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ABSTRACT In the grant-free massive machine-type communication (mMTC) scenario, a key challenge
is the joint device activity detection and data decoding. The sporadic nature of mMTC makes compressed
sensing a promising solution to the activity detection problem. However, the typical two-phase coherent
transmission scheme, which divides channel training and data decoding into two separate phases, suffers
performance losses, especially when only a few bits of data are transmitted by each active device. This paper
follows a newly proposed non-coherent transmission scheme in which the data bits are embedded in the
pilot sequences and the BS simultaneously detects active devices and decodes the embedded data bits without
explicit channel estimation. To exploit statistical channel information and the specific structure of the sparsity
pattern introduced by the non-coherent transmission scheme, i.e., only one row in each section can be non-
zero, we propose a receiving method based on the approximate message passing (AMP) algorithm with non-
separable minimum mean-squared error denoisers specifically designed for the problem. The corresponding
state evolution equations, which can be used to predict the section error rate (SER) performance, is obtained
and simplified under certain assumptions. We also derive closed-form expressions of the SER performance
based on the state evolution results. Finally, numerical simulations are given to validate the accuracy of the
performance analysis and to show the superiority of the proposed receiving method over the conventional
method based on AMP with separable denoisers in the literature.

INDEX TERMS Massive machine-type communication (mMTC), non-coherent transmission, grant-free
NOMA, approximate message passing (AMP), non-separable denoiser, state evolution.

I. INTRODUCTION
A. MOTIVATION
Massive machine-type communication (mMTC) is one of the
key technologies for future wireless cellular networks that
aims to enable Internet-of-Things (IoT) [1], [2]. The fifth-
generation (5G) road map has already identified mMTC as
one of the threemain application scenarios, of which the other
two are the enhanced mobile broadband (eMBB) and ultra-
reliable low-latency communications (URLLC). In a typical
mMTC scenario, a massive number of IoT devices may be
required to send data packets to a single base station (BS),
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but one of the key features is that the patterns of device
activity are sporadic so that only a small fraction of devices
are active at any given time [3]. The sporadic activity pattern
may come from the fact that IoT devices are usually designed
to sleepmost of the time to save energy consumption and only
activated by some infrequent events. A typical example is
the sensor network, which is one of the application scenarios
of IoT. Due to the sporadic activity, the BS needs to detect
the active devices as well as decoding the transmitted data.
A major challenge of the mMTC is to accomplish this task in
an efficient and timely manner.

Due to a large number of potential devices and the spo-
radic activity, conventional grant-based access approaches in
cellular systems are inappropriate for the mMTC scenario.
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Observing that the activity pattern recovery is mathematically
equivalent to the support recovery problem in compressed
sensing (CS), people have proposed a two-phase grant-free
random access scheme based on CS techniques. Specifically,
in the two-phase grant-free scheme, each transmission block
is divided into two contiguous phases. In the first phase,
pilot sequences of all active devices are sent to the BS syn-
chronously, and the BS needs to detect the active devices and
estimate channel gains of the active devices. In the second
phase, data bits of the active devices are transmitted, and the
BS decodes the transmitted data bits using the knowledge of
device activities and the channel gains estimated in the first
phase. This two-phase scheme is grant-free and promising
for the massive connectivity scenario because it does not
need complicated contention resolution to handle the spo-
radic activity of devices in each transmission block. However,
this scheme still incurs non-negligible overhead for channel
training in the case when the transmitted data packet is short,
especially when only a few data bits are transmitted, which
is particularly common in control signaling, i.e., a message
may contain acknowledgment or simply a concise request for
a particular kind of response from the BS.

Unlike the two-phase scheme that divides channel training
and data transmission into two different phases, [4] adopts
a non-coherent single-phase transmission scheme in which
the data bits are embedded in the transmission of specif-
ically chosen pilot sequences and the BS jointly detects
active devices and decodes the embedded data bits without
explicit channel estimation. The superiority of this single-
phase scheme over the two-phase scheme has been validated
in the case when only 1 bit is transmitted [4] and in the
case when 4 bits are transmitted [26]. However, the receiving
method adopted in [4] and [26] is a simple adoption of
the original AMP algorithm with separable denoisers, which
neglects the correlation among the rows of the signal matrix.
Themodified-AMP algorithm proposed in [4], which exploits
the correlation structure in a heuristic manner, is not Bayes-
optimal and can only be used in the 1-bit scenario. In this
paper, we focus on the receiving algorithm design of the
single-phase non-coherent transmission scheme.

B. RELATED LITERATURE
Traditionally, cellular networks are scheduling-based, and all
registered devices are allocated specific time or frequency
resources [5]. This structure may not be used in the mMTC
scenario since scheduling a massive number of devices incurs
quite significant overhead. [6]–[8] investigate a contention-
based random access protocol in which each active device
chooses one of the mutually orthogonal pilot sequences ran-
domly and sends it to the BS, and a connection is established
for the device if its transmitted pilot sequence is not chosen
by the other devices. However, since collision is unavoidable
and data packets are short in the mMTC scenario, the over-
head incurred by contention resolution is still intolerable and
makes it inappropriate for our purpose.

Alternatively, grant-free non-orthogonal multiple access
(NOMA) schemes have attracted much attention in recent
years. In grant-free NOMA schemes, active devices syn-
chronously send their pre-allocated pilot sequences to the
BS so that the BS can perform device activity detection,
channel estimation, and data decoding. Due to the massive
number of potential devices and the limited coherence time
of wireless channels, the pre-allocated pilot sequences are
non-orthogonal. A key observation is that the sporadic device
activity pattern makes the problem mathematically equiva-
lent to the sparse support recovery problem in compressed
sensing (CS).

Assuming that perfect channel state information (CSI) is
available at the BS, then the CSI can be utilized as a sens-
ing matrix and the problem has been tackled with various
CS-based methods by exploiting various sparsity structures,
both for single-antenna [9]–[14] andMIMO setups [15], [16].
However, the perfect CSI assumption may not be directly
related to the problem considered in this paper. In the more
related case when CSI is not available at the BS, people
typically consider a two-phase coherent transmission scheme,
in which device activity detection and channel estimation are
operated jointly in the first phase, and coherent data decoding
is done in the second phase. The problem of the first phase
has been studied in [17]–[22] using various CS techniques.
The result in [22] and [23] gives a qualitative characterization
of the two-phase transmission scheme. The activity device
detection problem itself has also been studied in many works
such as [24], [25].

As described in the motivation, the two-phase coherent
transmission scheme may not be satisfiable if only a few
bits of information are transmitted. To further reduce the
overhead wasted on channel estimation, [4] has proposed a
single-phase non-coherent scheme, and has demonstrated its
superiority over the two-phase scheme when only 1 bit of
information is transmitted. The case when multiple bits are
transmitted has been considered in [26]. Both [4] and [26]
use the approximate message passing (AMP) algorithm to
design the joint device activity detector and data decoder.
However, the AMP algorithm used in [4] and [26] adopts
a separable element-wise denoiser which neglects the cor-
relation structure of the sparsity pattern. The original AMP
algorithm is proposed in [28] and rigorously studied in [29].
The algorithm used in this paper is the AMP algorithm with
a specifically designed non-separable denoiser, of which the
general form has been rigorously studied in [30]. The same
algorithm has also been used successfully in the decoding of
sparse superposition codes [31].

C. MAIN CONTRIBUTIONS
In this paper, we consider an mMTC scenario in which a mas-
sive number of devices each equipped with a single antenna
sporadically send a few data bits to a BS equipped with
multiple antennas. Adopting the single-phase non-coherent
transmission scheme, we concentrate on the receiver structure
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FIGURE 1. The mMTC scenario: An M-antenna BS serves N single-antenna
devices, of which each one is active independently with probability ε in
any transmission block.

design. The main contributions of this paper can be summa-
rized as follows.

(1) To exploit the statistical channel information and the
special correlation structure of the sparsity pattern incurred
by the non-coherent transmission structure, i.e., only one
row in each section can be non-zero, we propose a receiving
method based on the approximate message passing (AMP)
algorithm with a section-wise minimum mean square error
(MMSE) denoiser.

(2) The state evolution equations corresponding to the
AMP algorithm with section-wise MMSE denoiser, which
can be used to predict the section error rate (SER) perfor-
mance of the proposed receiving method, is also obtained.
Furthermore, assuming that the channel gains of different
BS antennas are uncorrelated, we further simplify the state
evolution equations and the corresponding MMSE denoiser.

(3) Closed-form expressions of the SER performance are
derived. We also give an asymptotic analysis of SER when
the number of BS antennas goes to infinity.

(4) Numerical simulations are given to validate the accu-
racy of the performance analysis and to show the superiority
of the proposedmethod using AMPwith section-wiseMMSE
denoiser over the receiving method based on the AMP algo-
rithm with separable element-wise denoiser.

D. STRUCTURE OF THE PAPER
The rest of this paper is organized as follows. In section
II, we introduce the system model of the mMTC scenario
and the setup of the single-phase non-coherent transmission
scheme. The AMP algorithm with a general form of non-
separable denoisers, along with the state evolution equations,
is described in section III. In section IV, we derive the expres-
sions of the section-wise MMSE denoiser and simplifies the
expressions as well as the corresponding state evolution equa-
tions. Based on the output of the AMP algorithm, the joint
device activity detector and data decoder is described and
analyzed in section V. Numerical simulations are given in
section VI. Finally, section VII concludes the paper.

E. NOTATIONS
Scalars are denoted by lower-case letters, vectors by bold-
face lower-case letters, and matrices by bold-face upper-
case letters. The identity matrix and the all-zero matrix of
are denoted as I and 0, respectively. For a matrix M of
arbitrary size, MH and MT denote its conjugate transpose
and transpose, respectively. Probability of event is denoted
by Pr (·) unless otherwise defined. The expectation operator
is denoted as E [·], or EX [·] when the expectation is with
respect to random variable X . The distribution of a circularly
symmetric complex Gaussian random vector with mean µ
and covariance matrix 6 is denoted by CN (µ;6); the space
of complex matrices of size m× n is denoted as Cm×n.

II. SYSTEM MODEL AND THE NON-COHERENT
TRANSMISSION SCHEME
A. SYSTEM MODEL
Consider the uplink of an mMTC system consisting of one
base station (BS) and N devices, which are denoted by N =
{1, · · · ,N }. The BS is equipped with M antennas, and each
device is equipped single antenna. A brief illustration of the
system considered here is shown in Fig. 1. The uplink channel
vector from device n to the BS is denoted by hn ∈ CM×1, n =
1, · · · ,N . This paper adopts a block-fading channel model
and assumes that channel vectors remain unchanged during a
transmission block.Without loss of generality, only one block
is considered. The channel vector hn is modeled as

hn =
√
βngn, (1)

where gn ∼ CN (0, I) denotes the Rayleigh fading compo-
nent, and βn denotes the path-loss and shadowing component.
Therefore, we have hn ∼ CN (0, βnI), ∀n. The path-loss and
shadowing component is related to the user location and is
assumed to be changing very slowly. So we assume that all
βn’s are known by the BS. A similar assumption is also used
in [21], [22].

The sporadic activity of devices is modeled as follows.
We assume that all devices are synchronized by receiving a
beacon from the BS. Each device decides in each transmis-
sion block whether or not to access the channel independently
with probability ε. Therefore, only a small fraction of users
are active within each transmission block. Considering one
block, we define the user activity indicator for user n as

αn =

{
1, if user n is active,
0, otherwise,

(2)

so that Pr(αn = 1) = ε, Pr(αn = 0) = 1 − ε, ∀ n ∈ N .
Further, we define the set of active devices within a coherence
block as K = {n ∈ N : αn = 1}. The number of active
devices is denoted as K = |K|. The overall channel input-
output relation is modeled as

y =
∑
n∈N

αnsnhn + z =
∑
k∈K

skhk + z, (3)

in which sn ∈ C, y ∈ CM×1, and z ∈ CM×1 are the
transmitted signal of device n, the channel output at the BS,
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and the additive white Gaussian noise (AWGN), respectively.
z ∼ CN (0, σ 2I) is assumed in this paper. For simplicity, this
paper assumes no power control, so that all devices transmit
at the same power. Inter-cell interference is not considered
in this paper. For each transmission block, the objective of
the BS is to detect the active devices and to decode their
transmitted data bits.

B. SETUP OF THE NON-COHERENT TRANSMISSION
SCHEME
Before introducing the setup of the non-coherent single-
phase transmission scheme, we briefly review the two-phase
scheme, of which more details can be found in [22] and [23].
In the two-phase scheme, each coherence block is divided
into two contiguous phases. Each registered device has a
unique pilot sequence allocated by the BS, and all these
pilot sequences are stored at the BS. In the first phase of
the scheme, the active devices send their pilot sequences to
the BS synchronously, and the BS jointly detects the active
devices, as well as estimating the channel for these active
devices. In the second phase, the active devices send their
data to the BS using the remaining time of the coherence
block, and the BS decodes the data based on the knowledge
of device activities and channels obtained in the first phase.
Focusing on the first phase, the problem of joint device activ-
ity detection and channel estimation can be formulated as
a compressed sensing multiple measurement vector (MMV)
problem, which can be efficiently solved by the approximate
message passing (AMP) algorithm [22].

Unlike the two-phase scheme which divides channel train-
ing and data transmission in two different phases, the single-
phase scheme considered in this paper is a non-coherent
transmission scheme, in which the data bits are embedded
in the pilot sequences and the BS jointly detects the active
devices and decoding the embedded data bits. Specifically,
in the single-phase scheme, the transmitted data bits are
embedded in the index of the transmitted pilot sequence of
each active device. To do this, each device is allocated not
just one pilot sequence but a set of B = 2J pilot sequences
when J bits are transmitted by each active device. The task
of the BS is to simultaneously detect the active devices and
decode their data bits without explicit channel estimation. If a
device is active, the index of the transmitted pilot sequence is
modulated by the J embedded data bits, otherwise, it remains
silent. We use

An =
[
an,1, · · · , an,B

]
∈ CL×B (4)

to denote theB pilot sequences allocated to device n. Since the
total number of pilot sequences is typically much larger than
the length of a coherence block in the mMTC scenario, mutu-
ally orthogonal sequences are impossible. Random Gaussian
pilot sequences is a good choice in practice and is also used in
this paper. Specifically, the elements of the ith pilot sequence
of device n

an,i =
[
a1n,i, · · · , a

L
n,i

]T
∈ CL×1, (5)

are generated i.i.d. from a complex Gaussian distribution with
zero mean and variance 1

L , i.e., a
l
n,i ∼ CN

(
0, 1

L

)
, so that

each pilot sequence has a unit norm, i.e., ‖an,i‖2 = 1, as
L →∞, ∀ n ∈ N , i = 1, · · · ,B and l = 1, · · · ,L.

Assuming that device n is active and the data bits are bn =[
bn,1, · · · , bn,J

]
, in which bn,j ∈ {0, 1}, ∀j ∈ {1, · · · , J},

the transmitted pilot sequence of device n is an,in(bn), in which
in (bn) is determined by

in (bn) = 1+
J∑
j=1

bj2j−1. (6)

Based on the system model (3), the received signal at the BS
of the single-phase non-coherent transmission scheme can be
written as

Y = AX + Z, (7)

in which A = [A1, · · · ,AN ] ∈ CL×BN denotes the collection
of the BN pilot sequences allocated to all the devices, and
X =

[
x1,1, · · · , x1,B, · · · , xN ,1, · · · , xN ,B

]T
∈ CBN×M

denotes the collection of the BN effective channels of all
the devices. Specifically, the effective channel is defined as
xn,i = αn,ihn, ∀ n ∈ N , i = 1, · · · ,B, where

αn,i =

{
1, if device n is active and xn,i is chosen,
0, otherwise.

(8)

Moreover, the receiving signal-noise-ratio (SNR) at each BS
antenna is defined as

SNR = 10 log

(
ε

∑N
n−1 βn

N
1
L

1
σ 2

)
, (9)

in which ε is the probability of being active for each device,
and βn is the path-loss and shadowing component of device
n.
Similar to the two-phase scheme, here the task for the BS

is to detect the active devices and decoding their transmitted
data bits by reconstructing the support of columns of X ,
i.e., values of αn,i’s, based on A and Y in model (7). As X is
row sparse, this is also a CS-MMV problem. Different from
the problem in the two-phase scheme, the problem here has
a special structure in the sparsity pattern, i.e., at most one
of the rows of X corresponding to each device is nonzero.
This structure can be exploited to design reconstruction algo-
rithms, but it also makes the rows of X corresponding to the
same device correlated. Due to the correlation of the rows of
X , simple use of the original AMP algorithm with separable
denoiser which assumes that the rows of X are independent
is not Bayes-optimal. In [4] the authors proposed a heuris-
tic modified-AMP (M-AMP) algorithm which exploits this
structure to some extent. However, the M-AMP algorithm is
only applicable for the case when 1 bit is transmitted, and
assumes a mismatched a priori distribution of the signal.
Moreover, the performance of M-AMP has no scalar charac-
terization, i.e. state evolution (SE). In the next section, wewill
introduce the AMP algorithm with non-separable denoisers
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and focus on deriving the Bayes-optimal MMSE denoiser for
the algorithm.

III. AMP WITH NON-SEPARABLE DENOISERS
A. REFORMULATION OF THE ORIGINAL PROBLEM
In order to facilitate the description of the AMP algorithm
with non-separable denoisers, we reformulate the original
problem (7) as follows. Instead of considering X as a matrix
of BN rows, we divide its rows into N sections, each of
which consists of the B contiguous rows corresponding to the
same device. Correspondingly, αn,i’s are also grouped into N
sections as

αn =
{
αn,1, · · · , αn,2J

}
, ∀n ∈ N . (10)

As a consequence, the original problem in (7) can be
expressed as

Y =
∑
n∈N

AnXn + Z, (11)

in which Xn =
[
xn,1, · · · , xn,B

]T is the nth section of X ,
and An is the corresponding section of the sensing matrix A,
as defined in (4). Since we assume that the devices operate
independently and send uncorrelated data bits, the sections
Xn’s are not correlated. In fact, section Xn is distributed
according to the following distribution

PXn = (1− ε)
B∏
i=1

δxn,i + ε

B∑
i=1

Phn
∏
j 6=i

δxn,j , (12)

in which δxn,i denotes the point mass at zero of the element
xn,i, Phn is the distribution of hn defined in (1), ∀ n ∈ N and
i ∈ {1, · · · ,B}. Instead of separately considering the device
activity detection error rate and the decoding bit error rate,
we consider the section error rate (SER) as the performance
metric, which is defined as the fraction of incorrectly recon-
structed αn’s

SER =
1
N

L∑
l=1

I (α̃n 6= αn) , (13)

where I(·) is the indicator function, and α̃n is the estimate of
αn. Usually, α̃n are obtained using some hard thresholding of
the estimation of Xn, which is denoted as X̃n in this paper.

B. THE AMP ALGORITHM WITH NON-SEPARABLE
DENOISERS
Now we are ready to describe the general form of the AMP
algorithm with non-separable denoisers. With regard to the
structured CS-MMV problem of (7) or the equivalent model
(11), the AMP algorithm aims to provide an estimate of X
that minimizes the mean-squared error (MSE)

MSE = EX,Y‖X̃ (Y)− X‖22. (14)

Here, theX in (14) is used to refer to a random variable whose
rows Xn’s are also random variables distributed according to
the distribution (12). Starting with X0

= 0 and R0
= Y ,

the AMP algorithm with a general form of non-separable
denoiser proceeds at each iteration as

X t+1
n = ηt,n

(
(An)H Rt + X t

n

)
, n = 1, · · · ,N , (15)

Rt+1 = Y − AX t+1
+
Rt

L

N∑
n=1

η′t,n

(
(An)H Rt + X t

n

)
,

(16)

where t = 0, 1, · · · is the index of the iteration, X t
=[

X t
1, · · · ,X

t
N

]T is the estimate of X at iteration t , and Rt ∈
CL×M denotes the corresponding residual. Here we point
out that although (15) and (16) are described using random
variables, in practice the algorithm is operated on realizations
of the corresponding random variables. Intuitively, the algo-
rithm performs in (15) a matched filtering of the residual for
each user n using its allocated pilot sequences An, followed
by a denoising step using an appropriately designed non-
separable denoiser ηt,n (·) : CM×B

→ CM×B. The residual is
then updated in (16). The correction term in (16) is the famous
Onsager correction term, in which η′t,n (·) is the first-order
derivative of ηt,n (·). Note that the main difference between
the algorithm used here and the original AMP algorithm used
in [4], [22] and [26] is that the denoiser in (15) operates
section by section, while the denoiser of the original AMP
algorithm used in [4], [22] and [26] operates row-by-row.
Intuitively, this section-wise denoiser captures the section-
wise structure of the rows in X and can be used to exploit
the correlations of the rows in the same section, i.e., at most
one row of each section can be nonzero. Note that we use the
words ’section-wise’ and ’non-separable’ interchangeably in
this paper just for convenience.

C. STATE EVOLUTION
According to the analysis in [30], state evolution (SE) can be
used to predict the asymptotic performance when the AMP
algorithm with non-separable denoisers is used to solve the
structured reconstruction problem in (11). The asymptotic
regime considered here is when L,N → ∞ with their
ratio converges to some fixed positive value L

N → ρ with
ρ ∈ (0,∞), while the receiving SNR and the number of
embedded data bits J are both fixed. As shown in [30],
the asymptotic state evolution analysis can be used to predict
the system performance at finite (but large) L,N with very
high accuracy.

Now we define several random variables that are used in
describing the state evolution equations. Firstly we define
β ∼ Pβ , in which Pβ is the empirical distribution of the
large-scale fading coefficients βn’s. Secondly, we define a
random matrix Xβ =

[
xβ,1, · · · , xβ,B

]T with distribution
PXβ = (1− ε)

∏B
i=1 δxβ,i+ε

∑B
i=1 Phβ

∏
j 6=i δxβ,j , where Phβ

denotes the distribution of hβ ∼ CN (0, βI). Furthermore,
we defineV ∈ CB×M an randommatrix which is independent
of Xβ and has i.i.d. rows, of which each follows the same
distribution CN (0, I). Based on these random variables,
the state evolution equations can be written as the following
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recursions for t ≥ 0

60 =
1

SNR
I +

1
ρ
E
[
XH
βXβ

]
, (17)

6t+1 =
1

SNR
I +

1
ρ
E
[(
1t
β

)H
1t
β

]
, (18)

in which

1t
β = ηt,β

(
X̂
t
β

)
− Xβ , (19)

X̂
t
β = Xβ + V6

1
2
t . (20)

In (17)-(20),6t is referred to as the state, and the expectation
is with respect to β, Xβ and V . Note that ηt,β is the section-
wise denoiser used in (15) and (16), with the parameter βn
replaced by the random variable β.
The most important thing about state evolution is that it

characterizes the dynamics of the AMP algorithm and can
be used to predict the performance of the algorithm. Now
we define a statistical model that captures the distribution of
the original signal and the input to the denoiser in the AMP
algorithms (15) and (16):

X̂
t
n = Xn + Vn6

1
2
t , (21)

where Xn ∈ CB×M is the random signal matrix with dis-
tribution (12), and Vn ∈ CB×M is a random matrix with
each row distributed as CN (0, I) and is independent of Xn.
According to the analysis in [30], the state evolution analysis
says that in the AMP algorithm, the output of the denoiser
applied to the residual (An)H Rt + X t

n as shown in (15) is
statistically equivalent to the output of applying the denoiser
to X̂

t
n in (21). Therefore, we call (21) the section-wise equiv-

alent model. This model can be used to predict many things
of the AMP algorithm, i.e., mean-squared error. Moreover,
the section-wise equivalent model tells us how to design the
Bayes-optimal denoiser for the AMP algorithm, which will
be discussed in the next subsection.

IV. SECTION-WISE MMSE DENOISER AND
SIMPLIFICATIONS
A. DERIVATION OF THE SECTION-WISE MMSE DENOISER
The key advantage of using the section-wise equivalentmodel
(21) is the decoupling of the estimation of different sections,
which allows us to design the section-wise Bayes-optimal
denoiser for the AMP algorithm, and to minimize the MSE
section by section. Specifically, considering the denoising of
section n in the tth iteration of the AMP algorithm, using the
decoupling principle and the section-wise equivalent model
(21), the MMSE denoiser ηt,n (·) is given by the conditional
expectation E

[
Xn|X̂

t
n

]
. Assuming X̂

t
n =

[
x̂tn,1, · · · , x̂

t
n,B
]T
,

we derive the closed-form expressions of the section-wise
MMSE denoiser in the following theorem
Theorem 1: Based on the section-wise equivalent model

(21), the section-wise MMSE denoiser ηt,n (·) of the AMP
algorithm (15) and (16) can be expressed as

ηt,n

(
X̂
t
n

)
=
[
ω̄n,12nx̂

t
n,1, · · · , ω̄n,B2nx̂

t
n,B
]T

(22)

in which

2n = βn (βnI +6t)
−1 , (23)

ω̄n,i =
ωn,i∑B

i=1 ωn,j + B
1−ε
ε

, (24)

ωn,i = exp
(
M
(
πn,i − φn

))
, (25)

πn,i =

(
x̂tn,i

)H (
6−1t − (6t + βnI)−1

)
x̂tn,i

M
, (26)

and

φn =
log

(
|I + βn6−1t |

)
M

. (27)
Proof: Please refer to Appendix A.

Note that we leave out the index t of all the intermediate
variables just for simplicity. Examining the expressions of the
section-wise MMSE denoiser in Theorem 1, it is worthwhile
to note that if no data bits is embedded, i.e., B = 1, it follows
that ω̄1 =

1
1+ 1−ε

ε
ω−11

. As a result, the expressions of the

section-wise MMSE denoiser in (22)-(27) reduces to the
expressions of the separable MMSE denoiser used in [22].

B. STATE EVOLUTION ANALYSIS AND SIMPLIFICATIONS
The general form of the state evolution equations in (17)
and (18) applies to arbitrary denoiser ηt,n. With the MMSE
denoiser (22), the state evolution can be considerably simpli-
fied.
Theorem 2: With regard to the MMV problem in (7),

assume that the AMP algorithm (15) and (16) with the
section-wise MMSE denoisers in (22) is used. Considering
the asymptotic regime when the number of users N and
the length of the pilot sequences L both go to infinity with
their ratio converging to some fixed positive values, i.e.,
L/N → ρ, while the SNR and the probability of being active
ε are both fixed, then the matrix6t in the state evolution (18)
always stays as a diagonal matrix with identical diagonal
entries after each iteration, i.e.,

6t = τ
2
t I, ∀t ≥ 0. (28)

Correspondingly, the section-wise equivalent signal model
given in (21) reduces to

X̂
t
n = Xn + τtVn. (29)

and the MMSE denoiser given in (22)-(27) reduces to

ηt,n

(
X̂
t
n

)
=
[
ω̄n,1θnx̂

t
n,1, · · · , ω̄n,Bθnx̂

t
n,B
]T
, (30)

in which

θn =
βn

βn + τ
2
t
, (31)

ω̄n,i =
ωn,i∑B

j=1 ωn,j + B
1−ε
ε

(32)

ωn,i = exp
(
M
(
πn,i − φn

))
, (33)

πn,i =

(
1

τ 2t
−

1

βn + τ
2
t

) (
x̂tn,i

)H (x̂tn,i)
M

, (34)
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and

φn = log
(
1+

βn

τ 2t

)
. (35)

Finally, the state τ 2t can be iteratively obtained using the
following scalar form of state evolution equations:

τ 20 =
1

SNR
+
ε

ρ
E [β] , (36)

τ 2t+1 =
1

SNR
+

1
ρ

B∑
i=1

E
[
ω̄β,iθβτ

2
t

]
+

1
ρ

B∑
i=1

E
[
ϒ t
β,i

]
,

(37)

in which

θβ =
β

β + τ 2t
, (38)

ϒ t
β,i = ω̄β,i

(
1− ω̄β,i

) ( β

β + τ 2t

)2
(
x̂tβ,i

)H
x̂tβ,i

M
, (39)

X̂
t
β =

[
x̂tβ,1, · · · , x̂

t
β,B

]T
= Xβ + τtV , (40)

and all expectations in (36)-(37) are with respect to β,Xβ and
V . The computation of ω̄β,i is given in expression (32)-(35),
with βn replaced by β.
Proof: Please refer to Appendix B.

The key observation is that because the channel gains
across multiple BS antennas are uncorrelated, the section-
wise equivalent residual noise in (16) also remains uncor-
related across the BS antennas. This is true in spite of
the fact that the AMP algorithm involves non-linear and
non-separable processing as in (22), i.e., each ω̄i is a non-
linear function involving all rows of X̂

t
n. This scalar form

of state evolution equations significantly simplifies perfor-
mance analysis.

V. THE RECEIVING METHOD AND PERFORMANCE
ANALYSIS
A. DEVICE ACTIVITY DETECTION AND EMBEDDED DATA
BIT DECODING
We now describe the intuition behind the device activity
detector and the embedded data bit decoder. Observe that
πn,i in (34) is of order one and converges to a constant
value depending on αn,i as M → ∞. If we define i?n =
argmaxi

{
πn,i − φn,i

}
, from expressions (32) and (33), it is

observed that ω̄n,i → 0 as M → ∞ for all i = 1, · · · ,B,
if πn,i?n − φn,i?n < 0, while ω̄n,i?n → 1 as M → ∞,
if πn,i?n − φn,i?n > 0. Here we neglect the possibility that i?n is
not unique as it happens with probability zero. This suggests
that it is reasonable to adopt a threshold strategy for joint
device activity and embedded data bit decoding. Specifically,
the BS declares device n as active if πn,i?n − φn,i?n > 0 and
decode the embedded data bits of this device as the binary
expansion of i?n based on the relation (6), otherwise, the BS
declares device n as inactive. Using (34), (35) and the scalar
form of the state evolution equations of the AMP algorithm,

the device activity detector and the embedded data bit decoder
are formally described as follows
Definition 1: The AMP algorithm based device activity

detector and embedded data bit decoder consist of the follow-
ing threshold-based detector combined with a bit de-mapper.
After t iterations of the AMP algorithm described in (15) and
(16) and the computation of τ 2t using the scalar form of state
evolution equations (36) and (37). Compute the following
number

Mn,i =

(
1

τ 2t
−

1

βn + τ
2
t

)
ζHn,iζ n,i

M
− φn, ∀i, n, (41)

where ζ n,i denotes the ith row of the matrix (An)H Rt + X t
n

used in (15), and φn = log
(
1+ βn

τ 2t

)
. Define

i?n = argmax
i

Mn,i, ∀n ∈ N . (42)

Then the estimation of αn =
[
αn,1, · · · , αn,B

]T is given as
α̃n =

{
ei?n , ifMn,i?n > 0,
0, ifMn,i?n ≤ 0,

(43)

in which ei?n is the length B vector with only the i
?
nth element

equal to 1 and all other elements equal to 0. Based on this
estimation, device n will be declared as active if α̃n 6= 0 and
the embedded data bits can be decoded using the following
bit de-mapper:(
b̃1, · · · , b̃J

)
=

(b1, · · · , bJ ) : i? = 1+
J∑
j=1

bj2j−1

 .
(44)

Otherwise, user n will be declared inactive.
Note that the MMSE denoiser given in (30) is just scaled

versions of the input vectors. As a result, the complexity
of the AMP algorithm described in (15) and (16) mainly
comes from matrix multiplication. Based on the fact that
A ∈ CL×BN and X ∈ CBN×M , the complexity of the
AMP algorithm is in the order of O (LBNM) per iteration.
In practice, the algorithm converges usually for less than
twenty iterations, no matter how largeN is. Note that the state
evolution iterations and the computation of τ 2t can be done
off-line, as it does not require the received signal.

B. SER PERFORMANCE ANALYSIS
In this subsection, we analyze the section error rate (SER)
performance of the device activity detector and embedded
data bit decoder described in the previous subsection. The
results of this section pertain to finite M , i.e., the number
of antennas at the BS. The asymptotic result with M →∞
is discussed in the next subsection. Note that a section
error event happens if and only if the corresponding device
is declared active when it is actually inactive, i.e., false
alarm, or the embedded data bits are decoded incorrectly
when it is active, i.e., decoding error. Therefore, it is reason-
able to use SER as a performance metric of the joint activity
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detector and data bit decoder. Here we remark that SER is
a per-user metric, which is more appropriate for the mMTC
scenario than the conventional joint error rate over all devices,
as argued in [32]. Before giving the analytical results, we first
give a formal definition of SER and the related concepts.
Definition 2: For the joint device activity detection and

embedded data bit decoding problem of (7), after t iterations
of the AMP algorithm using (15) and (16), the SER of device
n of the proposed detector and decoder in Definition 1 is
defined as

PSERt,n = Pr (Device n is inactive)PFAt,n
+Pr (Device n is active)PDECt,n , (45)

in which PFAt,n = Pr (α̃n 6= 0|αn = 0) is the conditional
probability that device n is declared active given that it is
actually inactive, and PDECt,n = Pr (α̃n 6= αn|αn 6= 0) is the
conditional probability that the embedded data bits of device
n is decoded incorrectly given that it is active.

The intuition is to analyze the estimator (43) based on the
section-wise equivalent signal model (29). The analysis is
given formally in the following theorem
Theorem 3: Consider the joint active device detector and

embedded data bit decoder in Definition 1 based on the
AMP algorithm with section-wise MMSE denoiser. Fix the
number of antennas M and the number of embedded data
bits J . Consider the asymptotic regime in which the number
of users N and the length of the pilot sequences L all go to
infinity with their ratio converging to a fixed positive value,
i.e., L/N → ρ, and both SNR and the probability ε fixed.
After t iterations of the AMP algorithm using (15) and (16),
the SER of device n of the proposed detector and decoder,
which is formally defined in Definition 2, can be computed
using the τ 2t in the state evolution equations (36) and (37) as
follows:

PSERt,n (M) = (1− ε)PFAt,n (M)+ εP
DEC
t,n (M) , (46)

in which

PFAt,n (M) = 1−

(
0
(
M , cn,tM

)
0 (M)

)B
(47)

is the false alarm rate when the device is actually inactive,

PDECt,n (M) = 1−
(
Ibn,t (M ,M)

)B−1 (48)

is the decoding error rate when the device is active, and
0 (·), 0 (·), and I (·) denote the Gamma function, the lower
incomplete Gamma function, and the regularized incomplete
Beta function, respectively, and

bn,t =
βn + τ

2
t

βn + 2τ 2t
. (49)

cn,t =
(
βn + τ

2
t

βn

)
log

(
1+

βn

τ 2t

)
, (50)

Proof: Please refer to Appendix C
From the proof of Theorem 3, it is observed that the

analysis hinges upon the simplified form of the section-wise

equivalent signal model (29). As a consequence of (29),
the proposed estimator of αn,i’s in (43) becomes a problem
of finding the maxima of some i.i.d. χ2-distributed random
variables and then does a threshold test for this random
maximum value. This allows the SER to be characterized
using the expressions (46)-(50). An important observation is
that due to the fact that a ≥ log (1+ a) ≥ a

1+a , one can show
that both the two terms in the expressions of SER eventually
go to zero asM →∞. This asymptotic behavior is discussed
in more detail in the next subsection. Finally, we note that at
the convergence of the AMP algorithm, τ 2t converges to the
fixed-point solution of (37), i.e., τ 2∞. The SER may then be
expressed as (46)-(50) with τ 2t replaced by τ 2∞.

C. ASYMPTOTIC ANALYSIS WITH M →∞
In this subsection, we discuss the asymptotic SER perfor-
mance when M → ∞, which indicates the excellent perfor-
mance of the proposed method in the massive MIMO regime.
The intuition behind the analysis is that the estimator α̃n in
(43) involves the computation ofMn,i in (41), which further
involves a comparison between πn,i with φn. Again, based
on the decoupling principle of AMP and the section-wise
equivalent signal model (29), we have the following almost
sure convergence by the law of large numbers

πn,i→


(

1

τ 2t
−

1

βn + τ
2
t

) (
τ 2t + βn

)
, if αn,i = 1,(

1

τ 2t
−

1

βn + τ
2
t

)
τ 2t , if αn,i = 0.

(51)

This further simplifies to πn,i→
βn
τ 2t

if device n is active, and

πn,i →
βn

τ 2t +βn
if device n is inactive. Now we consider the

comparison of πn,i with φn = log
(
1+ βn

τ 2t

)
asymptotically.

Using the fact that a ≥ log (1+ a) ≥ a
1+a holds for all a ≥ 0,

we have

βn

τ 2t
≥ log

(
1+

βn

τ 2t

)
≥

βn

τ 2t + βn
, (52)

as long as βn ≥ 0 and τ 2t ≤ ∞. As a consequence, we know
that asM →∞, it is always true thatπn,i ≤ φn whenαn,i = 0
and πn,i ≥ φn when αn,i = 1. In other words, the estimation
of αn is always accurate in the massive MIMO regime.
A striking observation here is that accurate activity detec-

tion and data bit decoding is guaranteed as long as M is
sufficiently large, regardless of ρ and ε. Thus, this is true even
if ρ ≤ ε, i.e., the number of measurements is smaller than
the number of active elements in the reconstruction problem
(7). Another surprising observation is that SER goes to zero
as M → ∞ for any arbitrary t . Thus this is true even for
t = 1. It means that with infinitely large M , the joint device
activity detector and the embedded data bit decoder works
perfectly after just one AMP iteration. Also, it is observed
that when t = 1, the input to the denoiser (15) is (An)H R0

+

X0
n = (An)

H Y , which is simply the matched filter output of
the received signal with the corresponding pilot sequences.
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We summarize this consequence in the following proposition
without a formal proof
Proposition 1: For the joint device activity detection and

embedded data bit decoding problem (7) with fixed num-
ber of embedded data bits transmitted by each active user,
considering the asymptotic regime in which the number of
users N and the length of the pilot sequences L both go to
infinity with their ratio converging to a fixed positive value,
i.e., L/N → ρ, while both the SNR and the probability ε
are fixed. If the detector and decoder in Definition 1 is used
but with the matched filter (MF) output (An)H Y used in the
computation ofMn,i’s, the SER of device n converges to zero
when M →∞.

VI. NUMERICAL SIMULATIONS
In this section, we provide numerical simulations to verify the
results of this paper. The common setup of the simulations
is as follows. There are N = 2000 devices in the cell, and
each device accesses the BS independently with probability
ε = 0.05 at each coherence block. Let dn denote the distance
between user n and the BS, n = 1, · · · ,N . It is assumed that
dn’s are uniformly distributed in the regime [0.05km, 1km]
independently. The path loss model of the wireless channel
for device n is βn = −128.1 − 36.7 log 10(dn) in dB. The
bandwidth and the coherence time of the wireless channel
are 1 MHz and 1 ms, respectively, and the length of all
pilot sequences L should be less than 1000. Without loss of
generality, the transmit power of each active device is fixed
to the average power of the pilot sequences, i.e., 1

L . The noise
variance σ 2 is chosen according to the receiving SNR (dB)
using the (9). Moreover, all numerical results are obtained by
averaging over 103 channel realizations.

In order to measure the performance of the proposed algo-
rithm for the entire system, we define the average SER over
all users as

PSERt =
1
N

N∑
n=1

PSERt,n , (53)

in which PSERt,n is defined in (45). Using (46)-(50) and the τ 2t
computed by SE equations (36) and (37), we can easily com-
pute the prediction of PSERt by SE. Moreover, we use PSER

to denote the average SER when the AMP algorithm stops.
In all simulations in this paper, the AMP algorithm is set to
stop at iteration t? when 1

MN ‖X
t?
−X t?−1

‖
2
F < 10−6, or when

the maximum number of iterations tMAX = 30 is reached.
In simulations, it is observed that the algorithm typically
converges in less than 20 iterations. For comparison, we also
consider the conventional AMP algorithm with element-wise
denoisers which is used in [4] and [26] to solve the same
problem. However, this algorithm neglects the correlation
among the rows in X and assumes that each row is nonzero
independently with probability ε/B. The same stopping cri-
terion is used for this algorithm in our simulations.

Fig. 2 shows the average SER of the two algorithms versus
SNR, with 3 different values of the number of antennas at

FIGURE 2. Average SER versus SNR. Each of the N = 2000 devices
accesses the channel independently with probability ε = 0.05 at each
coherence block. The length of the pilot sequences is chosen as L = 240.
Three different M’s, i.e., M = 2, 8 and 16 are chosen and simulated.

the BS chosen as examples, i.e., M = 2, 8 and 16. only 1
bit of information is transmitted by each active device. The
length of the pilot sequences is chosen as L = 240. First, it is
observed that the average SER of the proposed joint detector
and embedded data bit decoder based on AMP with section-
wise denoisers, which is denoted as ’Section’ in Fig. 2,
matches perfectly with the average SER predicted by (46)
using the τ 2t computed by the state evolution equations, which
is denoted as ‘Section SE’ in Fig. 2. Next, it is observed
that the proposedAMP algorithmwith section-wise denoisers
performs better than the AMP algorithm with element-wise
denoisers, which is denoted as ’Element’ in Fig. 2, in all
regimes of our simulations. Moreover, as the number of
antennas at the BS increases, the average SER of both the
two algorithms decreases very quickly.

Fig. 3 shows the average SER of the two algorithms versus
M , the number of antennas at the BS, with 3 different SNR’s
chosen as examples, i.e., SNR = −5 dB, SNR = 0 dB
and SNR = 5 dB. Only 1 bit of information is transmitted
by each active device. It is observed that as the number of
antennas increases, the average SNR of both the two algo-
rithms decreases to zero almost at an exponential speed. The
accuracy of predictions of the state evolution for the proposed
algorithm with section-wise denoisers, and the superiority
of the proposed algorithm over the AMP with element-wise
denoisers is also validated in the regimes of the simulations
in Fig. 3.

Fig. 4 shows the average SER of the two algorithms versus
L, the length of the pilot sequences used in each block,
with 3 different number of BS antennas chosen as examples,
i.e., M = 1, 4 and 8, and SNR = 3 dB is chosen. Only
1 bit of information is transmitted by each active device.
From Fig. 4, it is observed that the average SER of both
algorithms decreases as the pilot sequence length L increases
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FIGURE 3. Average SER versus the number of antennas at the BS (M).
Each of the N = 2000 devices accesses the channel independently with
probability ε = 0.05 at each coherence block. The length of the pilot
sequences is chosen as L = 240. Three different SNR’s,
i.e., SNR = −5, 0 and 5 dB are chosen and simulated.

FIGURE 4. Average SER versus the length of pilot sequences L. Each of
the N = 2000 devices accesses the channel independently with
probability ε = 0.05 at each coherence block. SNR is set to be 3 dB, and
three different M’s, i.e., M = 1, 4 and 8 are chosen and simulated.

and when M increases. The accuracy of predictions of the
state evolution for the proposed AMP algorithm with section-
wise denoisers, and the superiority of the proposed algorithm
over the AMP with element-wise denoisers is also validated
in the regimes of the simulations in Fig. 4.

Fig. 5 shows the average SER versus SNR, with 2 different
number of embedded data bits transmitted by each active
device, i.e., J = 1 and J = 4 are chosen as examples. The
number of BS antennas is 4. From Fig. 5, it is observed that
the average SER of both algorithms increase as the number
of embedded data bits increases from J = 4 to J = 1.
This means that the performance of both the two algorithms
deteriorate when more data bits are embedded.

FIGURE 5. Average SER versus SNR. Each of the N = 2000 devices
accesses the channel independently with probability ε = 0.05 at each
coherence block. Two different number of embedded data bits
transmitted by each active devices, i.e., J = 1 and 4, and M = 4 are
chosen.

FIGURE 6. Average SER versus the access probability ε. The total number
of devices is N = 2000, and the length of pilot sequences is fixed at
L = 400. SNR is set to be 3 dB. Three different M’s, i.e., M = 1, 4 and 8
are chosen and simulated.

Finally, we change the device access probability ε. Fig. 6
shows the average SER versus ε, with three different number
of BS antennasM ’s, i.e.,M = 1, 4 and 8 chosen as examples.
The length of pilot sequences is fixed as L = 400, and the
total number of devices is the same as beforeN = 2000. From
Fig. 6, it is observed that the average SER of both algorithms
increase as the probability of being active increases. This is
consistent with the results in the compressed sensing litera-
ture.Moreover, the superiority of the proposed algorithm over
the conventional AMP with element-wise denoisers is also
validated in the regimes of the simulations in Fig. 6.

VII. CONCLUSION
This paper considers a single-phase non-coherent transmis-
sion scheme for the mMTC communications, in which the

VOLUME 8, 2020 41461



Z. Tang et al.: Device Activity Detection and Non-Coherent Information Transmission for mMTCs

BS jointly detects active devices and decodes the data bits
without explicit channel estimation. To exploit the statistical
channel information and the specific structure of the sparsity
pattern introduced by this scheme, i.e., only one row in each
section can be non-zero, a novel receiving method based on
theAMP algorithmwith non-separable denoisers is proposed.
The Bayes-optimal section-wise MMSE denoiser is derived
in closed form. The corresponding state evolution equations
and the closed-form expressions of the SER performance are
also derived. Numerical simulations show that the SER per-
formance predicted by the state evolution is accurate, and the
proposed receiving method based on the AMP with section-
wise denoiser can effectively exploit the correlation structure
of the problem and increase the SER performance over the
method based on AMP with element-wise denoisers.

APPENDIXES
APPENDIX A
PROOF OF THEOREM 1
Note that theMMSE estimator ofXn of model (21) is the con-
ditional expectation E

[
Xn|X̂

t
n

]
. Based on the section-wise

equivalent model, we know that the likelihood of observing
X̂n given the signal Xn is

P
X̂
t
n|Xn

=

B∏
i=1

1
πM |6t |

exp
(
−
(
x̂tn,i − xn,i

)H
6−1t

(
x̂tn,i − xn,i

))
.

(54)

The a priori distribution of Xn is also known as

PXn=(1− ε)
B∏
i=1

δxn,i

+
ε

B

B∑
i=1

1
πM |βnI|

exp

(
−
xHn,ixn,i
βn

)∏
j 6=i

δxn,j . (55)

Using the Bayes’ Formula P
Xn|X̂

t
n
=

PXnPX̂ tn|Xn
P
X̂ tn

, we can

compute the a posteriori distribution of Xn given X̂
t
n as:

P
Xn|X̂

t
n
=
(
1− ε̂

) B∏
i=1

δxn,i

+

B∑
i=1

ω̄n,i

πM |6̂t |

× exp
(
−
(
x̂tn,i−r

t
n,i
)H
6̂
−1
t
(
x̂tn,i − r

t
n,i
))∏

j 6=i

δxn,j ,

(56)

in which ω̄n,i is the same as in (24), and

ε̂ =

∑B
i=1 ωn,i

1−ε
ε
B+

∑B
i=1 ωn,i

, (57)

rtn,i = βn (βnI +6t)
−1 x̂tn,i, (58)

6̂t =

(
1
βn
I +6−1t

)−1
. (59)

Observing the expression of the a posteriori distribution (56),
we know that

E
[
Xn|X̂

t
n

]
=
[
ω̄n,1rtn,1, · · · , ω̄n,Br

t
n,B
]T
, (60)

which is actually the same as expression (22).

APPENDIX B
PROOF OF THEOREM 2
First we note that if 6t = τ 2t I is true for all t , it is easy
to show that the section-wise MMSE denoiser in (22)-(27)
can be simplified to expressions in (30)-(35). So, to prove the
theorem, we only need to prove that6t = τ

2
t I is true for all t .

We will use induction to prove this result. It is easy to check
60 = τ 20 I with τ 20 given in (36). Assume that 6t = τ 2t I ,
we will prove the result for t + 1.

Using the fact that ηt,β
(
X̂
t
β

)
= E

[
Xβ |X̂

t
β

]
, and the

expression of the a posteriori distribution derived in (56),
the expectation in (18) can be simplified as

E
[(
ηt,β

(
X̂
t
β

)
− Xβ

)H (
ηt,β

(
X̂
t
β

)
− Xβ

)]
= E

X̂
t
β

EX t
β |X̂β

[(
ηt,β

(
X̂
t
β

)
− Xβ

)H (
ηt,β

(
X̂
t
β

)
− Xβ

)]
(a)
=

B∑
i=1

E
X̂
t
β

[
ω̄β,i

(
1
β
I +6−1

)−1]

+

B∑
i=1

E
X̂
t
β

[
ω̄β,i

(
1− ω̄β,i

)
2β x̂

t
β,i

(
2β x̂

t
β,i

)H]
, (61)

in which 2β and ω̄β,i are given in (23) and (24) respec-
tively, with n replaced by β. The derivation of (a) uses the

fact that E
Xβ |X̂

t
β

[(
ηt,β

(
X̂
t
β

)
− Xβ

)H (
ηt,β

(
X̂
t
β

)
− Xβ

)]
is the conditional covariance matrix of Xβ given X̂

t
β with the

conditional distribution given in (56). With the assumption
6t = τ

2
t I , it is easy to simplify the expressions of ω̄β,i from

(24)-(27) to (32)-(35). Furthermore, we have

E
X̂
t
β

[
ω̄β,i

(
1
β
I +6−1

)−1]
= E

X̂
t
β

[
ω̄β,iθβτ

2
t

]
I, (62)

in which θβ =
β

β+τ 2t
, and

E
X̂
t
β

[
ω̄β,i

(
1− ω̄β,i

)
2β x̂

t
β,i

(
2β x̂

t
β,i

)H]
= E

X̂
t
β

[
ω̄β,i

(
1− ω̄β,i

) ( β

β + τ 2t

)2

x̂tβ,i
(
x̂tβ,i

)H]
.

(63)

It is obvious that EX̂β
[
ω̄β,iθβτ

2
t
]
I is already a diagonal

matrix with equal diagonal elements for all i = 1, · · · ,B.
Now we prove that the expectation in (63) is also diagonal.

For simplicity, we use Dβ,i to denote the expectation in (63).
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For any 1 ≤ m, n ≤ M , define Dβ,i (m, n) as the element in
the mth row and nth column of Dβ,i, and x̂tβ,i (m) as the mth
element of vector x̂tβ,i. For the non-diagonal elements ofDβ,i,
we have

Dβ,i (m, n)

= E
X̂
t
β

[
ω̄β,i

(
1− ω̄β,i

) ( β

β + τ 2t

)2

x̂tβ,i (m) x̂
t
β,i (n)

]
.

(64)

To analyze Dβ,i (m, n) we have to compute the expectation
above. Using the section-wise equivalent model X̂

t
β = Xβ +

V6
1
2
t and the assumption6t = τ

2
t , the distribution of X̂

t
β can

be expressed as

P
X̂
t
β

= (1− ε)
B∏
i=1

1

πM |τ 2t I|
exp

−
(
x̂tβ,i

)H
x̂tβ,i

τ 2t


+
ε

B

B∑
i=1

1

πM |
(
τ 2t + β

)
I|

exp

−
(
x̂tβ,i

)H
x̂tβ,i

τ 2t


∏
j 6=i

1

πM |τ 2t I|
exp

−
(
x̂tβ,j

)H
x̂tβ,j

τ 2t

 , (65)

The key observation is that both P
X̂
t
β

as expressed in (65)

and ω̄β,i as expressed in (32) only involve
(
x̂tβ,i

)H
x̂tβ,i, and

thus only contains |x̂tβ,i (m) |
2, for all i = 1, · · · ,B and

m = 1, · · · ,M . As a result, they are both even functions.
However, when m 6= n, the term x̂tβ,i (m) x̂

t
β,i (n) in (64) is

an odd function. So the integral for computing Dβ,i (m, n) in
(64) is zero ifm 6= n, for all i = 1, · · · ,B. As for the diagonal
element Dβ,i (m,m), m = 1, · · · ,M , we observe that no
matter what m is, |x̂tβ,i (m) |

2 contribute equally to both P
X̂
t
β

in (65) and ω̄β,i in (32). As a result, we have Dβ,i (m,m) =
Dβ,i (n, n), for all 1 ≤ m, n ≤ M and i = 1, · · · ,B. So we
can compute it as

Dβ,i (m,m)

=
1
M

M∑
m=1

Dβ,i (m,m)

=
1
M

M∑
m=1

E
X̂
t
β

[
ω̄β,i

(
1− ω̄β,i

) ( β

β + τ 2t

)2 |x̂tβ,i (m) |
2

M

]

= E
X̂
t
β

ω̄β,i (1− ω̄β,i) ( β

β + τ 2t

)2
(
x̂tβ,i

)H
x̂tβ,i

M

 , (66)

which further leads to

Dβ,i = E
[
ϒ t
β,i

]
I, ∀ i (67)

in which ϒ t
β,i is expressed as (39).

Combining (67), (62), (61) and (18), we have

6t+1=

(
1

SNR
+

1
ρ

B∑
i=1

E
[
ω̄β,iθβτ

2
t

]
+

1
ρ

B∑
i=1

E
[
ϒ t
β,i

])
I,

(68)

which can obviously be expressed as6t+1 = τ
2
t+1I with τ

2
t+1

given (37). This completes the proof.

APPENDIX C
PROOF OF THEOREM 3
Since (46) is just a trivial decomposition using Bayes’ for-
mula, we only need to derive the expressions of PFAt,n (M) and
PDECt,n (M). According to the decoupling principle of AMP
state evolution analysis, the output of the denoiser applied to
the residual (An)H Rt+X t

n in (15) is statistically equivalent to
the output of applying the denoiser to X̂

t
n in the scalar form of

the section-wise equivalent model (29). So in the following,
we should analyze the estimator (43) with (An)H Rt + X t

n

replaced by X̂
t
n generated according to model (29). Accord-

ing to (29) and the decoupling principle, when αn,i = 0,
the ith row of X̂

t
n, which is denoted as x̂n,i in (30), is i.i.d.

complex Gaussian with covariance matrix τ 2t I , and τ
2
t can

be computed using the state evolution equations (36) and
(37). When αn,i = 1, x̂n,i is i.i.d. complex Gaussian with

covariancematrix
(
βn + τ

2
t
)
I . It is not hard to see that

2x̂Hn,ix̂n,i
τ 2t

given αn,i = 0 and
2x̂Hn,ix̂n,i
βn+τ

2
t

given αn,i = 1 both follow χ2

distribution with 2M DoF.
Let Xi, i = 1, · · · ,B be i.i.d. random variables that all

follow χ2 distribution with 2M DoF. Here we point out that
theseXi’s do not have any practical meaning and are only used
for the convenience of derivation. Observe that the proposed
estimator α̃n in (43) actually compares maxi

{
x̂Hn,ix̂n,i

}
with

the threshold

Tn =
M log

(
1+ βn

τ 2t

)
(

1
τ 2t
−

1
βn+τ

2
t

) . (69)

As a result, the false alarm rate can be derived as

PFAt,n (M) = P (α̃n 6= 0|αn = 0)

= P
(

max
i∈{1,··· ,B}

{
τ 2t Xi
2

}
> Tn

)
= 1− P

(
max

i∈{1,··· ,B}

{
τ 2t Xi
2

}
≤ Tn

)
= 1−

B∏
i=1

P
(
Xi ≤

2Tn
τ 2t

)
. (70)

Since Xi ∼ χ2
2M , we have P

(
Xi ≤

2Tn
τ 2t

)
=

0(M ,cn,tM)
0(M) ,

in which

cn,t =
Tn
Mτ 2t

=

(
βn + τ

2
t

βn

)
log

(
1+

βn

τ 2t

)
. (71)
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As a consequence, we have

PDECt,n (M) = 1−

(
0
(
M , cn,tM

)
0 (M)

)B
. (72)

Also, the decoding error rate can be computed as

PDECt,n (M)

= P (α̃n 6= αn|αn 6= 0)

= P

(
max

i∈{1,··· ,B−1}

{
τ 2t Xi
2

}
>

(
τ 2t + βn

)
XB

2

)

= 1− P

(
max

i∈{1,··· ,B−1}

{
τ 2t Xi
2

}
≤

(
τ 2t + βn

)
XB

2

)

= 1−
B−1∏
i=1

P
(
Xi/2M
XB/2M

≤
τ 2t + βn

τ 2t

)
. (73)

Since Xi ∼ χ2
2M , for all i = 1, · · · ,B, we know that Xi/2M

XB/2M
follows the F-distribution with parameters 2M and 2M . This
leads to P

(
Xi/2M
XB/2M

≤
τ 2t +βn

τ 2t

)
= Ibn,t (M ,M), in which

bn,t =
2M τ 2t +βn

τ 2t

2M τ 2t +βn

τ 2t
+ 2M

=
βn + τ

2
t

βn + 2τ 2t
(74)

This further leads to

PDECt,n (M) = 1−
(
Ibn,t (M ,M)

)B−1
. (75)

The proof is completed.
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