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ABSTRACT In this paper, a dual imaging technique is used for high-precision reconstruction of an observed
3D scene. In contrast to stereo vision, dual imaging systems use a camera and a projector instead of a camera
pair. We propose a multiresolution approach based on the sum-to-one transform, coupled with compressive
sensing principles, for efficient estimation of the light transport matrix (LTM). The LTMcontains information
on both optical systems and the 3D scene. In our setup, the camera sensor is intentionally chosen to be low
resolution to prove the future use of inexpensive sensors in nonvisible regions of the light spectrum, as well
as the potential design of simplified multiview and light field acquisition systems. We show that a high-
precision estimation of the LTM from a reduced set of measurements is possible. Virtual measurements,
instead of physical, are conducted to obtain the 3D reconstruction. We show that 3D scene reconstruction
from the proposed virtual measurements corresponds with the actual physical acquisition. Moreover, this
approach provides much more detail in the reconstruction. The computational complexity of the proposed
methods is reduced to such a level that practical implementations are feasible.

INDEX TERMS 3D reconstruction, camera-projector system, compressive sensing, dual imaging, light
transport.

I. INTRODUCTION
The resolution of imaging sensors represents a limit on the
amount of detail that we can reconstruct from an observed
scene. This limit is particularly troublesome for imaging in
nonvisible regions of the light spectrum and in multiview
and light field imaging systems. In this paper, based on a
novel LTM estimation technique, we introduce virtual mea-
surements for 2D and 3D scene reconstruction to supplant
real measurements. Hence, we aim to offer an affirmative
answer to the following question: Can virtual be better than
real?

Helmholtz reciprocity [1], [2] enables efficient modeling
of light transport between a light source and a photosensor.
It states that incoming and outgoing light paths can be consid-
ered as reversals of each other without affecting the bidirec-
tional reflectance distribution function (BRDF). Helmholtz
reciprocity is typically summarized by an equation describing
the symmetry of radiance between incoming and outgoing
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directions ωi and ωo, respectively:

fr (ωi→ ωo) = fr (ωo→ ωi), (1)

where fr represents the BRDF of the surface.
Dual photography [3] is a photographic technique that

usesHelmholtz reciprocity to efficientlymodel light transport
in camera-projector systems. This approach enables power-
ful postprocessing capabilities of the light transport in an
observed scene, including virtual interchange of the camera
and projector viewpoints and virtual relighting of the scene.
The light transport matrix is a linear operator that describes
geometric and photometric properties of the light propagation
within the observed scene. LTM is a relatively large matrix
whose size depends on the camera and projector resolutions.

Brute-force LTM acquisition is based on pixel scanning,
where a single projector pixel is illuminated at a time and
a camera is used to capture the individual responses. This
approach presents several drawbacks, including long acquisi-
tion times, limited contrast in projection devices and limited
sensitivity of the camera sensor. Several algorithms for LTM
estimation have been proposed in the literature to address
these issues. In their initial work, Sen et al. [3] proposed
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two improvements to the naïve LTM acquisition approach:
fixed pattern scanning and adaptive multiplexed illumina-
tion. Fixed pattern scanning introduces parallelism into the
acquisition process by illuminating multiple projector pixels
at the same time. The basic assumption is that the individual
projector pixels affect only a small, localized region of the
scene from the camera viewpoint, which does not hold in the
general case.

Adaptive multiplexed illumination performs online adap-
tation of the patterns to determine which projector pixels
can be illuminated simultaneously. Adaptive patterns relax
the assumption of direct illumination. One drawback of this
approach is that individual camera images have to be pro-
cessed during the acquisition to ensure separability of the
light transport of each projector pixel.

Several papers discuss the application of compressive sens-
ing (CS) principles in the LTM acquisition process [4]–[7].
The basic idea of CSLTMestimation is to perform a nonadap-
tive measurement process followed by an offline LTM recon-
struction that estimates the light transport coefficients using
sparsity and compressibility priors. Nonadaptive measure-
ments simplify the implementation since individual frames
captured by the camera do not need to be processed dur-
ing acquisition. Peers et al. [5] illuminate the scene using
patterns defined by various compression bases, while Sen
and Darabi [4] decouple the choice of illumination pat-
terns from the choice of compression basis. Decoupling
the measurement and compression basis provides improved
flexibility in the overall measurement process, overcoming
quantization and dynamic range problems in the projection
devices when projecting nonbinary patterns. Although the CS
methods reduce the number of projections needed for effi-
cient LTM estimation, the reconstruction involves iterative
and computationally complex sparse optimization, which is
time-consuming.

In [6], the authors introduce a homogeneous light transport
matrix, in which the LTM and background projector light
are described by a single matrix and estimated using CS
principles. That approach enables efficient removal of the
projector background light from the LTM estimate. More-
over, the authors exploit the LTM to obtain 3D measurements
of the observed scene. In [7], the authors propose a multiscale
approach to the LTM estimation that significantly accelerates
the light transport acquisition. The basic idea of themultiscale
approach is to project multiresolution measurement patterns
and estimate the light transport for a pyramid of projector
resolutions from lower to higher resolutions.

In our research, we are particularly interested in two goals:
efficient modeling of the light transport in camera-projector
systems and exploitation of geometric and photometric rela-
tions in the light transport for efficient 2D and 3D recon-
struction that surpasses the capabilities of physical imaging
sensors.

This paper is organized as follows: Section II offers an
introduction to the dual imaging modality. We provide a short
overview of CS LTM estimation, followed by our proposal

FIGURE 1. Column ti in T corresponds to a vectorized image of the
camera c′i when a single projector pixel in p′i is illuminated in primal
configuration. Row tj in T corresponds to a vectorized image of the
projector p′′j when a single camera pixel in c′′j is ‘‘illuminated’’ in the dual
configuration.

for fast LTM estimation using STOne transformation and
compressive sensing. Section III covers basic principles of 3D
imaging, namely, phase shifting profilometry and camera-
projector calibration. To improve the quality of the 3D recon-
struction in our camera-projector system, we propose 3D
reconstruction in the dual world of the camera-projector sys-
tem. The experimental results are presented in Section IV.
Section V offers discussion related to the obtained results,
while Section VI concludes the paper.

II. DUAL IMAGING
We observe a system comprised of a camera with spatial
resolution of m×n pixels and a projector with resolution of
p×q pixels. LTM enables modeling of the light transport in
the camera-projector system using a linear equation:

c′ = Tp′ (2)

In (2), vector p′ (size pq×1) denotes the vectorized projector
image, vector c′ (size mn×1) denotes the captured image
on the camera sensor and matrix T (size mn×pq) denotes
the LTM containing the transport coefficients between every
pair of camera and projector pixels at the resolution of both
devices. Note that (2) describes the primal configuration of
the camera-projector setup, which is denoted by the prime
superscript (′), following the notation from [3].
Camera and projector can be virtually interchanged fol-

lowing the Helmholtz reciprocity by transposing the light
transport matrix:

p′′ = T>c′′, (3)

where T> denotes the reciprocal light transport, while the
dual configuration is denoted by the double prime super-
script (′′). The structure of the light transport matrix T is
explained in Fig. 1.

A. COMPRESSIVE SENSING ESTIMATION OF LIGHT
TRANSPORT MATRIX
One existing challenge in dual imaging is efficient acquisi-
tion and reconstruction of the high-resolution light transport
matrix. Instead of projecting a total number of pq measure-
ment patterns defined by the number of projector pixels, CS
methods for LTM estimation consider acquisition of k�(pq)
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images using different illumination patterns. This approach
significantly reduces the number of projections required for
efficient LTM estimation.

Similar to (2), we can write the light transport equation in
matrix form as:

C = TP, (4)

where C is an mn×k matrix whose columns represent the
individual captured images, and P is an pq×k matrix whose
columns represent the individual projected patterns. After
transposing both sides (C> = P>T>), measurement for a
single camera pixel over time can be rewritten as:

ci = P>ti, (5)

where ti is the pq×1 reflectance function of the ith camera
pixel, ci is the k×1 measurement vector, and 1≤i≤mn. In the
following text, 8 = P> denotes the measurement matrix
containing projected patterns with the standard notation used
in the CS framework for brevity and congruence.

After capturing a set of measurements ci, sparse optimiza-
tion is performed in order to obtain the LTM estimate. Notice
that there are mn independent subproblems to solve, one
for each camera pixel (5). The fact that these problems are
independent offers opportunity for massive parallelization in
the LTM reconstruction.

In this paper, we assume that the LTM is sparse in the spa-
tial domain. The unconstrained form of the sparse optimiza-
tion problem for light transport estimation can be written as:

min
ti
‖ci −8ti‖22 + λ‖ti‖1, i = 1, . . . , (mn) (6)

where the l1-norm is used as the regularizer since it is a con-
vex relaxation of the sparsity inducing l0-norm [8]. In other
words, our goal is to find a solution that is sparse but congru-
ent with the obtained measurements.

Sparse optimization algorithms are mostly iterative and
computationally complex. For example, in [4], the authors
report LTM reconstruction times on the order of three hours
for a 24-node Linux cluster, with each node containing
2 Xeon 5140 CPUs running at 2.33 GHz for moderate camera
and projector resolutions. Obviously, this fact limits the real-
world applications of the dual photography.

A multiscale approach to the LTM estimation reduces the
computational complexity. In [7], the authors propose to use
measurement patterns with several increasing resolutions.
Measurements obtained using the lower resolution patterns
are used to mask zero coefficients in the LTM. In the subse-
quent resolutions, only parts of the LTM that were nonzero
in the previous resolutions are considered for reconstruction.
Although this procedure improves the reconstruction speed,
it presents drawbacks in terms of accuracy. That is, the num-
ber of patterns projected in the highest resolution is often
not sufficient to obtain an LTM estimation with acceptable
accuracy.

In contrast, the approach proposed in this paper enables
both fast and accurate estimation of the LTM. To achieve

fast LTM estimation, we utilize sum-to-one (STOne) trans-
formation in the measurement design. Instead of projecting
patterns at different resolutions, all measurement patterns
used in our approach have the highest possible resolution
achievable by the projector. Utilizing STOne measurement
patterns enables us to implicitly obtain multiresolution LTM
estimates. Ultimately, we are interested in exploiting the LTM
for 3D reconstruction of the observed scene. We exploit
dual imaging principles in order to obtain high-resolution
3D reconstructions that surpass the resolution of the imaging
sensor.

B. FAST LTM ESTIMATION USING
STONE TRANSFORMATION
In [9], the authors propose a novel multiscale CS operator
for images that enables twofold reconstruction. First, low-
resolution previews of the image can be reconstructed at
the Nyquist rate using the sum-to-one transform (STOne).
Previews are fast conventional reconstructions that do not
utilize sparse optimization while requiring only one mea-
surement per pixel in the low-resolution preview. Alternately,
previews can be enhanced using conventional CS methods
in order to overcome the Nyquist limit. In [9], the authors
demonstrate the efficiency of the STOne transform by con-
structing a real-time CS video camera. They use STOne
transformation in order to reconstruct fast video previews of
the observed scene at low resolution, which enables real-time
analysis and better video coding.

STOne transform is a fast orthogonal transformation with
the property that each row of the transform matrix has a unit
sum. In [9], the authors construct the CS measurement matrix
using the STOne transform. The basic construction block can
be written as:

S4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (7)

and is used to construct STOne transformmatrices at different
resolutions using the Kronecker delta product ⊗ as:

S4k+1 = S4 ⊗ S4k . (8)

In the measurement matrix design, we closely follow
the procedure described in [9]. The measurement matrix is
defined as a random subset of rows of the full STOne trans-
formation. Additionally, the measurement matrix defines the
patterns to be projected in order to obtain the LTM measure-
ments. The measurement patterns originally contain negative
entries that cannot be projected using a digital projector.
In Section IV, we provide more details with respect to over-
coming the aforementioned limitation using complementary
measurement patterns.

Undersampled high-resolution STOne coefficients can be
reorganized into a complete set of low-resolution STOne
transform coefficients. Let us assume that the high-resolution
image has dimensions K×K for simplicity (Fig. 2.1).
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FIGURE 2. Visualization of STOne embedding. 1) The high-resolution
image of size K×K , where K = 8, is divided into δ×δ blocks with
δ = 2. 2) Blocks of the high-resolution image can be rebinned into a
low-resolution preview of size κ×κ , where κ = 4. 3) Columnwise matrix
vectorization. The dashed line denotes the border between two
columns. 4) Visualization of the blockwise matrix vectorization, which
facilitates the up-sampling process in the STOne LTM estimation. Dashed
lines denote borders between the blocks.

The minimal number of measurements needed for the direct
STOne preview is defined by the desired resolution of the
preview image. To obtain a reconstruction at κ×κ resolu-
tion (Fig. 2.2), one needs to acquire κ2 measurements. To be
able to easily switch between the low-resolution preview and
the high-resolution reconstruction, the authors in [9] propose
the use of vector embedding, which is similar to nested-
dissection embedding. The basic idea is to divide the original
image into distinct blocks of size δ×δ and to vectorize it
block-by-block, instead of with the commonly used column-
major ordering (Fig. 2.3). Blockwise vectorization (Fig. 2.4)
guarantees that individual blocks are mapped contiguously
into the vector. Additionally, such vectorization enables effi-
cient up-sampling of the low-resolution previews using sim-
ple matrix operations (zero-order interpolation matrix).

In our work, STOne transformation is used for the design
of the projection patterns for LTM measurement. Our main
goal is to exploit direct STOne low-resolution previews for
initial estimation of the nonzero coefficients in the LTM.
An initial estimation of nonzero coefficients is used to reduce
the search space of the sparse optimization algorithm. This
approach significantly reduces the computational complexity
and accelerates the LTM estimation while at the same time
ensuring high accuracy of the LTM reconstruction. To our
knowledge, this is the first application of STOne transforma-
tion to LTM estimation.

In our experiments, measurements ci are obtained by pro-
jecting patterns φi defined by the rows of measurement
matrix 8 onto the observed scene and by capturing them
using a camera. A set of k measurement patterns is sequen-
tially projected onto the scene. After the measurement pro-
cess is finished, a low-resolution LTM preview is calculated.

Low-resolution LTM has to be congruent with the obtained
measurements and must satisfy:

ci = 8RtLi , i = 1, . . . , (mn) (9)

where 8 is the measurement matrix whose rows contain the
vectorized measurement patterns, R is the zero-order inter-
polation operator that is used to upsample the low-resolution
preview to the original size, tLi is the low-resolution preview
of the reflectance function for the ith camera pixel, and ci is
the corresponding measurement vector.

Equation 9 can be solvedwithout using sparse optimization
by applying the pseudoinverse to the system:

tLi = ((8R)>(8R))−1(8R)>ci. (10)

The fact that the STOne transform is unitary and well
conditioned enables simplification of the previous equation
using:

tLi = (8R)>ci = R>8>ci, (11)

where (·)> denotes theHermitian transpose operator. The sys-
tem in (11) is under-determined, since k�(p×q). The solu-
tion obtained by the pseudoinverse minimizes the Euclidean
norm, but does not yield a sparse solution. Usually, obtaining
a sparse solution involves applying hard thresholding using
a nonlinear operator 0, which can be written in its binary
form as:

0(x, τ ) =

{
1 if x>τ
0 otherwise.

(12)

To obtain a sparse and binary low-resolution LTM pre-
view tLBi , one straightforward method would be to apply hard
thresholding 0 to each entry tLi,j in tLi :

tLBi,j = 0(t
L
i,j, τ ), j = 1, . . . , (pq). (13)

LTM contains direct and global light transport components.
Direct components of the LTM correspond to the light trans-
port paths that have single reflections in the scene, while
global components can include multiple bounces before
reaching the camera sensor. Direct components have higher
intensity than the global components and are well localized.
Therefore, our thresholding algorithm is inspired by bilateral
filtering, which takes into account both spatial and radiomet-
ric differences between the pixels in an image. First, we find
the element with the largest amplitude in each tLi (i.e., direct
components), and denote it as tmax . After reshaping tLi into a
2D image, spatial distance in the l1 norm can be defined as:

dj = |xj − xmax | + |yj − ymax |, j = 1, . . . , (pq), (14)

where dj denotes the distance of the j-th element in tLi (with
coordinates xj, yj) to the highest amplitude element tmax ,
which is located at (xmax , ymax). We apply hard thresholding
to the calculated distances using 0(dj, τ1), where τ1 denotes
the distance threshold. Essentially, this approach sets all of
the elements in tLi where dj>τ1 to zero.
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FIGURE 3. Flowchart of fast LTM estimation using STOne transformation. Algorithm 1 offers a detailed explanation of the flowchart.

Additionally, we search tLi for elements that have ampli-
tudes close to the amplitude of the highest intensity element.
We canwrite this as0(Aj, τ2), whereAj is the amplitude of the
j-th element of tLi , and τ2 is the amplitude threshold related
to the maximum intensity Amax .
Our final estimation of sparse and binary low-resolution

LTM takes into account both spatial and amplitude filters
using:

tLBi,j = 0(dj, τ1) ∧ 0(Aj, τ2), j = 1, . . . , (pq). (15)

Using the described procedure, the low-resolution LTM
enables obtaining a binarymapping that encodes the positions
of potential nonzero coefficients in the high-resolution LTM.
A shrunk measurement matrix 8R and reduced LTM T>R are
obtained by applying the binary index map obtained in the
previous step and removing the zero coefficients. After sparse
optimization is applied in the reduced space, reconstructed
LTM coefficients are rearranged into the full size LTM using
the binary index map. A step-by-step description of the pro-
cedure is given in Alg. 1 and depicted in Fig. 3.

C. DUAL IMAGING AND VIRTUAL RELIGHTING
The light transport matrix describes all necessary geometric
and photometric relations within the camera-projector sys-
tem for the observed scene. Equations 4 and 5 describe the
primal and dual configurations of the system. In the primal
configuration, light is emitted by the projector and captured
by the camera according to their respective viewpoints. The
transposed LTM describes the reversed light flow within the
scene. It can be considered as if the roles of the camera and
projector were interchanged.

LTM can be used to virtually capture images from the
camera and projector viewpoints using:

c′ = T1′ and p′′ = T>1′′, (16)

where 1′ and 1′′ correspond to vectorized white projector
and camera images at their corresponding resolutions. Essen-
tially, we virtually project uniform white illumination onto
the scene in order to obtain the images in primal and dual
configurations. The image captured by the camera in the
primal configuration is shown in Fig. 4.1, and the image
virtually captured by the projector in the dual configuration
is shown in Fig. 4.2. It should be noted that both captures
are obtained virtually, derived from (16), using the estimated
light transport matrix.

Algorithm 1 Fast LTM Estimation Using STOne Transfor-
mation
INPUT: Set of measurement vectors C>, measurement
matrix 8, and size of the low-resolution STOne preview
OUTPUT: High-resolution light transport matrix T>

for i = 1 to mn do
1© Estimate low-resolution light transport tLi corre-

sponding to the measurement vector ci using (11).
2© Perform binarization of the low-resolution light

transport tLi using (15). Upscale t
L
i to the original resolu-

tion of ti using interpolation operator R. Create a subset
of nonzero indices {IPi} from the upscaled binary light
transport.
3© Reduce the search space for sparse optimization by

removing zero coefficients in ti and obtain reduced light
transport tRi . Remove columns from the measurement
matrix8 that include values of zero at the corresponding
indices of the index map {IPi} and obtain the reduced
measurement matrix 8R.
4© Perform sparse optimization as in (6) in the reduced
search space and obtain the estimation of the reduced
light transport matrix tRi .
5© Reorder the coefficients of the reduced light trans-

port tRi into the high-resolution LTM using the previous
mapping and obtain the high-resolution light transport
estimate ti. Concatenate ti to the final high-resolution
light transport matrix estimate T>.

end for

Previously, the scene was reilluminated using uniform illu-
mination. Arbitrary illumination patterns can be projected
using the same principles. In Fig. 4.3 and 4.4, virtual relight-
ing in the primal and dual configurations using an arbi-
trary pattern is shown. We would like to emphasize that the
aforementioned is performed as a postprocessing step and
does not require additional measurements using the physical
setup.

One of the key observations is that the spatial resolu-
tions of the camera and projector are preserved in the dual
configuration. In [7], the authors use a camera-projector
system with matching resolutions. The final resolution of
their 3D reconstruction is limited by the resolution of the
imaging sensor. In contrast, in our research, we use a low-
resolution camera in combination with a higher resolution
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FIGURE 4. (1) Camera image in the primal configuration under uniform
white projector illumination and (2) virtual projector ‘‘image’’ in the dual
configuration under virtual white camera illumination. Notice the
difference in the resolution and the viewpoint between the images:
(3) virtual relighting of the scene in primal configuration and (4) virtual
relighting in dual configuration. Projected patterns are shown in red
rectangles at the bottom right corners of the subfigures. None of the
images shown were captured using the physical measurement setup and
instead were captured using the LTM and dual imaging principles.

projector. Low-resolution sensors are commonly used in
imaging setups in nonvisible regions of the electromag-
netic (EM) spectrum, and the cost of production for even
such low-resolution sensors is significant. Our setup enables
acquiring images of the observed scene from the projec-
tor viewpoint at the resolution of the digital micromirror
device (DMD). In the following sections, we adapt structured
light techniques in order to obtain high-resolution 3D recon-
structions in the dual configuration of the camera-projector
system.

III. 3D RECONSTRUCTION USING DUAL IMAGING
A system comprising a paired camera and projector is usu-
ally used as a 3D scanning solution based on active vision,
i.e., the structured light (SL) principle. In structured light,
a 3D surface reconstruction is obtained by finding correct
correspondences between the pixels of the coded projected
pattern and the pixels captured with the camera (Fig. 5). One
of the most popular SL methods is fringe projection pro-
filometry (FPP) due to its robustness and high accuracy [10].
Furthermore, if the object of interest is static, the method
of choice is the temporal phase shifting strategy described
below.

FIGURE 5. Structured light approach for 3D reconstruction. The projector
projects a coded pattern, and the camera captures the pattern distorted
by the 3D surface. Finding the correct pixel correspondences between the
projected pattern and the pattern captured by the camera enables
triangulation and 3D reconstruction of the observed object.

A. PHASE SHIFTING PROFILOMETRY
In temporal phase shifting, a projector projects a set of N
phase-shifted sinusoidal fringes:

Ipn (x
p, yp) = 1

2 I0
(
1+ cos(2π f pxp + 2πn/N )

)
,

n = 0, . . . ,N − 1, (17)

where n denotes frame numbers (time-shifts), f p the fringe
frequency, I0 the projector’s intensity, and (xp, yp) the pixel
coordinates of the projector.

The camera captures modulated projected intensities
reflected by the object (directly and indirectly), together with
the additional ambient light. The detailed notation of this
intensity modulation is given in [11]; in this paper, as in
most of the FPP literature, we use a simplified notation
expressed as:

I cn (x
c, yc) = IA +

1
2 hI0

(
1+ cos(8+ 2πn/N )

)
. (18)

Variable IA represents ambient illumination, h models inten-
sity loss, and 8 = 2π f pxp is the spatial phase that encodes
the projector coordinates required for 3D reconstruction:

xp =
8

2π f p
. (19)

Here, without loss of generality, we assumed that the fringes
are vertical (perpendicular to the xp-axis), which means that
only the xp coordinate is phase-encoded. To encode the yp

coordinate, the same procedure is repeated with horizontal
fringes.

After acquiring all N phase-shifted fringe images, one
can estimate phase values measured modulo-2π , i.e.,
φ ≡ 8(mod 2π) using:

φ(xc, yc) = atan2
(
−

N−1∑
n=0

I cn (x
c, yc) sin(2πn/N ),

N−1∑
n=0

I cn (x
c, yc) cos(2πn/N )

)
. (20)
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FIGURE 6. Illustration of number-theoretical phase unwrapping approach in the case of two sinusoidal pattern sets. The first set is a
low-frequency set, with f1 = 3, and the second set is a high-frequency set, with f2 = 5. Corresponding unwrapped phases are denoted with
81 and 82. Coefficients k1 and k2 denote regions of ±2π jumps (addition or subtraction) required for the successful unwrapping of
phases φ1 and φ2. The main idea of this number-theoretical approach is to find the correct unique (k1,k2) pair from (pixelwise) measured
φ1 and φ2 values using a predefined lookup table.

For a complete estimation of the spatial phase8, the phase
φ must be unwrapped. This can be achieved using a number
of different unwrapping approaches such as encoding the
fringe order with color-coding or a statistical pattern, using
additional pattern projection (binary coded pattern or statis-
tical pattern), or by projecting an additional set of sinusoidal
fringes with a different spatial frequency [10], [12]. The latter
approach is called a multifrequency phase shift (MPS), and it
is a robust and accurate approach when temporal unwrapping
is possible, i.e., when the object of interest is static during
pattern projection. Depending on the number of frequencies
used and their mutual relation, MPS unwrapping methods
can be classified into three groups [12]: hierarchical methods,
heterodyne methods, and number-theoretical methods.

In our research, we decided to use the number-theoretical
approach with a lookup table [13], [14]. Using this approach,
one can successfully compute the spatial phase 8 up to the
value equal to LCM(λ1,λ2), where LCM(·, ·) represents the
least common multiple of the wavelengths λ1 and λ2 of
the corresponding projected sinusoidal patterns. If the wave-
lengths are chosen as prime numbers, LCM becomes a simple
multiplication, and consequently f1 = LCM(λ1, λ2)/λ1 = λ2
and f2 = LCM(λ1, λ2)/λ2 = λ1.
Figure 6 shows the basic principle of the chosen MPS

phase unwrapping method. Let the chosen frequencies of the
sinusoidal patterns be f1 = 3 and f2 = 5. The unwrapped
spatial phases are then equal:{

81(x, y) = φ1(x, y)+ 2πk1(x, y)
82(x, y) = φ2(x, y)+ 2πk2(x, y).

(21)

It should be evident that relation81/82 = f1/f2 between two
phases holds. From this relation and (21), it follows that:

k2f1 − k1f2 =
f2φ1 − f1φ2

2π
. (22)

In most cases, the wavelengths are chosen as integers
(in pixels), which means that the left side of (22) is an integer.
Consequently, the right side of the equation also must be the
same integer. This means that one can create a lookup table
with predefined (k1, k2) pairs and corresponding values
k2f1 − k1f2.

Once the wrapped phase values φ1(x, y) and φ2(x, y) are
estimated using (20), the lookup formula:

(k1, k2) = LUT
{
round

[
f2φ1 − f1φ2

2π

]}
(23)

is used to determine the unique pair (k1, k2). Finally,
the unwrapped spatial phase 8 can be computed using (21)
and scaled with corresponding λ values to a valid range
[0, 2π f ].

B. CAMERA-PROJECTOR GEOMETRIC CALIBRATION
To reconstruct 3D positions of the captured pixels, it is nec-
essary to first perform a geometric calibration of the camera-
projector system. Since a projector is basically an inverse
camera, it is possible to use a regular calibration procedure
for a stereo (camera) pair with a few modifications.

In stereo systems with two cameras, the most common pro-
cedure for geometric calibration includes capturing multiple
images of a flat checkerboard pattern positioned at different
locations in the 3D space.When the distances between corner
points of the checkerboard are known, by detecting those
corner points in camera images and finding their mutual
correspondences, it is possible to compute the intrinsic and
extrinsic camera parameters via bundle adjustment [15].
Those parameters can be used later to triangulate the 3D
locations of corresponding camera pixels in 3D space.

When one of the cameras in the stereo pair is replaced
with a projector, one cannot directly match corresponding
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FIGURE 7. Visualization of the calibration procedure for the camera-projector system. A calibration board with
white circles is used and placed in the common FOV of the camera and projector. White image and MPS patterns
are projected by the projector and captured using the camera. Pixel coordinates of the circle centers are estimated
from the white image, and phase is decoded column- and rowwise from the MPS images. On the right,
we demonstrate how camera pixels (cx , cy ) are detected on the white image of the calibration board, and projector
pixels (px ,py ) are extracted from the decoded phase over projector columns (px ) and rows (py ) at the
corresponding circle center positions.

pixels of the calibration board because it is impossible to
observe the calibration board directly from the projector
view. Hence, we employ the MPS approach to find corre-
spondences between pixels, an approach similar to the one
presented by Moreno and Taubin [16].

We use a calibration board with white circles on a black
background (Fig. 7). Correspondences between the projector
pixels and the camera pixels are found via circle centers of
the calibration board in the following manner:

1) A calibration board is placed somewhere in the com-
mon field-of-view (FOV) in front of the camera-
projector system.

2) A white image and MPS patterns are projected using
the projector, and corresponding images are captured
with the camera.

3a) Pixel coordinates of circle centers (cx , cy) in the
binarized white image of the calibration board are
estimated using an appropriately chosen method.
In our experiments, we use the MATLAB function
regionprops [17]. This function works on a binary
input image. First, pixels belonging to a certain region
are found and labeled. Then, the centroid of each region
is calculated by taking the mean of the x and y coordi-
nates in each region. Appropriate filtering is applied to
suppress outliers that do not correspond to the centers
of white circles.

3b) The unwrapped spatial phase 8 is computed for both
horizontal and vertical directions, and phase values are
scaled to match projector pixel resolution (width and
height, respectively).

4) Each camera pixel (cx , cy) is paired with the values
(px , py), where p(·) denotes the decoded phase values
(decoded over columns and rows, respectively) at the
pixel (cx , cy), i.e., the circle center.

This process is repeated for N>2 positions of the cal-
ibration board in 3D space, which are chosen in a way
that a calibration board covers most of a 3D volume

of interest. The rest of the calibration procedure is the
same as for the regular stereo camera pair using pixel
correspondences (cx , cy) ←→ (px , py). Intrinsic and
extrinsic parameters of the whole system are calculated
using the estimated correspondences and built-in MATLAB
function estimateCameraParameters. This func-
tion implements the standard Zhang’s camera calibration
method [18]. Zhang’s method computes homographies
between the points on the image plane and the calibra-
tion plane for each calibration position. Initial estimates of
intrinsic and extrinsic parameters are then refined using the
Levenberg-Marquadt nonlinear optimization algorithm.

C. 3D RECONSTRUCTION IN DUAL WORLD
As explained in Section II-C, the LTM enables dual imag-
ing, i.e., switching roles of the projector and the camera.
Moreover, as mentioned in Section III-A, the MPS approach
enables one to successfully reconstruct the 3D position of
each camera pixel, provided that it belongs to the part of the
scene illuminated by the projector.

To obtain 3D reconstruction in the dual configuration,
we need to virtually project the sequence of N phase-shifted
patterns (as defined in (17)) from the camera viewpoint
onto the observed scene and ‘‘capture’’ the images of the
modulated scene from the projector viewpoint. This can be
written as:

p′′n = T>c′′n, n = 0, . . . ,N − 1, (24)

where p′′n denotes the images of the scene (modulated by the
MPS projection) from the projector viewpoint, and c′′n denotes
theMPS patterns virtually projected by the camera.Wewould
like to emphasize that the resolution of the projection device
is circumvented in fringe profilometry using MPS since the
phase values are estimated and matched at subpixel level.
In the case when the projector has higher resolution than
the camera, dual imaging is a suitable method for obtaining
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3D reconstruction at a higher resolution than the physical
resolution limit of the imaging device.

The previously described process results in 3D recon-
struction in the dual configuration of the camera-projector
system. Similarly, to obtain 3D reconstruction in the primal
configuration, the virtual MPS measurement process must be
performed using:

c′n = Tp′n, n = 0, . . . ,N − 1. (25)

IV. EXPERIMENTAL RESULTS
A. MEASUREMENT SETUP
Our measurement setup is composed of an off-the-shelf
InFocus IN3118HD DLP projector and Smartek GC2441C
camera. We closely follow the calibration procedure for
camera-projector systems proposed in [19]. For LTM recon-
struction and experiments in dual imaging, we use an Intel
Core i7-4930K CPU@3.40 GHz with 64 GB of RAM.

The camera-projector system has to satisfy several pre-
requisites. One-on-one mapping has to be achieved between
the computer generated measurement patterns and the pro-
jected patterns. The projector must operate in native res-
olution, and the resolution of the PC video controller has
to match the native resolution of the projector in order to
avoid potential spatial resampling. Projector manufacturers
commonly reduce image bandwidth by using chroma sub-
sampling. In chroma subsampling, the resolution of color
channels is decimated, while the resolution of the luminance
channel is preserved. Undesired intensity variations occur
when projecting patterns with higher resolution than the res-
olution of the color channels. IN3118HD uses 4:2:2 chroma
subsampling; thus, we project patterns that are 2× downsam-
pled to match the chroma subsampling ratio. Although this
approach reduces the effective projector resolution, it offers
the benefits of increased signal-to-noise ratio of the overall
system.

Furthermore, the camera has to operate in linear mode,
which is ensured by obtaining raw images directly from the
sensor. Camera exposure time and projector color-wheel rota-
tion have to be synchronized. We adjust the camera exposure
time to be a multiple of the projector color-wheel rotation
period in order to avoid potential aliasing caused by the color-
wheel rotation. The color-wheel of the projector operates
at 120 Hz, and we thus set the camera exposure time to
1/60 s [19]. While synchronization within our measurement
system is based on timers and basic triggers, there are more
advanced software [20] or hardware solutions [21] that could
further improve the acquisition speed of the camera-projector
system.

To estimate the light transport matrix, we project STOne
measurement patterns defined by the measurement matrix 8
onto the scene. The IN3118HD projector is an 8-bit projector
that can project only values within the [0, 255] range. Rows
of the STOne transformation matrix define the measurement
patterns φ and contain ±1 entries. Since the projector can
project only in the [0, 255] range, we need to split the original

FIGURE 8. Example of a measurement pattern φ that contains ±1 entries.
Since the projector can project only positive components, the original φ is
split into φ+1 and φ−1 that are complementary to each other and contain
only 1 and 0 entries, which are respectively mapped to 255 and 0 within
the dynamic range of the projector.

measurement patterns φ into positive φ+1 and negative φ−1
components (see Fig. 8). In φ+1, positive entries are mapped
to value 255, while entries of zero aremapped to value 0 in the
projector dynamic range. In φ−1, the entries are complements
of φ+1.

Single measurement ci is then defined as the difference
between the images of the scene when illuminated by positive
and negative patterns: ci = c+1i − c−1i . This approach elimi-
nates the influence of projector background light and reduces
the noise in the measurements.

In addition to the previously described calibration, we per-
form geometric calibration of the camera-projector system.
The planar calibration board has to be positioned at several
positions, and images of projected patterns (i.e., white and
MPS) have to be captured. Note that the calibration board
positions should cover the entire working volume. In our
calibration, we acquire calibration images for a total of 20
board positions. Geometric calibration is performed accord-
ing to the procedure described in Section III-B. Estimated
calibration parameters are used for 3D reconstruction in both
primal and dual worlds.

Accuracy of geometric calibration is crucial for the overall
performance of the 3D reconstruction using camera-projector
systems. Although the calibration procedure can be time-
consuming, it is an offline procedure that has to be performed
only once under the assumption of fixed geometry of the
camera-projector system.

B. EXPERIMENTS
Our first goal is to compare the proposed method to the
competitive LTM estimation methods in terms of time com-
plexity and reconstruction accuracy. The proposed method
can be considered as a special case of the conventional
CS LTM estimation. The method proposed by Chiba and
Hashimoto in [7] is most similar to the proposed method.
Therefore, we perform a comparison between the proposed
solution, Chiba’s approach and the full solver LTMestimation
approach. The resolutions of the camera and projector in
this setup are (128×128) and (256×256), respectively. LTM
reconstructions are performed for two different scenes, and
time complexity and reconstruction quality are considered.

To create a fair comparison framework, we use the SPAMS
optimization toolbox [22] for solving the sparse optimization
problem and use the unconstrained form as in (6). Parameter
λ is set to 1e−3. The total number of measurements is set
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toM = 1024 for all of the methods. In the implementation of
Chiba’s method, the total number of measurements is split
between 4 different resolutions in the projected resolution
pyramid. We closely follow the approach described in [7]
and increase the total number of the measurement patterns to
M = 1024. Thus, we project the random Gaussian measure-
ment patterns in 4 resolutions, (8×8, 32×32, 128×128, and
256×256), with the number of patterns per resolution being
(32, 256, 480, 256), respectively. One additional measure-
ment is taken for the projector background light estimation.
For more details on the implementation of Chiba’s method,
we advise the interested reader to consult [7].

In the second part of our experiments, the main goal is
to demonstrate the efficiency of 3D reconstruction in the
dual configuration of the camera-projector system using the
proposed method. A scene consisting of several objects (i.e.,
small figurine, ball, pencil holder with cables wrapped around
it and a small box with inscription), as shown in Fig. 4, is used
for this experiment. We analyze different aspects of the pro-
posed system, including the accuracy and time complexity of
the LTM estimation and 3D reconstruction.

After the measurement acquisition, LTM reconstruction
closely follows the procedure described in Section II-B.
In this experiment, the projector resolution is set to 512×512,
while the camera resolution is reduced to 128×128 pixels.
STOne previews have δ = 16 times lower resolution than the
original LTM in both horizontal and vertical directions. For
the low-resolution STOne preview to be feasible, the Nyquist
measurement rate has to be satisfied. We reconstruct 32×32
STOne previews; thus, a minimum of 1024 measurement
patterns is needed. In our experiments, we use 1% of the total
number of measurements (i.e., 2622) required by the ‘‘brute-
force’’ scanning algorithm.

Locations of the nonzero elements in the low-resolution
LTM are estimated using (15). In the following, we provide
general guidelines for the selection of the spatial and ampli-
tude thresholds. The bidirectional reflectance distribution
function (BRDF) is a function that precisely defines how light
is reflected at a surface of the observed 3D object. Instead of
modeling the complete BRDF, we use a reasonable approx-
imation wherein the reflected beam is scattered in a ±10◦

cone, which corresponds to approximately τ1 = 7∗δ = 112
pixel distance on the sensor. Spatial thresholding results in an
increased sparsity of the LTM and reduces the computational
cost.

In addition to the spatial threshold, we use an amplitude
threshold. In Fig. 9, a visualization of a characteristic ampli-
tude histogram for a single projector reflectance function
is shown. Notice the bimodal character of the distribution:
the noise component is on the left-hand side, and the useful
information is on the right-hand side. From the visualization,
it is clear that a wide range of amplitude thresholds would
result in correct classification of the elements.

Sparse optimization is then performed in the reduced
search space in order to obtain the high-resolution LTM.
All computation is performed in sparse arithmetic to reduce

FIGURE 9. Visualization of the bimodal distribution of the LTM
coefficients in the STOne preview of the projector reflectance function.
Projector pixels corresponding to the illuminated camera pixel have
significantly higher mean values than the noise level, resulting in a
bimodal histogram. It is clear that a wide range of thresholds results in
correct classification of the elements.

TABLE 1. Time complexity of the LTM reconstruction using different
methods (in seconds).

the memory footprint. In the final step of rapid LTM estima-
tion using the proposed procedure, we again use the SPAMS
optimization toolbox to solve the sparse optimization prob-
lem defined in (6).

C. RESULTS
In this section, we provide a comparison of the results for
the full LTM estimation, Chiba’s method and the proposed
method. First, we compare the time complexities of the algo-
rithms. Acquisition of the M = 1024 patterns using our
measurement system requires approximately tenminutes, and
the reported time is the same for all of the compared methods.
It should be noted that synchronization of the camera and pro-
jector within our setup is performed using basic triggers and
timers. Better synchronization methods could significantly
reduce the acquisition times.

In Table 1, we report the LTM reconstruction times for
the compared algorithms and for two different scenes. LTM
reconstruction using sparse optimization in the full solution
space requires several hours to finish. Chiba’s method and
the proposed method are comparable in terms of the recon-
struction times, although Chiba’s method is slightly faster.
Reconstruction time using the full solver depends on the
number of nonzero coefficients in the LTM, and therefore,
the difference between the reconstruction times for scenes
#1 and #2.

Next, we conduct a comparison of the three methods in
terms of the reconstruction quality. In Fig. 10, reconstruc-
tions of the dual images are shown. Notice that the proposed
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FIGURE 10. Comparison of two scene reconstructions in the dual configuration of the camera-projector setup. Columns correspond to the scene
reconstructions obtained using full solver, Chiba’s method, and the proposed method. The proposed LTM estimation method yields similar or slightly
better results than the full solver method in terms of the reconstruction quality, requiring only a fraction of the time. Moreover, the proposed method
drastically outperforms Chiba’s method in terms of the reconstruction quality, with only a negligible increase in the computational cost.

method and the full LTM estimation methods yield similar
results. Reconstructions obtained using the full solver contain
slightly more noise (both impulse and Gaussian) than the
proposed method. We argue that this additional noise is due
to the unconstrained solution space in the reconstruction pro-
cess in the original approach. Chiba’s method yields signifi-
cantly noisier reconstructions than the proposedmethod does.
Performed experiments confirm that the proposed method for
solution space reduction in the LTM estimation is efficient.

The experimental results for the second part of the exper-
iments are reported in the sequel. We report the results that
confirm the efficiency of the proposed search space reduction
method. While most of the conventional CS LTM estima-
tion algorithms work in high-dimensional space, the basic
idea of the proposed STOne LTM estimation method is to
reduce the search space of the sparse optimization algorithm.
In Fig. 11, a pie chart visualization of nonzero elements in
LTM estimation is shown. The total number of elements in
LTM is defined by the camera and projector resolutions and
equals 4.2950·109 elements in our setup. The total number
of nonzero elements obtained from the low-resolution LTM
using the proposed algorithm is approximately 0.35% of the

FIGURE 11. Camera and projector resolutions define the size of LTM.
We use 512×512 projector resolution and 128×128 camera resolution,
which correspond to a total of 4.2950·109 elements. The low-resolution
STOne preview enables reduction of the search space to only 0.35% of
the original space. Finally, only 0.0881% of the total number of elements
are nonzero in the high-resolution LTM estimation.

total number of elements in the LTM. After applying sparse
optimization to the initial estimate, only 0.0881% of the
nonzero elements remain in the LTM.

To verify the accuracy of the LTM estimated using the
proposed method, we perform several experiments. The basic
idea is to compare the images obtained by the physical
camera-projector system and the images obtained in the
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FIGURE 12. Comparison of real-world and virtual camera images
illuminated by a fringe pattern. (1) represents a camera image captured
using the real measurement setup, while (2) is an image obtained by
virtually projecting a fringe pattern onto the scene and capturing it.

primal configuration using the estimated LTM. If our LTM
reconstruction is accurate, images obtained by the real-world
measurement setup and the images obtained using virtual pro-
jection in the primal configuration using (4) should be similar.
In Fig. 12, a comparison of images obtained using the real-
world and virtual camera-projector setup is shown. In both
configurations, the projector illuminates the scene using a
single MPS pattern while the camera captures the image of
the modulated scene. Notice that the difference between the
images is negligible, which confirms that our LTM accurately
models the light transport within the observed scene.

To quantify the aforementioned results, we perform 3D
reconstruction using the MPS measurements obtained using
the physical camera-projector setup and compare it to the
3D reconstruction obtained from the MPS measurements
obtained using virtual projection based on the estimated
LTM. Figure 13 shows a comparison of the two point clouds.
Reconstruction obtained using real measurements produces
several outliers, while outliers do not occur in the virtual
reconstruction. Reconstructed points that exist outside the
observed volume are considered outliers and are visualized
using the red points in Fig. 13. It is well known that the
accuracy of fringe profilometry is susceptible to global illu-
mination [6], [23], while the global illumination effects might
be reduced in the estimated LTM. In our experiments, a point
is considered an outlier if the distance between two corre-
sponding points in the real and virtual 3D reconstruction is
larger than 5mm. In Fig. 14, we show the Euclidean distances
between corresponding points in the 3D reconstructions that
are obtained using the same parameters. The median distance
between the two reconstructions is less than 1 mm, which
confirms the efficiency of the proposed method.

Our final goal is to improve the resolution of the 3D recon-
struction using virtual MPS measurement in the dual camera-
projector configuration. Transposition of the LTM enables
interchanging the roles of the camera and projector. Thus,
we virtually project fringe patterns using the camera and
‘‘capture’’ them using the projector. We apply the previously
used method for 3D reconstruction with the same parame-
ters. Figure 15 shows a comparison of 3D reconstructions
in primal and dual worlds of the camera-projector system.

FIGURE 13. Comparison of real-world and virtual point cloud
reconstructions. Distances between corresponding points in the point
clouds are small for most of the reconstructed pairs, although there are
some outliers in the reconstruction obtained using the real measurement
setup. Points that lie outside the observed volume are considered outliers
and are denoted using red markers in the visualization.

FIGURE 14. Euclidean distance plot between corresponding 3D points
reconstructed from real MPS measurements obtained using the physical
camera-projector setup and virtual MPS projection using the LTM in
primal world. The mean and median distances are denoted by black and
blue lines, respectively. Extreme outliers have been ignored in the
visualization. The median distance between the two reconstructions is
less than 1 mm.

Obviously, the point cloud obtained by the dual configuration
is significantly denser and preserves much more detail (see
the supplementary materials for better visualization and addi-
tional scene reconstructions).

V. DISCUSSION
In our research, we successfully addressed two advances.
First, we proposed an efficient method for LTM estimation
based on STOne transformation, which significantly reduces
the reconstruction time from the order of several hours to the
order of minutes while achieving high accuracy of the light
transport model. Second, we performed high-resolution 3D
reconstruction by utilizing dual imaging and fringe profilom-
etry techniques.
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FIGURE 15. 3D reconstruction in primal (1,3,5) and dual (2,4,6) camera-projector configurations. Note that the point cloud obtained in
the dual camera-projector configuration is significantly denser and contains much more detail.
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Efficient light transport estimation reduces the existing
gap between light transport modeling for research purposes
and practical applications. Some of the potential applica-
tions of the proposed method are radiometric compensation
of camera-projector systems and rapid dual imaging. Dual
imaging is particularly interesting in imaging modalities that
use imaging sensors that operate in nonvisible regions of the
electromagnetic spectrum. Our method offers an ability to
reduce the cost of production for high-resolution imaging
sensors. A similar observation holds for 3D imaging in the
dual camera-projector configuration. For example, in [24],
the authors use a SWIR camera that has 320×256 resolu-
tion for 3D face measurement. Our method can potentially
improve the imaging resolution of the camera as well as the
resolution of the 3D reconstruction.

Additionally, current benchmarks for fringe profilometry
methods use real camera-projector systems to compare the
efficiency of the algorithms. To obtain fair comparisons,
imaging needs to be performed under the same conditions,
which is hard to achieve in real measurement setups. Dual
imaging offers an elegant solution for this problem. After
LTM acquisition, comparison of fringe projection methods
can be performed virtually under exactly the same conditions,
providing a fair comparison framework. We will address the
aforementioned topics in our future research.

VI. CONCLUSION
In this paper, we present a method for fast light trans-
port matrix estimation based on sum-to-one transforma-
tion and compressive sensing principles. Dual imaging
is a photographic technique based on modifying light
transport properties of a scene and enables powerful post-
acquisition processing such as virtual viewpoint change
and virtual relighting. The light transport matrix enables
efficient modeling of light transport in a camera-projector
system within an observed scene and contains informa-
tion on both optical systems and the observed scene.
Comparison of the proposed LTM estimation method with
the baseline and competitive methods confirms efficiency in
terms of the computational complexity and reconstruction
quality.

Furthermore, we present a method for efficient 3D recon-
struction in the dual configuration of the camera-projector
system, where virtual measurements of the 3D scene are per-
formed instead of physical measurements. We show that 3D
scene reconstruction from the proposed virtual measurements
corresponds with the actual physical acquisition. Moreover,
this approach provides much more detail in the reconstruc-
tion. The computational complexity of the proposed method
is reduced to such a level that practical implementations are
feasible.
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