
Received February 7, 2020, accepted February 20, 2020, date of publication February 27, 2020, date of current version March 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976808

Graph-Based Method for Fault Detection
in the Iron-Making Process
RUQIAO AN 1, CHUNJIE YANG1, (Senior Member, IEEE), AND YIJUN PAN2,3,4
1Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
2Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
3Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
4Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

Corresponding author: Chunjie Yang (cjyang@iipc.zju.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61933015.

ABSTRACT Since the iron-making process is performed in complicated environments and controlled by
operators, observation labeling is difficult and time-consuming. Therefore, unsupervised fault detection
methods are a promising research topic. Recently, an unsupervised graph-based change point detection
method has been introduced, and the graph of observations is constructed by the minimum spanning tree.
In this paper, a novel fault detection method based on the graph for an iron-making process is proposed, and a
weight calculationmethod for constructing theminimum spanning tree is introduced. The Euclidean distance
and Mahalanobis distance are combined to calculate the weights in the minimum spanning tree, which
contain important relations of variables. The distance calculation method is determined by the correlation
coefficients of variables. Each testing observation is set as a change point candidate, and a change point
candidate divides the observations into two groups. The number of a special type of edge in the minimum
spanning tree is used as a fault detection statistic. That special edge connects two observations from two
different groups. The minimum number of that type of edge corresponding to the change point candidate
is a true change point. Finally, numerical simulation is used to test the power of the proposed method, and
a real iron-making process including low stock, cooling, and slip faults is implemented to illustrate the
effectiveness of fault detection in industrial processes.

INDEX TERMS Fault detection, graph, iron-making process, Mahalanobis distance, minimum spanning
tree.

I. INTRODUCTION
In recent decades, industrial processes have become increas-
ingly complicated, and a large quantity of data has been
collected. Since industrial processes are the foundation of
national development, ensuring safe and reliable operation
is important [1]. Due to the complicated production princi-
ples of industrial processes, observation labeling is difficult.
Moreover, sensor errors can occur, and the use of experts
for observation labeling is time-consuming and expensive.
Therefore, unsupervised processmonitoringmethodsmust be
researched for application in industrial process.

Iron-making and steel-making, which have been widely
researched recently, are important parts of modern industrial
processes [2]–[5]. In iron-making and steel-making, the blast
furnace, which consumes more than 70% of the total energy,
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is a key unit. The blast furnace is a metallurgical furnace used
in themanufacture of the industrial metals, and it works under
high temperature and high pressure [6], [7]. The iron-making
process consists of a blast furnace and five pieces of smelting
auxiliary system equipment. In the iron-making process, solid
raw materials including coke and ore are placed in the top of
the blast furnace in specific amounts and proportions, and hot
wind is blown from the furnace bosh [8].

In the iron-making process, there are some typical faults
including low stock line, cooling, and slip. To ensure the
safety and reliability of the iron-making process, these faults
should be addressed [9], [10]. The most widely used fault
detection methods are data-based methods, and the expert
system is auxiliary in the iron-making process [11], [12].
The expert knowledge and experience that accumulate during
production are difficult to describe by exact mathematical
language. Moreover, it is necessary to periodically update
the expert system according to the actual production process
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and the equipment operational condition to maintain validity.
However, due to the low grade of raw materials, the charac-
teristics are constantly changing. The real-time update speed
of the expert system may not satisfy the time-varying system
of the iron-making process. Moreover, since the iron-making
process is operated by experienced operators, parameter
adjustments and production status identifications vary. Under
some conditions, operators decide that the minor changes do
not need to be controlled, which may affect the observations.
It is difficult to obtain observations without disturbances.
The model constructed using corrupted observations will
lead to poor fault detection results. Therefore, unsupervised
data-based process monitoring methods are necessary in the
iron-making process.

Unsupervised process monitoring methods have been
researched in recent decades. Jove et al. described a novel
approach using a visual tool for the detection of faults in
industrial processes via unsupervised and projectionist tech-
niques [13]. Escobar et al. proposed a combined generative
topographic mapping and graph theory approach for unsu-
pervised nonlinear data visualization and fault identifica-
tion [14]. An et al. adopted an unsupervised graph method for
fault detection, and the time interval was used to improve the
power [15]. A support vector clustering-based probabilistic
approach was developed for unsupervised chemical process
monitoring and fault classification by Yu [16]. Spyridon et al.
proposed a fault detection scheme based on the unsupervised
training of a generative adversarial network [17]. Bezerra
et al. proposed applying typicality and eccentricity data ana-
lytics, a fully autonomous algorithm, to address the problem
of fault detection in industrial processes [18].

Recently, Chen et al. proposed an unsupervised graph-
based change point detection method [19], [20]. Compared
with the above unsupervised process monitoring methods in
the industrial processes, the graph-based method can be used
to handle various types of data, such as non-Gaussian data and
nonlinear data, and accords to the characteristics of obser-
vations collected from iron-making processes. Moreover,
the graph-based method applies a specific analytic formula
to build a change point detection statistic, which is simple to
calculate. The purpose of the graph-based method is to deter-
mine whether the change point occurs in the time series. The
goal of fault detection in iron-making processes is to find the
abnormal events from the collected data matrix, which can be
regarded as the change points in the observations. Therefore,
in this paper, the graph-based change point detection method
is used for fault detection in the iron-making processes.

There are three steps for detecting change points from
observations based on the graph method. First, the graph
is constructed. Each observation collected from the iron-
making process is treated as a node in the graph. There
are many ways to build the graph, such as minimum span-
ning tree, minimum distance pairing and nearest neighbor
graph. Second, the statistic is calculated. Each observation
is regarded as a change point candidate, and the observations
are divided into two groups. The statistic is the count of the

number of a special type of edge in the graph. The special
edge links two observations from different groups. Finally,
the change point is detected. The change point candidate cor-
responding to the minimum statistic should be a true change
point. Chen et al. used the graph-based change point detection
method to judge the writing style of an author [19]. To the best
of our knowledge, the graph-based change point detection
method has barely been applied for fault detection in the
iron-making process. Spectral graph analysis theory was used
for process monitoring, and it applies different principles for
constructing the model [21].

An et al. used the time interval to improve the process
monitoring power based on the graph method. However,
the relations between variables are not considered, which
may be the reason why the method is ineffective for some
faults [15]. The graph-based change point detection method
uses the Euclidean minimum spanning tree to build the
graph. In the iron-making process, some variables are used
to describe the production status. The collected variables are
related, and the Euclideanminimum spanning tree ignores the
relationships between variables. Therefore, the Mahalanobis
distance is considered for calculating the weights in the min-
imum spanning tree in this paper. The Mahalanobis distance
contains the relations between variables but could increase
the influence of minor changes in variables [22].

Based on the graph method, a minimum spanning tree is
constructed. In this paper, a novel weight calculation method
using the minimum spanning tree is proposed. The Euclidean
distance and Mahalanobis distance are both used to calculate
the distance between observations. Some variables are cal-
culated using the Euclidean distance, while other variables
are calculated using the Mahalanobis distance. The distance
calculation method is determined by the correlation coeffi-
cients of variables, and the parameters λ, β are introduced.
If the correlation coefficients of one variable with the others
are all less than a threshold, that variable will be considered
to be less correlated with other variables, and the Euclidean
distance will be calculated. The sum of the distances between
the variables is regarded as the weight for constructing the
minimum spanning tree. The other steps for change point
detection based on the proposed method are the same as those
of the origin graph-based method.

This paper is organized as follows. In section 2, the prob-
lem formulation is introduced. The graph-based change point
detection method and the proposed method for fault detec-
tion in the iron-making process are presented in section 3.
In section 4, the simulation results of a numerical simula-
tion and a real iron-making process are illustrated. Finally,
the conclusions are summarized.

II. PROBLEM FORMULATION
In the iron-making process, the observation xi with m vari-
ables is collected by sensors. The purpose of the paper is to
verify whether the fault occurs after t observations. In this
paper, only the situation in which a single change point occurs
is discussed for convenience. If there are multiple change
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points in the process, the data can be divided into parts to
detect the faults. Under normal conditions, the processes are
stable, and the observations should follow the same distribu-
tion. Therefore, the problem can be defined by the following
hypotheses based on the distribution of the observations in
this paper. The null hypothesis means that there are no faults
in the testing observation, and all the observations follow the
same distribution, which is shown as (1).

H0 : xi ∼ F0, i = 1, 2, . . . , n (1)

where n is the total number of observations, and F0 is the data
distribution. In contrast, the alternative hypothesis is shown
as (2).

H1 : xi ∼

{
F0, i = 1, 2, . . . τ
F1, i = τ + 1, τ + 2, . . . , n

(2)

where τ is a change point. The distributions F0 and F1 are
derived from the data.

In this paper, two assumptions need to be discussed.
Assumption 1: The collected observations in the iron-

making process are independent.
Assumption 2: The influence of noise is ignored in this

paper for convenience.
The variables in the iron-making process are correlated to

improve the reliability. The observations can be made inde-
pendent by extending the sampling time. The graph-based
method compares the data distributions to detect the faults.
Noise exists throughout the iron-making process, and the
faults do not influence the distribution of the noise. Therefore,
assumption 2 is acceptable. More details can be found in the
literature [15].

III. UNSUPERVISED WEIGHT GRAPH CHANGE
POINT DETECTION METHOD
A. GRAPH-BASED CHANGE POINT DETECTION METHOD
Suppose that there is a data matrix X ∈ Rn×m containing
n observations with m variables. The purpose of the graph
method is to find the change point τ from n observations. The
null hypothesis H0 and the alternative hypothesis H1 are the
same as those in the above section.

Asmentioned, there are three steps for detecting the change
points by the graph method. Before computing the statistics,
the graph is constructed by two steps. The first step is to
calculate the Euclidean distances between two observations.
Let D ∈ Rn×n be a matrix such that dij is the Euclidean
distance between observations ith and jth, i, j = 1, . . . , n.D is
the weighted adjacency matrix of a complete edge-weighted
simple graph, G = (V ,E), where i ∈ V is an observation,
and the weight of edge (i, j) ∈ E is the Euclidean distance
between observations ith and jth.
The second step is to construct the minimum spanning tree

based on the weight matrix D. Each observation is set as
a change point candidate, and each change point candidate
divides the observations into two groups by the change point
candidate. The observations are divided into those before the

change point candidate and those after. In the graph, if two
linked observations are obtained from different groups, then
the edges are recorded.

In other words, suppose that there are n observations; each
observation is regarded as a change point candidate in order.
The observations are divided into two groups n times based
on each change point candidate. The minimum spanning tree
reflects the relations between observations, and the edges
in the minimum spanning tree are used to build the fault
detection statistic. For example, there is a true change point
at the 20th sampling point, and the observations follow dif-
ferent distributions before and after the 20th sampling point.
When the 20th observation is set as a change point candidate,
an observation obtained from the first 20 observations prefers
to connect to the one derived from the first 20 observations.
When the count of the recorded edges is low, the null hypoth-
esis is rejected. The description can be formulated as (3):

RG(t) =
∑

(i,j)∈G

Igi(t)6=gj(t)

gi(t) = Ii>t (3)

where RG(t) is the number of the edges in the tree connecting
observations from different groups. G is the minimum span-
ning tree of observations, t = 1, 2, . . . , n is a change point
candidate and Ix is an indicator function shown in (4) [23].

Ix =

{
1, if x is true
0, otherwise

(4)

The third step is to calculate the statistics and to detect the
change point. The change point candidate corresponding to
the minimum number of edges is a true change point.

B. IMPROVED GRAPH-BASED CHANGE
POINT DETECTION METHOD
Since production is complicated, the collected observations
may be corrupted during the iron-making process [24]. In this
paper, an unsupervised graph-based change point detection
method is adopted to realize fault detection in an iron-making
process, and a novel weight calculation method is proposed.
The minimum spanning tree can be constructed by calculat-
ing the Euclidean distances between two observations. How-
ever, the variables in an iron-making process are dependent
to improve reliability [25]. Compared with the Euclidean
distance, the Mahalanobis distance contains the relationships
between variables; it is suitable for calculating the weights of
the edges in an iron-making process but would magnify the
influence of minor changes in variables.

In this paper, considering the advantages of the Euclidean
distance and the Mahalanobis distance, the two distances are
combined and used to calculate the weights in the minimum
spanning tree. The correlation coefficients of the variables are
calculated first. If the correlation coefficients of one variable
with the others are all less than 0.6, then this variable is less
related to all the other variables. The Euclidean distances of
this variable will be calculated for all observations. The corre-
sponding parameter λ is set to 1; otherwise, the variables will
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be calculated using the Mahalanobis distance, and the corre-
sponding parameterβ is set to 1. Equation (5) presents the for-
mula to compute the distance for the improved graph-based
model.

wij = λij‖xi − xj‖2 + βij
√
(xi − xj)S−1(xi − xj)′ (5)

where xi, xj are the ith, jth observations, λij ∈ {0, 1} and
βij ∈ {0, 1} are two parameters, which could be regarded as
the correlation factor, and are used for choosing the distance
calculation method. wij is the weight of the edge connecting
two observation xi, xj for constructing the minimum spanning
tree. S is the covariance matrix of some observations with-
out change points, which could be obtained by the original
graph-based change point detection method.

If the correlation coefficient of two variables is less than
0.6, then these two variables can be regarded to be less
correlated. Thus, the threshold is set to 0.6. The correla-
tion coefficients are used to obtain variables that are less
correlated, which do not need to calculate the Mahalanobis
distance. A suitable threshold can make good use of the
Mahalanobis distance and Euclidean distance and obtain bet-
ter fault detection performance. The fault detection statistic is
the number of edges. An edge connects two observations from
two different groups, and the groups are divided by a change
point candidate. A regular number of edges corresponds to
the occurrence of a fault.

C. FAULT DETECTION BASED ON AN
IMPROVED GRAPH METHOD
The observations xi, i = 1, 2, . . . , n with m variables are
collected from an iron-making process. Since the covariance
matrix of some observations without change points needs to
be calculated for the Mahalanobis distance, the graph-based
change point detection method introduced in the above
section is used to obtain observations with the same distri-
bution, defined by yi, i = 1, 2, . . . , 10. The purpose of this
paper is to determine whether there is a change point after
τ observations. Fault detection based on the improved graph
method can be summarized as follows.

Step 1: Correlation coefficient calculation
The observations yi, i = 1, 2, . . . , 10 are used to calculate

the correlation coefficients between variables. The correla-
tion coefficient calculation formula is shown as (6) [26]:

rij =
cov(mi,mj)√
var(mi)var(mj)

(6)

where mi,mj are the ith, jth variables, cov(mi,mj) is the
covariance of mi,mj, and var(mi), var(mj) are the variances
of mi,mj.
Step 2: Variable choice
In this paper, the distances between observations are cal-

culated by the Mahalanobis distance and Euclidean distance.
If the correlation coefficients of one variable with the other
variables are all less than 0.6, then the variable will be
regarded as independent. These variables are calculated using

the Euclidean distance as the weights of the edges. The
corresponding parameter λ is set to be 1, which could be
formulated by λ(i,:) = λ(:,i) = 1, β(i,:) = β(:,i) = 0;
otherwise, the variables will be calculated the Mahalanobis
distance, and the corresponding parameter β is set to be 1,
λ(i,:) = λ(:,i) = 0, β(i,:) = β(:,i) = 1.
Step 3: Euclidean distance calculation
Calculate the Euclidean distances between observations

shown in (7), collected by matrix A1:

a1ij = ‖xi − xj‖2 (7)

where xi, xj are the ith, jth observations [27].
Step 4: Mahalanobis distance calculation
Calculate the Mahalanobis distances between observations

shown in (8), collected by matrix A2:

a2ij =
√
(xi − xj)S−1(xi − xj)′ (8)

where xi, xj are the ith, jth observations, and S is the covari-
ance matrix of the normal observations [28].

Step 5: Weight matrix calculation
Calculate the weights based on the Euclidean distance and

theMahalanobis distance shown in (9), collected bymatrix B:

B = λ. ∗ A1 + β. ∗ A2 (9)

where λ, β is the matrix calculated in Step 2, and A1,A2
corresponds to the distance matrix.

Step 6: Graph construction
Construction of the minimum spanning tree of the graph

represented by the weighted adjacency matrix B [29].
Step 7: Statistic calculation
The number of the edges connecting two observations

obtained from different groups is regarded as the fault detec-
tion statistic, and the groups are divided by a change point
candidate. The number of edges RG(t) can be formulated
as (10).

RG(t) =
∑

(i,j)∈G

Igi(t)6=gj(t)

gi(t) = Ii>t (10)

Since the method of counting edges is related to the posi-
tion of the change point candidate, RG(t) is normalized to
improve the interpretability. ZG(t) is normalized by using the
mean and variance of RG(t) shown in (11). Since a lower
value of RG(t) means that a fault occurred, the minus is used
for convenience. A larger value of ZG(t) means that a fault
occurred.

ZG(t) = −
RG(t)− E[RG(t)]
√
Var[RG(t)]

(11)

where

E[RG(t)] = p1(t)|G|

Var[RG(t)] = p2(t)|G| + (
1
2
p1(t)− p2(t))

∑
i

|Gi|2

+(p2(t)− p21(t))|G|
2
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TABLE 1. The correlation coefficient of 6 variables.

p1(t) =
2t(n− t)
n(n− 1)

p2(t) =
4t(t − 1)(n− t)(n− t − 1)
n(n− 1)(n− 2)(n− 3)

(12)

where |G| is the number of the edges in graph G, Gi is a
subgraph containing all edges connected to observation xi,
|Gi| is the number of edges in Gi, E[RG(t)] is the expectation
of RG(t), and Var[RG(t)] is the variance of RG(t).
Step 8: Fault detection
Under normal conditions, the observations follow the same

distribution, and the edges in the minimum spanning tree
should be irregular. The irregular number of the edge means
that there is no element greater than others obviously. If there
is a change point and the testing observations follow dif-
ferent distributions, then the count of the recorded edges is
low, the null hypothesis is rejected. Therefore, under normal
conditions, the elements in vector ZG(t) should be irregular.
When one element is greater than the other elements, a fault
occurred.

In conclusion, the steps for fault detection based on the pro-
posed method are outlined, and a simple Gaussian example is
used to explain the proposed fault detection method. The test-
ing data contain 40 observations and follow the distributions
N ∼ (0, I6),N ∼ ((5, 5, 5, 5, 5, 5)′, I6). There is a change
point at the 20th sampling point. The correlation coefficients
of 6 variables are listed in Table 1.

FromTable 1, it can be seen that the correlation coefficients
of variable 3 with the other 5 variables are all less than 0.6.
Therefore, variable 3 is less correlated with other variables,
and the Euclidean distance of variable 3 is used to calculate
the weights of the edges between the node which corresponds
to observation 3 and the other nodes. The other 5 variables
are calculated using the Mahalanobis distance for 40 testing
observations as the weights. The sum of the distances is used
as a final weight for constructing the minimum spanning
tree, and the connection order of the testing observations
is presented in Table 2. The numbers of edges connecting
two observations derived from different groups are listed
in Table 3. t is the change point candidate, and RG(t) is the
number of edges. The simulation results are shown in Fig. 1.

The connection orders of 40 observations in the minimum
spanning tree are shown in Table 2. Each observation is
set as a change point candidate, and the edges connecting
two observations derived from different groups are counted
in Table 3. For example, the 20th sampling point is set as a
change point candidate, and there is only the 19th observation
connects to the 26th observation. Thus, the number of the

TABLE 2. The connection order of the testing observations in the
minimum spanning tree.

TABLE 3. The number of edges.

FIGURE 1. A simple Gaussian example for illustrating the proposed fault
detection method.

edges is 1, which could be found in Table 3. From Table 3,
the number of the edges at the 20th sampling point is 1,
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which is the minimum. Due to the influence of the change
point candidate position, the first 5% and final 5% of sam-
pling points are not considered as change points. The fault
detection result based on the proposed method is presented
in Fig. 1, which is the normalization of Table 3. The change
point detection statistic is maximum at 20th sampling point.
There is a true change point at the 20th sampling point, and the
change point could be detected exactly based on the proposed
method.

IV. SIMULATION
In this section, a numerical simulation is applied for test-
ing the effectiveness of the proposed method, and then the
proposed fault detection method is implemented in a real
iron-making process.

A. TEST METHODOLOGY
There are some testing observations including a fault, and the
proposed method is used on these data. In a numerical simu-
lation, 40 simulated observations are obtained by MATLAB,
and there is a change point in the observations at the 20th

sampling point. The first 20 observations follow the different
distribution from the after 20. The proposed method is used
for detecting the different data distributions. The correlation
coefficients of the variables are calculated first. The time at
which the fault is detected is recorded and compared with
the true time of the change point occurrence to verify the
power of the proposed method via numerical simulation.
In the iron-making process, the correlation coefficients of
the variables are calculated first based on observations with
the same distribution. The 120 testing observations include
three faults, and low stock line, cooling, and slip are used
to detect the faults. Each matrix contains 40 observations,
and the fault occurs at the 20th sampling point. The time at
which the fault is detected is recorded based on the proposed
method in the iron-making process. The detect time and the
real fault occurrence time are compared to test the power of
the proposed method.

B. NUMERICAL SIMULATION
In this part, a numerical simulation model proposed by Acala
et al. in 2009 is used to test the fault detection power of the
proposed method [30]. The model is constructed as (13):
x1
x2
x3
x4
x5
x6

 =

−0.2310 − 0.0816 − 0.2662
−0.3241 0.7055 − 0.2158
−0.217 − 0.3056 − 0.5207
−0.4089 − 0.3442 − 0.4501
−0.6408 0.3102 − 0.2372
−0.5655 − 0.433 − 0.5938


 t1
t2
t3

 (13)

where t1, t2, and t3 are zero-mean random variables with
standard deviations of 1, 0.8 and 0.6, respectively, i.e., t1 ∼
N (0, 1), t2 ∼ N (0, 0.8), and t1 ∼ N (0, 0.6).
The testing data are generated by the following

formula (14):

x = x∗ + ξif (14)

FIGURE 2. Fault detection result based on the graph method in the
numerical simulation.

FIGURE 3. Fault detection result based on the proposed method in the
numerical simulation.

where x∗ is the normal data obtained by formula (13). The
direction ξi is randomly chosen from six possible variable
directions with uniform probability, and f is the fault magni-
tude following N ∼ (5, 0.1). In this section, 40 observations
with six variables are used for testing the fault detection
power of the proposed method, and there is a change point at
the 20th sampling point. The simulation results are presented
in Fig. 2 to Fig. 3.

As shown in Fig. 2, the maximum value of ZG(t) appears
at the 20th sampling point, which means that the number of
edges connecting two different groups is the minimum. Thus,
a change point would exist, and the graph-based method
could detect the fault exactly. Fig. 3 is the simulation result
for fault detection based on the proposed method. As with the
graph-based method, the maximum value of ZG(t) appears at
the 20th sampling point. Moreover, it can be seen that the vari-
ance of three larger statistics based on the proposed method
is greater than that of the graph method from Fig. 3, which
could reduce the false alarm rate. From Fig. 2 to Fig. 3, both
methods could detect the change point exactly. Therefore,
the proposed method using the Mahalanobis distance to solve
the relations between variables is suitable.
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TABLE 4. The variables in an iron-making process.

TABLE 5. Comparison of two distances in an iron-making process.

C. FAULT DETECTION IN AN IRON-MAKING PROCESS
In a blast furnace, complex physical and chemical reactions
occur at all times. It is crucial to ensure stability during the
iron-making process. In general, there are three typical faults
in the iron-making process: low stock line, cooling and slip.
The raw materials are put in the top of the blast furnace,
and a low stock line means the raw materials cannot descend
normally. The raw material line is lower than the normal
level of 0.5 m for 1 hour. The low stock line disturbs the
normal distribution of raw materials. The air permeability of
the material column is poor, and the gas flow is chaotic. The
raw materials cannot be heated and reduced normally, which
is an important cause of cooling and slip faults. The reduction
of the wind volume is one of the best methods for handling
the low stock line fault [7].

The temperature in a blast furnace should be kept sta-
ble; values that are too high or too low are abnormal.
There are some reasons for cooling fault including low
stock lines, tuyere leakage and failed cooling walls, which
could be solved by increasing coal injection. A slip fault
occurs when the raw materials fall down suddenly. The poor
quality of the raw materials, abnormal airflow distribution
and irregular furnace wall are the main reasons for the
slip. Slip can be solved by appropriately reducing the wind
volume [9], [15].

In this part, the observations are collected from an
iron-making company in China, and low stock line, cooling,
and slip faults are used to illustrate the power of the proposed
method. There are 18 variables, as listed in Table 4. The
testing data consist of 40 observations, and the fault occurs
at the 20th sampling point. The fault detection results are
presented in Fig. 4 to Fig. 9, and the detect times are listed
in the Table 5.

Fig. 4 and Fig. 5 present the fault detection results of a
low stock line fault based on the graph-based method and the
proposed method. The maximum value of ZG(t) appears at
the 18th sampling point based on the graph method, which
means the fault occurs at the 18th sampling point. However,

FIGURE 4. The simulation result of low stock line in an iron-making
process, based on the graph method.

FIGURE 5. The simulation result of low stock line in an iron-making
process, based on the proposed method.

the fault occurs at the 20th sampling point, and the graph
method shown in Fig. 4 based on the Euclidean minimum
spanning tree is invalid. The fault do not occur at 18th sam-
pling point, but is detected. The result in Fig. 4 is invalid
in part because the variables have relations in the low stock
line fault, and the Euclidean distance does not contain the
relations of the variables. As shown in Fig. 5, the maximum
value of ZG(t) appears at the 25th sampling point, and the
proposed method could detect the fault at the 25th sampling
point. For a low stock line fault, the proposed method is more
effective than the graph-based method. For the cooling fault,
the maximum value of ZG(t) occurs at the 25th sampling
point shown in Fig. 6, while the maximum value of ZG(t)
appears at the 20th sampling point shown in Fig. 7. Compared
with the graph method, the proposed method could detect
the fault exactly. For a slip fault, both methods obtain a
maximum value of ZG(t) at the 20th sampling point, and
they exhibit good simulation results, as shown in Figs. 8–9.
The fault detect time based on the two methods is listed
in Table 5. The detect time is the sampling point at which
the fault is detected, and the true time of fault occurrence
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FIGURE 6. The simulation result of cooling in an iron-making process,
based on the graph method.

FIGURE 7. The simulation result of cooling in an iron-making process,
based on the proposed method.

FIGURE 8. The simulation result of slip in an iron-making process, based
on the graph method.

is the 20th sampling point. Therefore, the proposed method
based on a novel distance calculation method considering the
relations of variables is powerful for fault detection in an
iron-making process.

FIGURE 9. The simulation result of slip in an iron-making process, based
on the proposed method.

V. CONCLUSION
In this paper, a graph-based fault detection method for an
iron-making process is discussed, and a novel distance calcu-
lation method in the minimum spanning tree is proposed. The
Euclidean distance and the Mahalanobis distance between
two observations are calculated, and the parameters are intro-
duced. The parameter is obtained according to the correlation
coefficients of variables. The number of edges connecting
two observations obtained from two groups is used as a fault
detection statistic. The numerical simulation and a practical
iron-making process are implemented to test the power of
the proposed method. In the future, real-time fault detection
based on the graph method should be researched.
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