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ABSTRACT Streaming computing attracts intense attention because of the demand for massive data
analyzing in real-time. Due to unbounded and continuous input, the volume of streaming data is so high that
all the data cannot be permanently stored. Piecewise polynomial fitting is a popular data compressionmethod
that approximately represents the raw data stream with multiple polynomials. The polynomial coefficients
corresponding to the best-fitting curve can be calculated by the method of least squares, which minimizes
the sum of the squared residuals between observed and fitted values. However, built on several matrix
calculations, the method of least squares always leads to high time complexity and is difficult to be applied
to streaming computing. This paper puts forward a fast piecewise polynomial fitting for time-series data
in streaming computing. The input data stream is dynamically segmented according to a given residual
bound. Meanwhile, the data points in each segment are fitted using an improved polynomial fitting method,
which has less time overhead than general polynomial fitting by reusing the intermediate calculation results.
Experimental results on four time-series datasets show that our algorithm can achieve the highest speedup
to the general piecewise polynomial fitting of 2.82x for periodically sampled time-series data and 1.85x
for aperiodically sampled time-series data, without affecting the compression ratio and fitting accuracy.
Moreover, the event-time latency comparison in a streaming environment indicates that the improvedmethod
can endure higher throughput than general piecewise polynomial fitting with the same latency.

INDEX TERMS Least squares, piecewise polynomial fitting, streaming computing, time-series data.

I. INTRODUCTION
Streaming computing is gaining intense attention because of
the increasing demand for massive data analyzing in real-
time. On-the-fly processing of large datasets in a reasonable
time is required in streaming computing, which is extensively
applied in network monitoring systems, sensor networks,
aerospace systems, and meteorological monitoring.

A time-series data stream is an unbounded sequence of data
points taken successively in time. With the widespread use
of sensors, smart devices, and other data collection devices,
large-scale time-series data become ubiquitous. Due to the
limited buffer space and expensive data communication,
caching all time-series data in the memory is completely
unpractical. An approximate representation of raw data points
not only shows the general outline and developing tendency
of the data but also reduces the storage overhead and facil-
itates subsequent data analysis and visualization. Therefore,
it becomes important to compress time-series data in advance
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and return the data on the fly, which calls for online algo-
rithms that take the data point one by one and construct the
compressed representation of the time series as the data is
streaming [1], [2].

In recent years, researchers have shown an intensive
research in approximate representation or compression of
large-scale data. The most popular methods include Singu-
lar Value Decomposition (SVD) [3]–[7], Discrete Fourier
Transform (DFT) [8]–[11], Discrete Wavelet Transform
(DWT) [5], [12]–[15], Piecewise Aggregation Approxi-
mation (PAA) [16]–[18], Piecewise Linear Approximation
(PLA) [1], [2], [19]–[23], Adaptive Piecewise Constant
Approximation (APCA) [24]–[26], Piecewise Curve Fit-
ting [27]–[38], and some other methods [39]. Piecewise curve
fitting fits discrete data utilizing different fitting functions
at different intervals. These fitting functions include poly-
nomial, exponential, power, and rational functions. Polyno-
mial curve fitting is a typical fitting method. It constructs
a polynomial that has the best approximate representation
globally to a set of data points. The most common algorithm
for computing the polynomial coefficients corresponding to
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the best approximate representation is the method of least
squares, which minimizes the sum of the squared residuals
between the observed and fitted values. The method of least
squares, built on several matrix calculations, leads to high
time complexity, which is difficult to be directly applied
to streaming computing on account of real-time processing
constraints.

The temporal order of time-series data makes its analy-
sis distinct from other data. This paper puts forward a fast
piecewise polynomial fitting of time-series data for streaming
computing. The input data stream is dynamically segmented
according to a given residual bound. Meanwhile, the data
points in each segment are fitted by a polynomial. In the
process of polynomial fitting, we employ different accel-
eration methods for periodically and aperiodically sampled
time-series data based on their respective temporal features.
As for periodically sampled time-series data, we notice that
in the calculation of the coefficient vector of the fitted poly-
nomial, these data segments, which comprise of the same
number of data points, have the same intermediate calculation
results. Hence the hash table is used to cache the results to
reduce redundant calculation. As for aperiodically sampled
time-series data, we notice that in the same segment, the adja-
cent polynomial fittings have some overlapped calculations,
thereby the idea of the incremental calculation is adopted to
accelerate the fitting process. To evaluate the performance of
our improved method, we conduct a series of experiments on
four time-series datasets. The speedup to the general piece-
wise polynomial fitting is up to 2.82x for periodically sam-
pled data and 1.85x for aperiodically sampled data.Moreover,
the event-time latency comparison of twomethods shows that
the higher throughput is available to the improved method
instead of general piecewise polynomial fitting with the same
latency.

The main contributions of this paper are as follows:

- A dynamic segmentation algorithm for the time-series
data stream is proposed;

- Different acceleration methods are proposed for the
piecewise polynomial fitting of periodically and aperi-
odically sampled time-series data.

- The comparison of speedup and latency of two methods,
as well as the presentation of compression ratio and
fitted results, are of reference significance.

The rest of the paper is organized as follows. We inves-
tigate several compression algorithms for time-series data in
Section II. Section III discusses the general polynomial fitting
method. An improved piecewise polynomial fitting method
for the time-series data stream is proposed in Section IV.
Section V shows our experimental methodology and results.
Section VI makes a conclusion and summary.

II. RELATED WORK
Constructing good approximation to time-series data is a
fundamental problem in data compression, statistics, and
databases. There has been extensive work in recent years on

this problem, and they can be categorized into the following
methods.

SVD (Singular Value Decomposition) was firstly used
for indexing images and other multimedia objects by
Wu et al. [3] and Kanth et al. [4], proposed for time series
indexing by Chan and Fu [5], and first implemented by
Keogh et al. [16]. Besides, Benes and Kruis [6] applied SVD
to the compression of results from finite element solvers.
Guo et al. [7] proposed a fast SVD method to compress
nuclear magnetic resonance echo data. SVD is good at
dealing with global transformation, which at the same time
leads to high complexity and is not suitable for streaming
computing.

DFT (Discrete Fourier Transform) was the first tech-
nique suggested for compression of time series by
Agrawal et al. [8]. They used the DFT to map time sequences
to the frequency domain and then had thus mapped sequences
to a lower-dimensionality space by using only the first few
Fourier coefficients. Besides, Nair et al. [10] applied DFT
to approximate the bilateral filter, Kithulgoda et al. [11]
presented a method for incremental maintenance of the
Fourier spectrum to changes in concept that take place in
streaming computing, also the schemes for feature selection
and synopsis generation that enable the coefficient array to
be refreshed efficiently on a periodic basis. In DFT, each
coefficient represents a sine wave that is added along the
entire length of the query, so it is not possible to utilize DFT
methods for queries with ‘‘don’t care’’ subsections [9] or the
more general weighted Euclidean distance [16], [40].

DWT (Discrete Wavelet Transform) was first utilized for
fast nearest-neighbor search in medical image databases by
Korn et al. [41], then Chan and Fu [5] applied it for the
compression of time series. Besides, Jain et al. [12] and
Rajan and Fred [13] used 2D-DWT to compress image, and
Xu et al. [14] presented a DWT-based fast and high-efficient
intraframe compression algorithm. In contrast to DFT, DWT
is a local transformation. In other words, some of the wavelet
coefficients in DWT represent local information of data being
studied.

Keogh et al. first introduced the PAA (Piecewise Aggrega-
tion Approximation) algorithm in [16], which approximated
the data by segmenting the sequences into equi-length sec-
tions and recoding the mean value of these sections. Then,
these mean values can be indexed efficiently in a lower
dimensionality space. This method may miss some impor-
tant information and sometimes cause inaccurate results in
time series mining, so Guo et al. [17] presented an improved
PAA based on statistical features including a mean-based
feature and variance-based feature. Besides, Fotso et al. [18]
presented a heuristic for time series compression with PAA.
Although PAA is simple to understand and to implement,
it still has some disadvantages: (1) The size of section is a
key factor; (2) Minimizing dimensionality by the mean value
may miss some characteristic information.

The method of PLA (Piecewise Linear Approximation)
first segments the time series and uses linear functions to fit
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each segment with certain error criterion. Gandhi et al. [1]
presented an abstract framework for the online approxima-
tion of one-dimensional time-series data. Xie et al. [20] pro-
posed two linear-time algorithms to construct error-bounded
PLA for data stream based on the time domain. One gen-
erates a minimal number of line segments for the stream
approximation, and the other is an alternative solution for
the requirements of high efficiency and resource-constrained
environment. Grützmacher et al. [22] proposed a novel PLA
technique with a constant computational complexity as well
as a constant memory complexity.

In contrary to PAA, the method of APCA (Adaptive Piece-
wise Constant Approximation) [24]–[26] segments the time
series into a series of variable length segments, each of which
is represented by a pair of the mean value and rightmost
time-scale value of the segment. Because of the great storage
overhead of APCA technique, Wang [26] proposed a new
APCA-enhanced compression and query method, maintain-
ing several times improvement of compression ratio com-
pared with original APCA algorithm.

Piecewise curve fitting [27]–[38] segments the time-series
data sequence into a series of variable-length segments, each
segment is fitted by a non-linear function aiming to minimize
the error between fitted value and observed value. These
non-linear functions include polynomial, exponential, power
and rational functions.

When the polynomial function is selected as a fitting
function, the fitting process is called piecewise polynomial
fitting [30], [33], [34]. This method is easy to understand and
implement, and we can control the fitting error by adjusting
the polynomial order. More importantly, it maintains a high
compression ratio and fast indexing. However, high comput-
ing complexity in high-order polynomial fitting usually limits
the scale of the problem solved. Therefore, this paper focuses
on the acceleration of piecewise polynomial fitting so that it
can be used in streaming computing.

III. POLYNOMIAL CURVE FITTING
Polynomial curve fitting is a fitting method in which
the relationship between the independent variable and the
dependent variable is modeled as a polynomial expres-
sion. Time-series data is a series of discrete data points
〈(t1, y1), (t2, y2), . . . , (tn, yn)〉 collected over time, in which
Et = (t1, t2, . . . , tn) is a sequence of timestamps, and Ey =
(y1, y2, . . . , yn) is a sequence of values. In this paper, we take
the piecewise polynomial fitting between the time series and
certain attribute values as example to illustrate our method.
Let Et be the independent variable and Ey be the dependent
variable, the relationship between Et and Ey can be modeled
as Ey = φk (Et) + Er utilizing polynomial fitting, in which φk
is a polynomial map of order k (k < n). Its mathematical
expression is given by (1).

φk (ti) = θ0 + θ1ti + θ2t2i + · · · + θk−1t
k−1
i + θk tki , (1)

where i = 1, 2, . . . , n. Besides, Er = (r1, r2, . . . , rn) is the
residual vector of φk on the time-series data, and it satisfies

ri = |yi − φk (ti)|, which denotes the residual between fitted
value φ(ti) and observed value yi.

Obviously, for a given group of data points, the fitted
polynomials are not unique generally, but a curve with min-
imal error is desired. The most commonly used criterion
for evaluating error is the lp-error for p = 1, 2,∞. The
lp-error of a function f for approximating the time-series
data is (

∑n
i=1 |f (ti) − yi|p)1/p. In particular, the l∞-error is

maxi |f (ti) − yi| [2]. The process that obtains the optimal
fitting polynomial by minimizing the square of l2-error is
called the method of least squares [31], [42].

Assume that

X =


1 t1 · · · tk1
1 t2 · · · tk2
...

...
. . .

...

1 tn · · · tkn

 , Eθ =


θ0
θ1
...

θk

 , Ey =

y1
y2
...

yn

 (2)

then

min
Eθ

‖Er‖22 = min
Eθ

‖X Eθ − Ey‖2. (3)

There are many methods to solve (3), including normal equa-
tion, QR decomposition, Cholesky decomposition, and singu-
lar value decomposition. The method of the normal equation
is utilized in this paper. Expanding ‖X Eθ − Ey‖2 as follows.

‖X Eθ − Ey‖2 = ‖X Eθ − Ey‖T ‖X Eθ − Ey‖

= EθTXTX Eθ − 2EθTXT
Ey+ EyT Ey (4)

From the necessary condition for solving the extreme of a
function, we derive

∂‖X Eθ − Ey‖2

∂ Eθ
= 2XTX Eθ − 2XT

Ey = 0. (5)

Further, we derive

Eθ = (XTX)−1XT
Ey. (6)

In (6), there are twomatrix-matrixmultiplications, onematrix
inversion, and one matrix-vector multiplication, which have
high time complexity and are difficult to satisfy the real-time
processing constraints in streaming computing.

IV. POLYNOMIAL FITTING ACCELERATION
In streaming computing, time-series data may change over
time. Therefore, constant polynomial fitting to the time-series
data stream usually leads to a high time complexity and
a large margin of fitting errors. A general solution to this
problem is to divide the data sequence into multiple seg-
ments and fit each segment with a polynomial. However,
as mentioned in the previous section, the general polynomial
fitting has high time complexity and is difficult and inefficient
to compress time-series data in real-time. Therefore, a fast
piecewise polynomial fitting algorithm is proposed in this
paper to reduce the time overhead of polynomial fitting in
streaming computing.
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First, we dynamically segment time-series data stream
according to a given upper bound ε of the sqrt of the resid-
ual square (abbreviated as residual bound below) between
fitted value and observed value. Let current time-series data
sequence be S = 〈(t1, y1), (t2, y2), . . . , (tn, yn)〉, then the
fitted polynomial φk of S satisfies following inequality.

(φk (ti)− yi)2 ≤ ε2, i = 1, 2, . . . , n. (7)

Further, we derive

n∑
i=1

(φk (ti)− yi)2 ≤ n ∗ ε2. (8)

Then, when a new data point (tn+1, yn+1) arrives, we just
need to check whether the new time-series data sequence
S ′ = 〈(t1, y1), (t2, y2), . . . , (tn, yn), (tn+1, yn+1)〉 satisfies fol-
lowing inequality.

n+1∑
i=1

(φk (ti)− yi)2 ≤ (n+ 1) ∗ ε2. (9)

If it’s true, then the fitted polynomial of S ′ is still φk . Other-
wise, fitting a new k-order polynomial φ′k for S

′ to make sure
that (10) holds.

n+1∑
i=1

(φ′k (ti)− yi)
2
≤ (n+ 1) ∗ ε2. (10)

If the inequality holds, then the polynomial function φ′k is
the approximate expression of time-series data sequence S ′.
Otherwise, it means that no k-order polynomial can fit the
time-series data sequence S ′ with the residual bound ε.
At this time, data segmenting is required, and the data point
(tn+1, yn+1) will bemoved to the subsequent fitting as the first
point of the new data segment.

The dynamic segmentation algorithm of time-series data
in streaming computing using the given residual bound is
presented in Algorithm 1, where the temp_seg and temp_θ
temporarily store data values and coefficients of the current
data segment respectively, seg and θ store segmented data
values and fitted polynomial coefficients respectively, and the
fitted polynomial coefficient vectors of all data segments are
stored in Sθ .

A. PERIODICALLY SAMPLED TIME-SERIES DATA FITTING
Periodically sampled time-series data are collected at equal
time intervals. Let δ denote the time interval, and the num-
ber of data points in current segment is n, then the time
sequence of current segment is Et0 = (δ, 2δ, . . . , (n−1)δ, nδ).
In order to simplify the calculation, we abbreviate the time
sequence Et0 as Et = (1, 2, . . . , n− 1, n). Then these segments,
which comprise of the same number of data points, have the
same simplified time sequences. Hence they have the same
matrix X according to (2) and the same intermediate result
(XTX )−1XT according to (6).

Algorithm 1 Dynamic Segmentation Algorithm of
Time-Series Data in Streaming Computing Using a Given
Residual Bound
Input: time-series data stream S = 〈. . . , (t, y), . . .〉
Output: the set Sθ of coefficient vectors of the

polynomials
1 Let k be the order of polynomials.
2 Let ε be the given residual bound.
3 temp_seg = ∅; Sθ = ∅;
4 while input(t, y) do
5 temp_seg = temp_seg ∪ (t, y);
6 if length(temp_seg)== k + 1 then
7 temp_θ = calPolynomial(temp_seg, k);
8 θ = temp_θ ;
9 seg = temp_seg;
10 else if length(temp_seg) > k + 1 then
11 if calError(temp_seg, temp_θ ) >

length(temp_seg) * ε then
12 temp_θ = calPolynomial(temp_seg, k);
13 if calError(temp_seg, temp_θ ) >

length(temp_seg) ∗ ε then
14 Sθ = Sθ ∪ θ ;
15 temp_seg = {(t, y)};
16 else
17 θ = temp_θ ;
18 seg = temp_seg;
19 end
20 end
21 else
22 continue;
23 end
24 end

Based on the above observation, we propose an improved
piecewise polynomial fitting method, which caches the inter-
mediate results (XTX )−1XT of sequences with different seg-
ment lengths to accelerate the calculation of coefficient vec-
tors. The intermediate results are stored in a hash table and
indexed by the length of the corresponding data sequence.
Whenever the calculation of (6) is required, we query the hash
table to find the cached intermediate results. If the cache hits,
we do not need to take a further calculation of (XTX )−1XT .
Instead, we just need tomultiply the intermediate result stored
in the hash table by the vector Ey. If the cache misses, the new
intermediate result will be calculated and stored in the hash
table. For time-series data with the same segment length,
the data size of the cached intermediate result is (k + 1) ∗ n,
in which k represents the order of the fitted polynomial, and n
represents the length of the fitted segment. Comparedwith the
timely calculating of general piecewise polynomial fitting,
the improved method requires a little more memory space
but significantly reduces time overhead. With the increasing
memory space of computers nowadays, it is reasonable to
sacrifice space appropriately for time.
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B. APERIODICALLY SAMPLED TIME-SERIES DATA FITTING
Aperiodically sampled time-series data have variable sam-
pling intervals, so the segments with the same length no
longer have the same time sequence. Then the method men-
tioned above is not feasible anymore. Therefore, we propose
a different acceleration method for fitting aperiodically sam-
pled time-series data.

Given a group of aperiodically sampled time-series data
points S = 〈(t1, y1), (t2, y2), . . . , (tn, yn)〉, and the coefficient
vector of the fitted polynomial with a given residual bound is
Eθ = (XTX )−1XT Ey, in which XTX and XT Ey are given by (11).

XTX =



n
n∑
i=1

ti · · ·

n∑
i=1

tki

n∑
i=1

ti
n∑
i=1

t2i · · ·

n∑
i=1

tk+1i

...
...

. . .
...

n∑
i=1

tki

n∑
i=1

tk+1i · · ·

n∑
i=1

t2∗ki


,

XT Ey =



n∑
i=1

yi

n∑
i=1

tiyi

...
n∑
i=1

tki yi


. (11)

When a new data point (tn+1, yn+1) arrives, then the new
time-series sequence S ′ = S ∪ (tn+1, yn+1) requires to be
refitted. According to the previous deduction, the coeffi-
cient vector of fitted polynomial of S ′ is given by Eθ ′ =
(X ′TX ′)−1X ′T Ey′, in which X ′TX ′ is given by (12).

X ′TX ′ =



n+ 1
n+1∑
i=1

ti · · ·

n+1∑
i=1

tki

n+1∑
i=1

ti
n+1∑
i=1

t2i · · ·

n+1∑
i=1

tk+1i

...
...

. . .
...

n+1∑
i=1

tki

n+1∑
i=1

tk+1i · · ·

n+1∑
i=1

t2∗ki



= XTX +


1 tn+1 · · · tkn+1
tn+1 t2n+1 · · · tk+1n+1
...

...
. . .

...

tkn+1 tk+1n+1 · · · t2∗kn+1

 . (12)

As we can see from (12), X ′TX ′ can be expressed as the
sum of two addends. The first addendXTX is the intermediate
result of polynomial fitting of previous n data points, and
the second addend is the difference caused by new data

point (tn+1, yn+1). Similarly, X ′T Ey′ can be expressed as (13),
in which XT Ey is the intermediate result of last polynomial
fitting, and the second addend is the change caused by the
arrival of the new data point.

X ′T Ey′ =



n+1∑
i=1

yi

n+1∑
i=1

tiyi

...
n+1∑
i=1

tki yi


= XT Ey+


yn+1

tn+1yn+1
...

tkn+1yn+1

 . (13)

According to the above analysis, we know that there are
redundant calculations between adjacent polynomial fitting.
To accelerate the computation of polynomial fitting for aperi-
odically sampled time-series data, we cache the intermediate
results XTX and XT Ey of last polynomial fitting. In the next
polynomial fitting, the cached data is accessed to participate
in the calculation of the new coefficient vector. In other
words, the calculation of polynomial fitting for the current n
data points is based on the intermediate result of the polyno-
mial fitting of the first n− 1 data points. Similarly, the inter-
mediate result of the polynomial fitting of current n data
points will also be reused in the polynomial fitting of the first
n + 1 data points. Therefore, each time a new data point is
added, the intermediate calculation result of the polynomial
fitting of the new data sequence can be calculated by applying
the changes brought by the new data point to the previous
intermediate results.
Besides, at any time, we only need to cache the intermedi-

ate results XTX and XT Ey of a sequence, where the data sizes
of XTX and XT Ey are (k + 1) × (k + 1) and (k + 1) × 1,
respectively. Obviously, they vary with the order of poly-
nomial instead of the number of data points in the current
segment. As a result, the memory space can be reused, and
less memory space is required.

V. EVALUATION
In this section, we present the experimental evaluation of
our improved method to illustrate its performance on four
time-series datasets. Detailed information of four datasets
is presented in part A. Then, in part B, we present the
speedup of improved method to general piecewise polyno-
mial fitting and compression ratio of two methods with the
different residual bounds and polynomial orders, as well
as the accuracy comparison. In part C, we evaluate the
event-time latency performance of two methods in a realtime
computation system, namely Apache Storm 1.2.2 [43]. All
experiments in this section are conducted on a computer
with a CPU of Intel(R) Xeon(R) 3.40GHz and 16.00GB
memory.
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A. DATASET DESCRIPTION
The experiments are conducted on both periodically and ape-
riodically sampled time-series datasets.

1) GAS SENSOR ARRAY UNDER DYNAMIC
GAS MIXTURES DATASET
[44], abbreviated as the gas dataset below, is sampled peri-
odically. It contains the recordings of 16 chemical sensors
exposed to two dynamic gas mixtures (CO and methane)
at varying concentrations. For each mixture, signals were
acquired continuously during 12 hours. In our experiments,
4,177,648 recordings altogether of the first chemical sensor
exposed to methane are utilized.

2) INDIVIDUAL HOUSEHOLD ELECTRIC POWER
CONSUMPTION DATASET
[45], abbreviated as the power consumption dataset below,
is sampled periodically. The electric power consumption
in one household with a one-minute sampling rate over
almost four years is collected in this dataset. In our experi-
ments, 2,075,259 recordings altogether of household global
minute-averaged active power are utilized.

3) DAPHNET FREEZING OF GAIT (FoG) DATASET
[46], abbreviated as the FoG dataset, is sampled aperiodi-
cally. It contains the annotated readings of 3 acceleration
sensors at the hip and leg of Parkinson’s disease patients
that experience FoG during walking tasks. In our experi-
ments, 195,737 recordings altogether of the horizontal for-
ward acceleration attribute are utilized.

4) GAS SENSOR ARRAY TEMPERATURE
MODULATION DATASET
[47], [48] abbreviated as the temperature dataset, is sam-
pled aperiodically. A chemical detection platform composed
of 14 temperature-modulated metal oxide (MOX) gas sen-
sors was exposed during three weeks to mixtures of car-
bon monoxide and humid synthetic air in a gas chamber.
This dataset provides the acquired time series of the sensors
and the measured values of CO concentration, humidity,
and temperature inside the gas chamber. In our experiments,
295,653 recordings altogether of the R1(MOhm) attribute are
utilized.

B. PERFORMANCE COMPARISON IN STATIC
ENVIRONMENT
Before performing the experiments, the residual bound ε and
polynomial order k are required to be given. To observe
the overall approximation of polynomial fitting on the four
datasets, we determine the value of ε according to the differ-
ence between maximum and minimum values of most data
points in each dataset. The differences of the gas, power
consumption, FoG, and temperature datasets are about 3403,
12, 1952, 120, respectively. Then, we set the error bound ε
to be less than 10% of the difference for each dataset. In the

FIGURE 1. The speedup of the improved method to general piecewise
polynomial fitting on the gas dataset with different residual bounds and
polynomial orders. Four curves correspond to four different values of
error bound ε.

FIGURE 2. Comparison between raw data and fitted results on the gas
dataset with k = 2 and ε = 5.0.

FIGURE 3. The speedup of the improved method to general piecewise
polynomial fitting on the power consumption dataset with different
residual bounds and polynomial orders. Four curves correspond to four
different values of error bound ε.

real streaming computing scenario, however, the difference is
unknown in advance, our suggestion is to determine the resid-
ual bound according to the prior knowledge of the specific
attribute, or a variable residual bound is also recommended.
As for the value of k , we change it from 2 to 10, and it will
be explained later.

1) PERIODICALLY SAMPLED TIME-SERIES DATA FITTING
The resulting speedup of the improved method to general
piecewise polynomial fitting on the gas dataset is shown
in Fig. 1. From the figure, we see the following trends.
First, the speedup generally increases with increasing k .
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FIGURE 4. Comparison between raw data and fitted results on the power consumption dataset with k = 5 and ε = 0.1.

TABLE 1. The compression ratio of two methods on the gas dataset with
different residual bounds and polynomial orders.

Specifically, the speedup is up to 2.82x at k = 8, ε = 10. The
reason is that higher k generally means higher computation
overhead, thus the superiority of the improvedmethod ismore
obvious. Second, no significant trend in speedup is found as
ε varies, but it seems that a higher speedup is received at the
ε = 5.0 than ε = 10.0, 15.0, 20.0.

No matter periodically sampled or aperiodically sam-
pled time-series data fitting, caching intermediate calculation
results does not affect the fitting result, so these two methods
have the same compression ratio and fitting accuracy.

Table 1 presents the compression ratio of two methods on
the gas dataset with different residual bounds and polynomial
orders, where the compression ratio is computed as the ratio
of the amount of data to the number of polynomial coeffi-
cients of all segments. It can be seen from the data in the table
that the compression ratio decreases with the increase of k .
Obviously, increasing k means more polynomial coefficients.
At the same value of k , we find that the compression ratio
increases with increasing ε. The result is not surprising,
because the piecewise polynomial fitting with the larger
residual bound always generates fewer segments.

The comparison between raw data and fitted results on the
gas dataset, with k = 2 and ε = 5.0, is presented in Fig. 2.
It can be seen that the fitted curve is very close to the raw
curve. Also, we record the root-mean-square error (RMSE)
of each segment and find that they are all smaller than the
given residual bound when k ≤ 8. However, when continuing
to increase the value of k , the RMSE of some segments will

FIGURE 5. The speedup of the improved method to general piecewise
polynomial fitting on the temperature dataset with different residual
bounds and polynomial orders. Four curves correspond to four different
values of error bound ε.

exceed the given residual bound ε because of Runge’s phe-
nomenon [49]. In other words, high-order polynomials are not
always better than the low-order polynomials. Besides, differ-
ent datasets or attributes, holding different data evolvements,
have the variable optimal values of k. There is no specific way
to determine the optimal value of k, the determining based on
the prior knowledge is recommended.

The speedup of the improved method to general piecewise
polynomial fitting on the power consumption dataset with
different k and ε is presented in Fig. 3. Unlike the result
on the gas dataset, the speedup on the power consumption
dataset does not increase with the increase of k . In fact, with
the increase of k , the corresponding computation cost will
increase, and the speedup of the improved method to general
piecewise polynomial fitting should also increase. However,
it is non-negligible that the number of segments will decrease
with the increase of k , which will weaken the acceleration
effect.

The compression ratio on the power consumption dataset is
presented in Table 2. Comparing it with Table 1, it can be seen
that the compression ratio on the power consumption dataset
is smaller than that on the gas dataset, and the reason can be
found in Fig. 2 and Fig. 4. Obviously, the power consumption
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FIGURE 6. Comparison between raw data and fitted results on the temperature dataset with k = 5 and ε = 1.0.

TABLE 2. The compression ratio on the power consumption dataset with
different residual bounds and polynomial orders.

dataset has more complex and more frequent data changes
than the gas dataset. Then, with the limitation of residual
bound, more segmenting is required, thus the compression
ratio is smaller. Fig. 4 shows the comparison between raw
data and fitted results on the power consumption dataset with
k = 5 and ε = 0.1. Although the dataset has complex data
evolvement, it can be seen from the figure that the fitted curve
is still very close to the raw curve.

Overall, the results presented in this part reveal the superi-
ority of our improved method for fitting periodically sampled
time-series data than general piecewise polynomial fitting,
with no compression ratio and accuracy affected. The next
subsection, therefore, moves on to discuss the performance
of two methods for fitting aperiodically sampled time-series
data.

2) APERIODICALLY SAMPLED TIME-SERIES DATA FITTING
The speedup on the temperature dataset with different resid-
ual bounds and polynomial orders is presented in Fig. 5.
It can be seen that the speedup is stable at about 1.5x, and
the maximum speedup is 1.85x when k = 8 and ε = 10.0.
Table 3 shows the compression ratio on the temperature
dataset with different k and ε. Similarly, the compression ratio
increases with the increase of error bound and decreases with
the increase of k . Besides, maximum compression ratio is
23.84 when k = 2 and ε = 10.0. The comparison between
raw data and fitted results with k = 5 and ε = 1.0 on the
temperature dataset is presented in Fig. 6. As we can see that

FIGURE 7. The speedup of the improved method to general piecewise
polynomial fitting on the FoG dataset with different residual bounds and
polynomial orders. Four curves correspond to four different values of
error bound ε.

the method of piecewise polynomial fitting can fit the value
trend of raw data well.

TABLE 3. The compression ratio on the temperature dataset with
different residual bounds and polynomial orders.

Fig. 7 shows the speedup of the improved method to gen-
eral piecewise polynomial fitting on the FoG dataset with dif-
ferent k and ε. The reason for only three groups of k selected
is that it will be unable to fit when the value of k is greater than
4 because of the singularity of the intermediate result. In fact,
from the data in Table 4, it can be seen that the polynomial
fitting with k = 2 has achieved the highest compression ratio
under the limitation of four groups of residual bounds. Fig. 8
presents the comparison between raw data and fitted result on
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FIGURE 8. Comparison between raw data and fitted results on the FoG dataset with k = 2 and ε = 5.0.

TABLE 4. The compression ratio on the FoG dataset with different
residual bounds and polynomial orders.

FIGURE 9. The event-time latency comparison of two methods on the gas
dataset with k = 8 and ε = 5.

the FoG dataset with k = 2 and ε = 5.0. Obviously, the fitted
results are consistent with raw data.

Taken together, these results presented in part B suggest
that the improved method has less time overhead than general
piecewise polynomial fitting without affecting the compres-
sion ratio and accuracy. Moreover, stable speedup with the
variation of residual bound and polynomial order indicates
the good scalability of our method.

C. PERFORMANCE COMPARISON IN
STREAMING ENVIRONMENT
In this subsection, we run tasks with the local mode of
Apache Storm system to observe the performance of two
methods in a streaming environment. Fig. 9, 10, 11 present
the change of event-time latency [50] with the increase of

FIGURE 10. The event-time latency comparison of two methods on the
power consumption dataset with k = 8 and ε = 0.4.

FIGURE 11. The event-time latency comparison of two methods on the
temperature dataset with k = 8 and ε = 5.

batch size on the gas, power consumption, and temperature
datasets, respectively. The event-time latency is computed as
the interval between the moment that a tuple will be spouted
and the moment that the streaming system has fully processed
the tuple, and the batch size is the data amount of one tuple
sent each time.

As can be seen from Fig. 9, both methods have excellent
performance when the system is under-utilized (small batch
size), and their latency performance collapses at a large batch
size as a result of limited processing capability. The gap
between the two curves indicates that the improved method

43772 VOLUME 8, 2020



J. Gao et al.: Fast Piecewise Polynomial Fitting of Time-Series Data for Streaming Computing

can deal with a higher throughput rate than general piece-
wise polynomial fitting. On the power consumption dataset,
as shown in Fig. 10, the latency performance of general piece-
wise polynomial fitting starts collapsing when the batch size
is larger than 24000. In comparison, the improved method
still has excellent latency performance until the batch size is
larger than 36000.

As for the aperiodically sampled time-series data, the supe-
riority of the improved method is lower than that on the
periodically sampled time-series data. From Fig. 11, we can
see that both methods start collapsing almost at the same
batch size, but the improved method still has more excellent
latency performance than general piecewise polynomial fit-
ting. Besides, on the FoG dataset, we have experimentally
found that the latency performance of the two methods is
similar. This rather unexpected result might be explained
by the fact that this dataset has a small number of data
points. Polynomial fitting with low order takes low time cost.
About 190,000 data points can not accurately simulate a
stable streaming computing. Thus we have not presented the
experimental result on the FoG dataset in this part.

VI. CONCLUSION
This paper sets out to fast piecewise polynomial fitting of
time-series data for streaming computing. By analyzing the
polynomial fitting of periodically and aperiodically sampled
time-series data, we propose different improved methods. For
the periodically sampled time-series data, the intermediate
calculation results of polynomial fitting of different segment
lengths are cached in a hash table indexed with the segment
length to avoid redundant calculation. For the aperiodically
sampled time-series data, the idea of the incremental cal-
culation is adopted to accelerate the fitting process. The
experimental results on four time-series datasets show that the
highest speedup of our improvedmethod to general piecewise
polynomial fitting for fitting periodically sampled time-series
data is up to 2.82x and aperiodically sampled time-series
data is up to 1.85x, without affecting the compression ratio
and fitting accuracy. Moreover, performance comparison on
a streaming environment shows that the improved method
can endure higher throughput than the general piecewise
polynomial fitting with the same event-time latency.

REFERENCES
[1] S. Gandhi, L. Foschini, and S. Suri, ‘‘Space-efficient online approximation

of time series data: Streams, amnesia, and out-of-order,’’ in Proc. IEEE
26th Int. Conf. Data Eng. (ICDE ), Mar. 2010, pp. 924–935.

[2] G. Luo, K. Yi, S.-W. Cheng, Z. Li, W. Fan, C. He, and Y. Mu, ‘‘Piecewise
linear approximation of streaming time series data with max-error guaran-
tees,’’ in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015, pp. 173–184.

[3] D. Wu, A. Singh, D. Agrawal, A. El Abbadi, and T. R. Smith, ‘‘Efficient
retrieval for browsing large image databases,’’ in Proc. 5th Int. Conf. Inf.
Knowl. Manage. (CIKM). New York, NY, USA: ACM, 1996, pp. 11–18,
doi: 10.1145/238355.238365.

[4] K. V. Ravi Kanth, D. Agrawal, A. E. Abbadi, and A. Singh,
‘‘Dimensionality reduction for similarity searching in dynamic
databases,’’ Comput. Vis. Image Understand., vol. 75, nos. 1–2,
pp. 59–72, Jul. 1999. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1077314299907622

[5] K.-P. Chan and A. Wai-Chee Fu, ‘‘Efficient time series matching by
wavelets,’’ in Proc. 15th Int. Conf. Data Eng., Mar. 1999, pp. 126–133.

[6] Š. Beneš and J. Kruis, ‘‘Singular value decomposition used for
compression of results from the finite element method,’’ Adv.
Eng. Softw., vol. 117, pp. 8–17, Mar. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965997817306592

[7] J. Guo, R. Xie, and G. Jin, ‘‘An efficient method for NMR data compres-
sion based on fast singular value decomposition,’’ IEEE Geosci. Remote
Sens. Lett., vol. 16, no. 2, pp. 301–305, Feb. 2019.

[8] R. Agrawal, C. Faloutsos, and A. Swami, ‘‘Efficient similarity search
in sequence databases,’’ in Foundations of Data Organization and
Algorithms, D. B. Lomet, Ed. Berlin, Germany: Springer, 1993,
pp. 69–84.

[9] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim, ‘‘Fast similar-
ity search in the presence of noise, scaling, and translation in time-
series databases,’’ in Proc. 21st Int. Conf. Very Large Data Bases
(VLDB), Zurich, Switzerland, Sep. 1995, pp. 490–501. [Online]. Available:
http://www.vldb.org/conf/1995/P490.PDF

[10] P. Nair, A. Popli, and K. N. Chaudhury, ‘‘A fast approximation of the
bilateral filter using the discrete Fourier transform,’’ Image Process. Line,
vol. 7, pp. 115–130, May 2017.

[11] C. I. Kithulgoda, R. Pears, and M. A. Naeem, ‘‘The incremental Fourier
classifier: Leveraging the discrete Fourier transform for classifying
high speed data streams,’’ Expert Syst. Appl., vol. 97, pp. 1–17,
May 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S095741741730845X

[12] N. Jain, M. Singh, and B. Mishra, ‘‘Image compression using 2D-discrete
wavelet transform on a light weight reconfigurable hardware,’’ in Proc.
31st Int. Conf. VLSI Des. 17th Int. Conf. Embedded Syst. (VLSID),
Jan. 2018, pp. 61–66.

[13] P. V. Sundara Rajan and A. L. Fred, ‘‘An efficient compound image com-
pression using optimal discrete wavelet transform and run length encoding
techniques,’’ J. Intell. Syst., vol. 28, no. 1, pp. 87–101, Jan. 2019.

[14] W. Xu, F. Fu, Y. Wang, and J. Wang, ‘‘Discrete wavelet transform-based
fast and high-efficient lossless intraframe compression algorithm for high-
efficiency video coding,’’ J. Electron. Imag., vol. 28, no. 1, pp. 1–17,
Jan. 2019, doi: 10.1117/1.JEI.28.1.013017.

[15] G. Wang, W. Wang, Q. Fang, H. Jiang, Q. Xin, and B. Xue, ‘‘The appli-
cation of discrete wavelet transform with improved partial least-squares
method for the estimation of soil properties with visible and near-infrared
spectral data,’’ Remote Sens., vol. 10, no. 6, p. 867, Jun. 2018. [Online].
Available: https://www.mdpi.com/2072-4292/10/6/867

[16] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, ‘‘Dimensionality
reduction for fast similarity search in large time series databases,’’ Knowl.
Inf. Syst., vol. 3, no. 3, pp. 263–286, Aug. 2001, doi: 10.1007/PL00011669.

[17] C. Guo, H. Li, and D. Pan, ‘‘An improved piecewise aggregate approxi-
mation based on statistical features for time series mining,’’ in Knowledge
Science, Engineering and Management, Y. Bi and M.-A. Williams, Eds.
Berlin, Germany: Springer, 2010, pp. 234–244.

[18] V. S. Siyou Fotso, E. Mephu Nguifo, and P. Vaslin, ‘‘Grasp heuris-
tic for time series compression with piecewise aggregate approxima-
tion,’’ RAIRO–Oper. Res., vol. 53, no. 1, pp. 243–259, Feb. 2019, doi:
10.1051/ro/2018089.

[19] Y. Zhu, D. Wu, and S. Li, ‘‘A piecewise linear representation method
of time series based on feature points,’’ in Knowledge-Based Intelligent
Information and Engineering Systems, B. Apolloni, R. J. Howlett, and
L. Jain, Eds. Berlin, Germany: Springer, 2007, pp. 1066–1072.

[20] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng, ‘‘Maximum error-
bounded piecewise linear representation for online stream approximation,’’
VLDB J., vol. 23, no. 6, pp. 915–937, Apr. 2014, doi: 10.1007/s00778-014-
0355-0.

[21] C. Ji, S. Liu, C. Yang, L. Wu, L. Pan, and X. Meng, ‘‘A piecewise linear
representation method based on importance data points for time series
data,’’ in Proc. IEEE 20th Int. Conf. Comput. Supported Cooperat. Work
Design (CSCWD), May 2016, pp. 111–116.

[22] F. Grützmacher, B. Beichler, A. Hein, T. Kirste, and C. Haubelt, ‘‘Time
and memory efficient online piecewise linear approximation of sensor
signals,’’ Sensors, vol. 18, no. 6, p. 1672, May 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/6/1672

[23] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, ‘‘Piecewise
linear approximation in data streaming: Algorithmic implementations and
experimental analysis,’’CoRR, vol. abs/1808.08877, 2018. [Online]. Avail-
able: http://arxiv.org/abs/1808.08877

VOLUME 8, 2020 43773

http://dx.doi.org/10.1145/238355.238365
http://dx.doi.org/10.1117/1.JEI.28.1.013017
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1051/ro/2018089
http://dx.doi.org/10.1007/s00778-014-0355-0
http://dx.doi.org/10.1007/s00778-014-0355-0


J. Gao et al.: Fast Piecewise Polynomial Fitting of Time-Series Data for Streaming Computing

[24] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, ‘‘Locally adap-
tive dimensionality reduction for indexing large time series databases,’’
ACM Trans. Database Syst., vol. 27, no. 2, pp. 188–228, Jun. 2002, doi:
10.1145/568518.568520.

[25] L. Junkui and W. Yuanzhen, ‘‘APCAS: An approximate approach to adap-
tively segment time series stream,’’ in Advances in Data and Web Man-
agement, G. Dong, X. Lin, W. Wang, Y. Yang, and J. X. Yu, Eds. Berlin,
Germany: Springer, 2007, pp. 554–565.

[26] H. Wang, ‘‘An APCA-enhanced compression method on large-scale
time-series data,’’ in Proc. ACM Turing 50th Celebration Conf. (China-
ACM TUR-C). New York, NY, USA: ACM, 2017, pp. 20:1–20:6, doi:
10.1145/3063955.3063975.

[27] J. Ferguson and P. A. Staley, ‘‘Least squares piecewise cubic curve fit-
ting,’’ Commun. ACM, vol. 16, no. 6, pp. 380–382, Jun. 1973, doi:
10.1145/362248.362276.

[28] C. L. Lawson, ‘‘Characteristic properties of the segmented rationalminmax
approximation problem,’’ Numerische Math., vol. 6, no. 1, pp. 293–301,
Dec. 1964, doi: 10.1007/BF01386077.

[29] T. Pavlidis and S. L. Horowitz, ‘‘Segmentation of plane curves,’’ IEEE
Trans. Comput., vol. C-23, no. 8, pp. 860–870, Aug. 1974.

[30] K. Ichida, F. Yoshimoto, and T. Kiyono, ‘‘Curve fitting by a piecewise
cubic polynomial,’’ Computing, vol. 16, no. 4, pp. 329–338, Dec. 1976,
doi: 10.1007/BF02252081.

[31] G. Chen, Z. L. Ren, and H. Z. Sun, ‘‘Curve fitting in least-square method
and its realization withMATLAB,’’Ordnance Ind. Automat., vol. 3, p. 063,
2005.

[32] D. Li, J. Shen, and J. Xie, ‘‘Study on representation of time series based on
subsection polynomial fitting,’’ in Proc. 4th Int. Conf. Fuzzy Syst. Knowl.
Discovery (FSKD ), 2007, pp. 16–20.

[33] C.-F. Yan, J.-F. Fang, L.-L. Zhou, and L.-X. Wu, ‘‘A novel approach of
time series trend extraction based on global constrained multi-segment
polynomial fitting,’’ in Proc. Mater., Manuf. Technol., Electron. Inf. Sci.,
Apr. 2016, pp. 358–370.

[34] M. Novosadová and P. Rajmic, ‘‘Piecewise-polynomial curve fitting using
group sparsity,’’ in Proc. 8th Int. Congr. Ultra Modern Telecommun. Con-
trol Syst. Workshops (ICUMT), Oct. 2016, pp. 320–325.

[35] M. Beitollahi and S. A. Hosseini, ‘‘Using curve fitting for spectral
reflectance curves intervals in order to hyperspectral data compression,’’
in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit. Signal Process.
(CSNDSP), Jul. 2016, pp. 1–5.

[36] M. Beitollahi and S. A. Hosseini, ‘‘Using Savitsky–Golay filter and inter-
val curve fitting in order to hyperspectral data compression,’’ in Proc.
Iranian Conf. Electr. Eng. (ICEE), May 2017, pp. 1967–1972.

[37] S. A. Hosseini and H. Ghassemian, ‘‘Rational function approximation for
feature reduction in hyperspectral data,’’ Remote Sens. Lett., vol. 7, no. 2,
pp. 101–110, Nov. 2015, doi: 10.1080/2150704X.2015.1101180.

[38] S. A. Hosseini and H. Ghassemian, ‘‘Hyperspectral data feature extraction
using rational function curve fitting,’’ Int. J. Pattern Recognit. Artif. Intell.,
vol. 30, no. 1, 2016, Art. no. 1650001.

[39] K. Ose, K. Iwata, and N. Suematsu, ‘‘Sampling shape contours using
optimization over a geometric graph,’’ IEICE Trans. Inf. Syst., vol. E102.D,
no. 12, pp. 2547–2556, Dec. 2019.

[40] E. J. Keogh and M. J. Pazzani, ‘‘An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance feed-
back,’’ in Proc. 4th Int. Conf. Knowl. Discovery Data, 1998, pp. 239–243.

[41] F. Korn, N. Sidiropoulos, C. Faloutsos, E. L. Siegel, and Z. Protopapas,
‘‘Fast nearest neighbor search in medical image databases,’’ in Proc.
22nd Int. Conf. Very Large Data Bases (VLDB), Mumbai, India,
Sep. 1996, pp. 215–226. [Online]. Available: http://www.vldb.org/
conf/1996/P215.PDF

[42] X. Liu and Y. Wang, ‘‘Research of automatically piecewise polynomial
curve-fitting method based on least-square principle,’’ Sci. Technol. Eng.,
vol. 14, no. 3, pp. 55–58, 2014.

[43] A. Toshniwal, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy, S. Taneja,
A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade,
and M. Fu, ‘‘Storm@Twitter,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD). New York, NY, USA: ACM, 2014, pp. 147–156, doi:
10.1145/2588555.2595641.

[44] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, ‘‘Reservoir comput-
ing compensates slow response of chemosensor arrays exposed to fast
varying gas concentrations in continuous monitoring,’’ Sens. Actua-
tors B, Chem., vol. 215, pp. 618–629, Aug. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925400515003524

[45] G. Hebrail and A. Berard. (Aug. 2012). Individual Household Electric
Power Consumption Data Set. [Online]. Available: http://archive.ics.uci.
edu/ml/datasets/Individual+household+electric+power+consumption

[46] M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi,
and G. Troster, ‘‘Wearable assistant for Parkinson’s disease patients with
the freezing of gait symptom,’’ IEEE Trans. Inf. Technol. Biomed., vol. 14,
no. 2, pp. 436–446, Mar. 2010, doi: 10.1109/TITB.2009.2036165.

[47] J. Burgués, J. M. Jiménez-Soto, and S. Marco, ‘‘Estimation of the
limit of detection in semiconductor gas sensors through linearized
calibration models,’’ Anal. Chim. Acta, vol. 1013, pp. 13–25,
Jul. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0003267018301673

[48] J. Burgués and S. Marco, ‘‘Multivariate estimation of the limit
of detection by orthogonal partial least squares in temperature-
modulated MOX sensors,’’ Analytica Chim. Acta, vol. 1019, pp. 49–64,
Aug. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0003267018303702

[49] C. Runge, ‘‘Über empirische funktionen und die interpolation zwischen
äquidistanten ordinaten,’’ Zeitschrift Math. Phys., vol. 46, nos. 224–243,
p. 20, 1901.

[50] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, ‘‘Benchmarking distributed stream data processing systems,’’ in
Proc. IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 1507–1518.

JIANHUA GAO was born in Shanxi, China,
in 1995. She received the B.S. degree from the
College of Mathematics, Taiyuan University of
Technology, China, in 2017. She is currently pur-
suing the Ph.D. degree with the School of Com-
puter Science and Technology, Beijing Institute of
Technology. Her research interests mainly include
parallel computing and heterogeneous computing.

WEIXING JI was born in Shanxi, China, in 1980.
He received the B.S. and Ph.D. degrees from
the School of Computer Science and Technology,
Beijing Institute of Technology, in 2003 and 2008,
respectively. He is currently an Associate Pro-
fessor with the School of Computer Science and
Technology, Beijing Institute of Technology. His
research interests mainly include big data analy-
sis, parallel computing, and program analysis and
optimization.

LULU ZHANG was born in Henan, China,
in 1990. She received the B.S. and M.S. degrees
from the School of Computer Science and Tech-
nology, Beijing Institute of Technology, China,
in 2015 and 2018, respectively. Her specialty is big
data analysis.

SENHAO SHAO was born in Shanxi, China,
in 1997. He received the B.S. degree from the
College of Data Science, Taiyuan University of
Technology, China, in 2019. He is currently pur-
suing the M.S. degree with the School of Com-
puter Science and Technology, Beijing Institute
of Technology. His specialty is high performance
computing.

43774 VOLUME 8, 2020

http://dx.doi.org/10.1145/568518.568520
http://dx.doi.org/10.1145/3063955.3063975
http://dx.doi.org/10.1145/362248.362276
http://dx.doi.org/10.1007/BF01386077
http://dx.doi.org/10.1007/BF02252081
http://dx.doi.org/10.1080/2150704X.2015.1101180
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.1109/TITB.2009.2036165


J. Gao et al.: Fast Piecewise Polynomial Fitting of Time-Series Data for Streaming Computing

YIZHUO WANG was born in Shanxi, China,
in 1979. He received the B.S. and Ph.D. degrees
from the School of Computer Science and Tech-
nology, Beijing Institute of Technology, China,
in 2000 and 2005, respectively. He is currently
a Lecturer with the School of Computer Science
and Technology, Beijing Institute of Technology.
His research interests mainly include computer
architecture, parallel programming, and embedded
systems.

FENG SHI was born in 1961. He received the
B.S. degree from the School of Physics, Peking
University, China, in 1983, and the Ph.D. degree
from the School of Computer Science and Tech-
nology, Beijing Institute of Technology, China,
in 1999. He is currently a Full Professor with
the School of Computer Science and Technol-
ogy, Beijing Institute of Technology. His research
interests mainly include computer architecture and
embedded systems.

VOLUME 8, 2020 43775


	INTRODUCTION
	RELATED WORK
	POLYNOMIAL CURVE FITTING
	POLYNOMIAL FITTING ACCELERATION
	PERIODICALLY SAMPLED TIME-SERIES DATA FITTING
	APERIODICALLY SAMPLED TIME-SERIES DATA FITTING

	EVALUATION
	DATASET DESCRIPTION
	GAS SENSOR ARRAY UNDER DYNAMIC GAS MIXTURES DATASET
	INDIVIDUAL HOUSEHOLD ELECTRIC POWER CONSUMPTION DATASET
	DAPHNET FREEZING OF GAIT (FoG) DATASET
	GAS SENSOR ARRAY TEMPERATURE MODULATION DATASET

	PERFORMANCE COMPARISON IN STATIC ENVIRONMENT
	PERIODICALLY SAMPLED TIME-SERIES DATA FITTING
	APERIODICALLY SAMPLED TIME-SERIES DATA FITTING

	PERFORMANCE COMPARISON IN STREAMING ENVIRONMENT

	CONCLUSION
	REFERENCES
	Biographies
	JIANHUA GAO
	WEIXING JI
	LULU ZHANG
	SENHAO SHAO
	YIZHUO WANG
	FENG SHI


