RAi , RIi , and RRi are the same
argmax(Proi), otherwise

(2)

Proij =
1
6

( exp(θTAjxi)

6M
m=1exp(θ

T
Amxi)

+ 2
exp(θTIj xi)

6M
m=1exp(θ

T
Imxi)

+3
exp(θTRjxi)

6M
m=1exp(θ

T
Rmxi)

)
, i ∈ 1, . . . ,K ; j ∈ 1, . . . ,M

(3)

where Rfinali denotes the final classification result of
MJDCNN of the ith sample; RAi , RIi , and RRi denote
the classification results of T-AlexNet, T-Inception-v3, and
T-ResNet18 of the ith sample, respectively; Proij represents

FIGURE 2. Examples of 21 land use categories in the UC Merced land use
dataset:(a) agriculture; (b) airplane; (c) baseball diamond; (d) beach;
(e) buildings; (f) chaparral; (g) dense residential; (h) forest; (i) freeway;
(j) golf course; (k) harbor; (l) intersection; (m) medium density residential;
(n) mobile home park; (o) overpass; (p) parking lot; (q) river; (r) runway;
(s) sparse residential; (t) storage tanks; (u) tennis courts.

FIGURE 3. Examples of 30 land use categories in the AID dataset:
(a) airport; (b) bareland; (c) baseball field; (d) beach; (e) bridge; (f) center;
(g) church; (h) commercial; (i) dense residential; (j) desert; (k) farmland;
(l) forest; (m) industrial; (n) meadow; (o) medium residential;
(p) mountain; (q) park; (r) parking; (s) playground; (t) pond; (u) port;
(v) railway station; (w) resort; (x) river; (y) school; (z) sparse residential;
(aa) square; (bb) stadium; (cc) storage tanks; (dd) viaduct.

the weighted average prediction probability of the jth land use
type of the ith sample; θAj, θIj, and θRj are theweights of the jth
land use type of the ith sample under T-AlexNet, T-Inception-
v3, and T-ResNet18, respectively; xi is the output of the last
fully-connected layer of the ith sample; M is the number of
land use types; K is the number of training samples.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATASET
The experiment trains and tests MJDCNN using UC Merced
land use, AID, NWPU-45 and OPTIMAL-31 datasets.

The UC Merced land use dataset, which is composed
of 2100 aerial images, is collected from the map downloaded
by the US Geological Survey. A total of 21 land use types,
wherein each type is composed of 100 256×256 pixel images
with a spatial resolution of 0.3 m, are available. The 21 land
use types are shown in Figure 2 [22].

The AID dataset, which is composed of 10000 aerial
images, is collected fromGoogle Earth. A total of 30 land use
types, wherein the number of each type changes from 220 to
420, are available. The images have the size of 600 × 600
pixels with a resolution from 8m to 0.5m. The 30 land use
types are shown in Figure 3 [14].
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FIGURE 4. Examples of 45 land use categories in the NWPU-45 dataset:
(a) airplane; (b) airport; (c) baseball diamond; (d) basketball court;
(e) beach; (f) bridge; (g) chaparral; (h) church; (i) circular farmland;
(j) cloud; (k) commercial area; (l) dense residential; (m) desert; (n) forest;
(o) freeway; (p) golf course; (q) ground track field; (r) harbor;
(s) industrial area; (t) intersection; (u) island; (v) lake; (w) meadow;
(x) medium residential; (y) mobile home park; (z) mountain;
(aa) overpass; (bb) palace; (cc) parking lot; (dd) railway; (ee) railway
station; (ff) rectangular farmland; (gg) river; (hh) roundabout; (ii) runway;
(jj) sea ice; (kk) ship; (ll) snowberg; (mm) sparse residential; (nn)
stadium; (oo) storage tank; (pp) tennis court; (qq) terrace; (rr) thermal
power station; (ss) wetland.

FIGURE 5. Examples of 31 land use categories in the
OPTIMAL-31 dataset:(a) airplane; (b) airport; (c) baseball field;
(d) basketball court; (e) beach; (f) bridge; (g) chaparral; (h) church;
(i) round farmland; (j) business district; (k) dense houses; (l) desert;
(m) forest; (n) freeway; (o) golf field; (p) playground; (q) harbor;
(r) factory; (s) crossroads; (t) island; (u) lake; (v) meadow; (w) medium
houses; (x) mobile house area; (y) mountain; (z) overpass; (aa) parking
lot; (bb) railway; (cc) square farmland; (dd) roundabout; (ee) runway.

The NWPU-45 dataset, which is composed of 31500 aerial
images, is collected fromGoogle Earth. A total of 45 land use
types, wherein each type is composed of 700 256×256 pixel
images with a spatial resolution that varies from about 30 m
to 0.2 m, are available. The 45 land use types are shown in
Figure 4 [25].

The OPTIMAL-31 dataset, which is composed of 1860
aerial images, is collected from Google Earth. A total of
31 land use types, wherein each type is composed of
60 256 × 256 pixel images with a spatial resolution
of 0.3 m, are available. The 31 land use types are shown
in Figure 5 [36].

B. PARAMETERS SETTING
The experiment uses the MATLAB deep learning toolbox as
the deep learning framework. The experimental environment

TABLE 2. Selected values for the training parameters of the CNNs.

is Linux system and uses an NVIDIA Quadro P4000 GPU to
accelerate the calculation. The ratio of train set, validation set,
and test set ratio is 4:2:4. The learning rate is 0.001 and the
mini-batch size is 32. The validation set verifies the accuracy
and loss rate every 10 steps.The numbers of iterations are 5,
10, and 20. The experiment is repeated 10 times. The mean
results of the experiment repeated for 10 times are as the final
results. These parameters are provided in Table 2.

C. RESULTS AND ANALYSIS
1) OVERALL CLASSIFICATION ACCURACIES (OAS)
OAs reflect the overall performance of the CNNs. The OAs
of the proposed MJDCNN and three single-structured CNNs
vary on different training iterations for different datasets,
shown in Figure 6.

a: UC MERCED LAND USE DATASET
The proposed MJDCNN has the highest OA among the
single-structured CNNs in the same iterations, as shown
in Figure 6(a). Among these three single-structured CNNs,
T-ResNet18 has the best OA, whereas T-AlexNet has the
lowest. When the number of iterations is 20, MJDCNN’s OA
reaches 95.79%, whereas those of T-AlexNet, T-Inception-
v3, and T-ResNet18 are 90.02%, 91.89%, and 93.95%,
respectively. MJDCNN’s OA increases by 5.77%, 3.90%,
and 1.84% compared with that of the three single-structured
networks. In the different iterations, the OA of each CNN has
similar variation trend. The OAs of MJDCNN and T-AlexNet
increase gradually as the number of iterations increases. The
OAs of T-Inception-v3 and T-ResNet18 increase slowly as
the number of iterations increases. These CNNs have the best
OAs when the iterations are 20, whereas the worst OAs are
obtained when the iterations are 5. The OA of MJDCNN
increases from 94.85% to 95.79% when the number of itera-
tions is from 5 to 20.

b: AID DATASET
Similar to the UC Merced land use dataset, MJDCNN has
the best OA and T-AlexNet has the lowest OA under the
same iterations, as shown in Figure 6(b). When the number of
iterations is 20, MJDCNN’s OA reaches 94.18%, and those
of T-AlexNet, T-Inception-v3, and T-ResNet18 are 87.91%,
92.05%, and 92.58%, respectively. MJDCNN’s OA increases
by 6.27%, 2.13%, and 1.60% compared with that of the three
single-structured networks. Moreover, the OA of each CNN
has a similar increasing trend when the number of iterations is
from 5 to 20. The OAs under 20 iterations are always higher
that under 5 and 10 iterations for four CNNs. For example,
the OAs of MJDCNN are 93.19%, 93.94%, 94.18% in 5, 10,
20 iterations, respectively.
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FIGURE 6. Overall classification accuracies of T-CNNs in different iterations for UC Merced land use, AID, NWPU-45 and
OPTIMAL-31 datasets. The overall classification accuracies of T-AlexNet, T-Inception-v3, T-ResNet18, and MJDCNN when the number of
iterations is 5, 10 and 20 are shown from left to right.

c: NWPU-45 DATASET
Similarly, the performance of the MJDCNN is the best and
the performance of T-AlexNet is the worst under the same
iterations, as shown in Figure 6(c). When the number of
iterations is 20, MJDCNN’s OA reaches 93.18%, and those
of T-AlexNet, T-Inception-v3, and T-ResNet18 are 83.21%,
92.05%, and 91.41%, respectively. MJDCNN’s OA increases
by 9.97%, 1.13%, and 1.77% compared with other CNNs.
As the number of iterations increases, the OAs of four
CNNs increase gradually as well. The OAs of MJDCNN
have risen from 92.19% to 93.18%. Moreover, the OAs of
T-ResNet18 are always poorer than that of T-inception-v3.

d: OPTIMAL-31 DATASET
As shown in Figure 6(d), the proposed MJDCNN
remains to have the best results. Among these three
single-structured CNNs, T-ResNet18 has the best OA.

Under 20 iterations, MJDCNN’s OA reaches 94.57%,
whereas those of T-AlexNet, T-Inception-v3, and
T-ResNet18 are 80.65%, 82.41%, and 86.34%, respectively.
MJDCNN’s OA increases by 13.92%, 12.16%, and 8.23%
compared with that of the other CNNs, exhibiting a signif-
icant extent of increase. In the different iterations, the OA
of each CNN has slightly different trend. When the number
of iterations is 5, the OA of T-AlexNet is better than that
of T-Inception-v3. By contrast, the result is inversed when
the number of iterations is 10 and 20. When the number of
iterations is from 5 to 20, the OA ofMJDCNN increases from
87.47% to 94.57%.

2) F1-SCORE
F1-score comprehensively evaluates the classification ability
of the CNNs. It is obtained by dividing the arithmetic mean
by the geometric mean of recall and precision. Precision and
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FIGURE 7. F1-Score of CNNs under different iterations for the UC Merced land use, AID, NWPU-45 and OPTIMAL-31 datasets. The F1-score
of T-AlexNet, T-Inception-v3, T-ResNet18, and MJDCNN when the number of iterations is 5, 10 and 20 are shown. The blue circle, the green
circle and the red circle respectively represent F1-score when the number of iterations is 5, 10 and 20. The gray-colored line represents
the change trend of CNN’s F1-score.

recall are two indicators that measure the performance of the
classification from two aspects. Precision is the ratio that is
accurately predicted to be positive for all forecasts. Recall is
the proportion that is accurately predicted to be positive for
all in reality. The performance of CNNs is stronger when the
F1-score is higher.

Figure 7 shows the comparison of the F1-score of each
CNN in different iterations for the UCMerced land use, AID,
NWPU-45 and OPTIMAL-31 datasets. The three points from
left to right on each fold line represent the F1-score when
the number of iterations is 5, 10, and 20. As the number of
iterations increases, the F1-score shows a growing trend as
well.

a: UC MERCED LAND USE DATASET
The F1-score of T-AlexNet increases rapidly, and that of
the other CNNs increase slowly. MJDCNN’s F1-score is
always larger than the other three single-structured CNNs.

In the single-structured CNNs, T-ResNet18 has the highest
F1-score, followed by T-Inception-v3, and T-AlexNet succes-
sively (Figure 7(a)).

b: AID DATASET
The growth trends of F1-scores of the four CNNs are similar
to that under UC Merced land use dataset. The performance
of MJDCNN is the best in all scenarios. When the number
of iterations is 20, the MJDCNN’s F1-score reaches 93.95%.
In the single-structured CNNs, T-ResNet18 still performs
excellently compared with others (Figure 7(b)).

c: NWPU-45 DATASET
The four CNNs have approximate changes of the F1-score.
The F1-score of MJDCNN remains the best, reaching
a value of 93.20%. For the single-structured CNNs, the
T-Inception-v3’s F1-score is slightly larger than that of
T-ResNet18 (Figure 7(c)).
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FIGURE 8. Confusion matrices of MJDCNN for UC Merced land use, AID, NWPU-45 and OPTIMAL-31 datasets when the number of iterations is 20
((a) Confusion matrix of UC Merced land use dataset; (b) Confusion matrix of AID dataset;(c) Confusion matrix of NWPU-45 dataset; (d) Confusion matrix
of OPTIMAL-31 dataset).

d: OPTIMAL-31 DATASET
The F1-score of MJDCNN is always the best among the three
single-structured CNNs, reaching a value of 94.66%. It grows
instantly from 5 iterations to 10 iterations but slowly from
10 iterations to 20 iterations. Some differences are observed
among the three single-structured CNNs. T-Inception-v3 per-
forms unsteadily. Its performance is worse than T-AlexNet’s
performance when the number of iterations is 5 and 20 but
better than the T-AlexNet’s performance when the number of
iterations is 10. The performance of T-ResNet18 is only sec-
ond to that of MJDCNN (Figure 7(d)).

3) CLASSIFICATION ACCURACY OF SINGLE LAND USE TYPE
An effective classifier should have not only high OA but also
a uniform distribution of single land use type classification
accuracy.

We calculate and illustrate the mean classification accu-
racy of each land use type of CNNs based on MJDCNN
and the three single-structured CNNs under the iteration
number of 20, shown in Table 3. Confusion matrices of
MJDCNN for UCMerced land use, AID, NWPU-45 and
OPTIMAL-31 datasets under the iteration number of 20 are
showed in Figure 8. Figure 9 shows that the increase degree of
classification accuracy of single land use type for MJDCNN
under the iteration number of 20 compared with the best
classification accuracy of single land use type among
T-AlexNet, T-Inception-v3, and T-ResNet18.

a: UC MERCED LAND USE DATASET
At shown in Table 3, the maximum accuracy of the three
single-structured CNNs is similar, whereas the minimum
accuracy gap is large. The difference between T-Alexnet’s
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FIGURE 9. Increase classification accuracy of single land use type under MJDCNN for UC Merced land use, AID, NWPU-45 and
OPTIMAL-31 datasets compared with the best classification accuracy of the single land use type among T-AlexNet, T-Inception-v3, and
T-ResNet18 (the number of iterations is 20).

maximum and minimum accuracy is 25.05%, and that of
T-ResNet18 is the smallest at 20.71%. The maximum accu-
racy ofMJDCNN is 100%, the minimum accuracy is 84.26%,
and the difference is 15.74%. The difference is 9.31%, 7.47%,
and 4.97% lower than that in T-AlexNet, T-Inception-v3,
and T-ResNet18, respectively. In Figure 8(a), land use types
with low classification accuracy are represented by buildings,
dense residential, and medium density residential. Classifi-
cation accuracy of all land use types is improved through
MJDCNN. Specifically in buildings, dense residential, and
medium density residential, these accuracies respectively
increase by 3.60%, 5.90%, and 5.08% compared with the
best performance among the three single-structured CNNs
Figure 9(a).

b: AID DATASET
In Table 3, the maximum and minimum accuracy are similar
to those of the three single-structured CNNs. The difference
between the T-AlexNet’s maximum accuracy and minimum
accuracy is 29.79%, and that of T-ResNet18 is the smallest
at 23.26%.The maximum accuracy of MJDCNN is 99.51%,
whereas the minimum accuracy is 80.02%. The difference is
19.49%, which is 10.30%, 6.21%, and 3.77% lower than the
differences in T-AlexNet, T-Inception-v3, and T-ResNet18,
respectively. In Figure 8(b), parking lot and school have low
classification accuracies. Except for parking and mountain,
the classification accuracy of land use types is improved by
MJDCNN. Specifically, in center, medium residential, resort,
school and square, the accuracies respectively increase by
3.80%, 2.09%, 3.23%, 4.01% and 3.12% compared with the

TABLE 3. Classification accuracy of single land use type of CNNs for the
UC Merced land use, AID, NWPU-45 and OPTIMAL-31 datasets. Max_acc
and Min_acc respectively denote the maximum and minimum
classification accuracy of single land use type of CNNs. Max-Min denotes
the difference between the maximum and the minimum. T-A, T-I, T-R and
MJD respectively denote T-AlexNet, T-Inception-v3, T-ResNet18 and
MJDCNN.

best performance among the three single-structured CNNs
Figure 9(b).

c: NWPU-45 DATASET
According to Table 3, T-AlexNet has the worst maxi-
mum and minimum accuracy. MJDCNN has the best max-
imum accuracy and the smallest difference of maximum
and minimum accuracy. The difference between the max-
imum and minimum accuracy of MJDCNN decreases to
20.95%, which is 8.12%, 2.91%, and 4.40% lower than the
difference in T-AlexNet, T-Inception-v3, and T-ResNet18,
respectively. In Figure 8(c), land use types with low classifi-
cation accuracy are represented by church, commercial area,
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dense residential, industrial area, medium residential, palace,
railway, and railway station. The accuracies of circular
farmland, harbor and tennis court exhibit a slight decrease
through MJDCNN, wherein the range of decline remains
within 0.14%. The classification accuracy of other land use
types improves through MJDCNN. Specifically, in church,
medium residential, palace, and railway, these accuracies
increase by 3.61%, 2.64%, 3.12%, and 2.50% compared
with the best performance among the three single-structured
CNNs Figure 9(c).

d: OPTIMAL-31 DATASET
For this dataset, the strategy of MJDCNN for classification
has a remarkable effect. As shown in Table 3, T-Inception-v3
has the worst minimum accuracy (48.20%) and the differ-
ence between maximum accuracy and minimum accuracy
(51.00%). For MJDCNN, the maximum accuracy is 100%,
the minimum accuracy is 78.79%, and the difference is
21.21%. Compared with T-AlexNet, T-Inception-v3, and
T-ResNet18, the value of the difference is reduced by 9.87%,
29.79%, and 14.79%. In Figure 8(d), land use types with low
classification accuracy are represented by church, commer-
cial area, industrial area and medium residential. All land use
types improve their classification accuracies by MJDCNN.
Specifically in church, commercial area, intersection and
medium residential, these accuracies respectively increase
by 15.16%, 14.79%, 17.23%, and 15.49% compared with
the best performance among the three single-structure CNNs
Figure 9(d).

V. DISCUSSION
A. COMPARISON WITH OTHER CLASSIFICATION
METHODS
To evaluate the classification performance of MJDCNN fur-
ther, we select commonly state-of-the-art methods for com-
parison, shown in Table 4, Table 5, Table 6, and Table 7.
We apply the MJDCNN under 20 iterations as the final
models.

1) UC MERCED LAND USE DATASET
This dataset is the first public dataset for remote sensing
classification, which is widely used. We select some rep-
resentative methods to compare with our proposed MJD-
CNN. Given that we train MJDCNN under the 40% training
ratio, we compare with the results of state-of-the-art methods
under the 50% training ratio or the similar training ratio.
As shown in Table 4, MJDCNN achieves a 95.79% ± 0.91%
accuracy under the 40% training ratio. The performance of
MJDCNN performs better than the listed methods except for
GBNet+global feature. Our MJDCNN makes an increase
of 1.58% over SalM3LBPCLM [71]. Multiscale ADPM,
Multi-scale CNN, and Multiview deep learning have similar
network structure to our proposed MJDCNN [55], [67], [72].
Compared with their OAs, the OA of our proposedMJDCNN
increases by 0.93%, 6.09%, and 2.31%, respectively. GBNet

TABLE 4. OAs on the UC Merced land use dataset compared with other
classification methods. MJDCNN represents the OAs of MJDCNN when the
number of iterations is 20.

TABLE 5. OAs on the AID dataset compared with other classification
methods. MJDCNN represents the OAs of MJDCNN when the number of
iterations is 20.

is one of the latest proposedmethod for remote sensing classi-
fication [58]. Our proposed MJDCNN achieves 0.09% accu-
racy higher thanGBNet. Besides, our proposedMJDCNNhas
a slightly lower accuracy than GBNet+global feature [58].
This is partly due to the different training ratio: MJDCNN
has a 40% training ratio, a 20% validation ratio, and a 40%
test ratio, while GBNet+global feature has a 50% training
ratio, and a 50% test ratio. As the increase of training ratio,
the accuracy of classification networks increases. In fact, our
proposed MJDCNN misclassifies a total of 36 images, and
GBNet+global feature misclassifies a total of 31 images.
Such facts indicate that the proposed MJDCNN is competent
for UC Merced dataset classification with less number of
training remote sensing images.
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TABLE 6. OAs on the NWPU-45 dataset compared with other
classification methods. MJDCNN represents the OAs of MJDCNN when the
number of iterations is 20.

2) AID DATASET
This dataset has more complex images with more land use
types than UC Merced dataset. As shown in Table 5, MJD-
CNN achieves a 94.18% ± 0.31% accuracy under the 40%
training ratio. The performance of MJDCNN performs better
than the listed methods except for GBNet+global feature.
Our MJDCNN makes an increase of 5.92% over Multi-
scale CNN that has similar network structure [55]. Fusion
by concatenation is one of the most effective method for
AID dataset classification, and our MJDCNN makes an
increase of 2.32% than this method [75]. MCNN, GBNet,
and ARCNet-VGG16 are the latest methods for AID dataset
classification [36], [57], [58]. In comparison of these lat-
est methods, our proposed MJDCNN increases by 2.38%,
0.42%, and 1.08%. The performance of GBNet+global fea-
ture outperforms the proposed MJDCNN with the cost of
more number of training remote sensing images [58].

3) NWPU-45 DATASET
This dataset has the largest number of land use types
and HRRS images among public HRRS image datasets.
As shown in Table 6, MJDCNN achieves 93.18% ±

0.24% accuracy. Our proposed MJDCNN has the best per-
formance compared with the other state-of-the-art meth-
ods. Both IOR4-VGG16 and VGG-16+interlayer fusion
are the latest proposed method for NWPU-45 dataset
classification [80], [82]. Our proposed MJDCNN achieves
1.88 percentage and 0.45 percentage points higher than these
two methods. Besides, AlexNet is one of the based structures
for our proposed MJDCNN. Therefore, we compare the per-
formance of the proposed MJDCNN with that of AlexNet.
AlexNet obtains 79.85% ± 0.13% accuracy, and fine-tuning
AlexNet gets 85.16% ± 0.18% accuracy, wherein our pro-
posedMJDCNN achieves 13.33 percentage and 8.02 percent-
age points higher than these two methods [25]. SE-ResNeXt
based on residual block obtains 92.18% accuracy [81]. Our
proposed MJDCNN also has residual structure and achieves

TABLE 7. OAs on the OPTIMAL-31 dataset compared with other
classification methods. MJDCNN represents the OAs of MJDCNN when the
number of iterations is 20.

1.00% improvement comparedwith SE-ResNeXt. It confirms
the efficiency of the proposed MJDCNN.

4) OPTIMAL-31 DATASET
This dataset is a newly challenging dataset and con-
tains more complicated remote sensing images. As shown
in Table 7, our proposed MJDCNN gets 94.75% ±

1.25% accuracy, which performs the obvious superiority.
ARCNet-VGG16 and GBNet+global feature are the latest
methods for this dataset classification [36], [58]. Our pro-
posed MJDCNN makes the increase of 1.87% and 1.29%
than these two methods. AlexNet and ResNet18 are two basic
network structures of MJDCNN. We could found that our
proposed MJDCNN increases by 13.35%, 8.82%, and 3.29%
compared with fine-tuning AlexNet, ARCNet-AlexNet, and
ARCNet-ResNet34 [36]. Once again, it demonstrates the
superiority of our proposed MJDCNN.

B. ADVANTAGE OF THE PROPOSED MJDCNN
The proposed MJDCNN is utilized to perform classifica-
tion tasks, wherein it exhibits excellent performance. MJD-
CNN can obtain optimal classification results of three
single-structured CNNs to improve the overall classifica-
tion accuracy and ability. Convolutional layers extract fea-
tures of HRRS images of land use via convolution oper-
ation. As the convolutional layer deepens and widens,
the extracted features become increasingly complex, enabling
easy image classification. T-AlexNet, T-Inceptionv3, and
T-ResNet18 have different convolutional layers in terms of
depth and width. Thus, they can extract different features
to describe these images and accomplish classification. Joint
decision-making approach can select the best results. Regard-
less of the number of iterations, the proposed MJDCNN is
superior to the three single-structured CNNs in terms of OAs,
F1-score, and classification accuracy of single land use type.

In addition, the performance of the proposed MJDCNN is
enhanced as the number of iterations increases due to noncon-
vergent single-structured CNNs. The three single-structured
CNNs decide the classification accuracies of the proposed
MJDCNN. To illustrate the effect of the non-convergent
single-structured CNNs, we draw their accuracy and loss
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FIGURE 10. Trend curve of accuracy and loss values of T-AlexNet (blue), T-Inception-v3 (green), and T-ResNet18 (orange) for UC Merced land
use, AID, NWPU-45 and OPTIMAL-31 datasets. The polyline and dashed line respectively represent the accuracy and loss of the T-CNNs for
train dataset. The dash-dotted line and dotted line respectively represent the accuracy and loss of the T- CNNs for validation dataset. Three
vertical dash-dotted lines respectively represent different iterations.

during training under four datasets (Figure 10). For the UC
Merced land use, AID, and NWPU-45 datasets, when the
number of iterations is 5, T-AlexNet, T-Inceptionv3, and
T-ResNet18 remain in the training state. T-AlexNet reaches
the convergence when the number of iterations is 20, and
T-Inceptionv3 and T-ResNet18 reach convergence when the
number of iterations is 10. For the OPTIMAL-31 dataset,
T-AlexNet, T-Inceptionv3 and T-ResNet18 reach conver-
gence when the number of iterations is 20. If these single-
structured CNNs converge, then the classification accuracies
of the proposed MJDCNN are stable. By contrast, if these
single-structured CNNs do not converge, then the classifi-
cation accuracies of the proposed MJDCNN change. Hence,
the classification accuracies of the proposed MJDCNN con-
tinuously increase from 5 to 20 iterations.

Moreover, we also confirm that the size of datasets has
some effect on the performance of MJDCNN. More than
100 images in each land use type are used for UCMerced land

use, AID and NWPU-45 datasets. The difference between
the train and validation datasets of accuracy and loss has
an approximate value when the number of iterations is 20
(Figure 10 (a), (b), and (c)). In theOPTIMAL-31 dataset, only
60 images are used in each land use type. A large difference
between the train and validation datasets of accuracy and loss
is observed (Figure 10 (d)). This finding may be caused over-
fitting for T-AlexNet, T-Inception-v3, and T-ResNet18 given
the small dataset. However, MJDCNN can alleviate the over-
fitting effect and greatly increase the accuracies. This finding
shows a clear benefit of utilizing the approach based on joint
decision-making strategy and three single-structured CNNs
for small HRRS images.

C. IMPROVEMENT OF UNBALANCED CLASSIFICATION
ACCURACY
The proposed MJDCNN improves the unbalanced classi-
fication accuracy of single land use type. Although the
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single-structured CNNs can achieve high-precision overall
classification for HRRS images of land use, the classifi-
cation accuracy of single land use type varies greatly. For
four HRRS image datasets, the classification accuracies of
buildings, dense residential, medium residential, commercial
area, industrial area, and church have the worst performance
under the classification of T-Alexnet, T-Inception-v3, and
T-ResNet18. This result is due to the similarities of the HRRS
images of these land use types in terms of texture and color
(Figure 2(e), (g), (m), Figure 3(g), (h),(i), (m),(o), Figure 4(h),
(k), (l), (s), (x), and Figure 5(h), (j), (k), (w) ). During CNN
classification, the convolutional layer extracts similar fea-
tures. Thus, these land use types cannot be accurately distin-
guished. Fortunately, the proposed MJDCNN can make joint
decision based on the classification results of three single-
structure CNNs. It increases the classification accuracies of
these land use types to a certain extent, thereby ameliorating
the overall imbalance of classification accuracy.

VI. CONCLUSION
This study proposes MJDCNN to classify land use types
using HRRS images. The proposed approach applies three
pretrained CNNs to achieve land use classification and obtain
the final classification results by joint decision-making strat-
egy. The MJDCNN classification effect is crucial, espe-
cially for OPTIMAL-31 dataset. As the number of iterations
increases, the overall classification accuracy and the F1-score
of the proposedMJDCNN improve as well. The classification
performance of the proposed MJDCNN is better than that
of the single-structured pretrained CNNs as the benchmark.
Compared with different classification methods for HRRS
images of land use, the proposed MJDCNN is proven to be a
promising approach. The highlights of this study are listed as
follows:

(1) On the structure of the proposed MJDCNN. This
multi-structure network is designed using different single-
structured networks. We focus on the influence of different
CNN structures. The proposed MJDCNN does not integrate
features that are extracted from differently structured CNNs.
It relies on the different structures of CNNs to classify
and then joint decision-making based on the classification
results. This strategy directly uses the original feature vectors
obtained by CNNs to classify, without fusing feature vectors.
It can prevent the feature from being deformed or losing
information during the fusion process.

(2) On the selection of the single pretrained network.
AlexNet, Inception-v3, and ResNet18 are chose to build
the MJDCNN. AlexNet belongs to traditionally structured
CNNs, Inception-v3 belongs to the CNNs with inception
module, and ResNet18 belongs to residual CNNs. These
three CNNs have different network depths and widths, size
of input images, and convolutional kernel structures. Thus,
they can ensure the diversity of input data and the richness of
features extracted from HRRS images. As such, the proposed
MJDCNN exhibits an excellent performance.

(3) On the size of the dataset. The proposed MJDCNN has
great potential on small dataset. For the above four datasets,
the proposed MJDCNN has the most significant improve-
ment effect on the OPTIMAL-31 dataset. Compared with
other datasets, the OPTIMAL-31 dataset has more land use
types and fewer HRRS images in each land use type. CNNs
consumes data and requires numerous labeled HRRS images
for classification. This characteristic may be caused by bad
performance of CNNs. The proposed MJDCNN can mitigate
this knotty problem.

It is noticeable that the proposed MJDCNN obtains excel-
lent results under the opening HRRS image datasets. In future
research, we will focus on how to use the proposedMJDCNN
to cope with the diversity of a real-world image, to make
MJDCNN more useful in practical applications.
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