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ABSTRACT This paper reviews and compares theories of fuzzy sets and soft sets from the perspective of
transformation, and a machine learning model—SF-ANN (the soft sets and fuzzy sets based artificial neural
network ) is proposed. Liu et al. proved that every fuzzy set on a universe U can be considered as a soft set,
and show that any soft set can be regarded as even a fuzzy set. Inspired by this idea, we construct a neuron-
like structure based on soft sets and fuzzy sets, and we get a more practical fuzzy learning model—SF-ANN.
In practical applications, it can be used as a general methodology for establishing the membership function
of fuzzy sets, and it also can be applied to pattern recognition, decision-making, etc. In general, it provides
a new perspective to observe the relationship between soft sets and fuzzy sets, and it is easy to relate soft set
theory and fuzzy set theory to machine learning methods. To a certain extent, it reveals that the research of
fuzzy sets and artificial neural networks do lead to the same destination.

INDEX TERMS Fuzzy sets, soft sets, neural networks.

I. INTRODUCTION
Artificial intelligence is rapidly coming of age, and we live
in the midst of a data deluge. In this period, we may face
all kinds of challenges. That is, to deal with this big data,
methods in classical mathematics are not always successful
because of various types of uncertainties presented in these
problems, such as fuzziness, randomness, roughness, ambi-
guity, inaccuracy, incompleteness and so on. There are some
mathematical tools for dealing with uncertainties, among
which fuzzy set theory introduced by Zadeh [1], and soft
set theory initiated by Molodtsov [2] have paramount impor-
tance. The theory of fuzzy sets initiated by Zadeh provides
an appropriate framework for representing and processing
vague concepts by allowing partial memberships. From a
more descriptive perspective, Molodtsov proposed the theory
of soft sets, which has proven useful in many fields such as
decision-making [3]–[10], data mining [11], [12], business
[13], social choice [14], forecasting [15], clinical diagnosis
[16], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Venkateshkumar .

Many references have discussed the relationship between
fuzzy sets and soft sets. In [2] Molodtsov points out that
Zadeh’s [1] fuzzy set is a special case of the soft set. Aktaş
and Çağman [17] proved that fuzzy set and rough set are all
special cases of the soft set. Yao [18] studies relationships
and differences between theories of fuzzy sets and rough
sets and points out that a fuzzy set can be interpreted by a
family of crisp sets, and fuzzy set operators can be defined
using standard set operators. Alcantud [19] discusses some
transformation relations between fuzzy sets and soft sets.
He proves that every fuzzy set can be considered as a special
case of a soft set; every soft set on a finite fieldU can be con-
sidered as a fuzzy set. Bustince et al. [20] proved that fuzzy
sets are intuitionistic fuzzy sets. Torra [21] shows that hesitant
fuzzy sets can be expressed as fuzzy sets and 2-valued fuzzy
sets, and Alcantud and Torra [22] prove novel decomposition
theorems for hesitant fuzzy sets. Bustince et al. [20] show that
fuzzy sets and interval-valued fuzzy sets are particular cases
of interval type-2 fuzzy sets.

Molodtsov proposed that Zadeh’s fuzzy set may be con-
sidered as a special case of soft sets. Here we extend this
conclusion and compare the soft sets and the fuzzy sets from
the perspective of conversion. The attribute sets of the soft
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sets and the membership function of the fuzzy sets are all
being used to describe a characteristic or feature of an object.
For soft sets, each attribute represents one view of the vague
concept, and then a fuzzy set may be interpreted as a weighted
combined view. From the perspective of establishing the
membership function of the fuzzy sets, this is the ‘other way’
proposed by Molodtsov to build the membership function
of a fuzzy set. From the viewpoint of the decomposition of
the attributes, there is a relationship between ‘integration’
and ‘decomposition.’ In this paper, the structure of µ(x) =
(F,A)W is discussed, and realize the transformation through
aggregation operators. Based on the above research, a more
practical fuzzy learning model is generated, which is com-
posed of soft sets, fuzzy sets, and neural networks. Let us
succinctly explain this later framework.

McCulloch and Pitts [23] introduced the first artificial
neurons in 1943. Over the years the neural networks have
been widely used for the solution of complex non-linear
problems such as system game-playing and decision making
[24], pattern recognition [25], medical diagnosis [26]–[30],
diverse applications in control [31], and so on. The formula
µ(x) = (F,A)W shows that the fuzzy sets can be generated
from soft sets by ‘learning.’ Inspired by this, we construct a
neural network based on soft set and fuzzy set. In this model,
we take the soft set as input and the fuzzy set as the output.
Through the existing research on neural networks, we know
that neurons (single layer neural network) can only be used
as linear classifications. One can also extend it to two or more
layers network, such asµ(x) = f (f ((F,A)W1)W2+b), which
can be used to solve more complex (non-linear) problems.
By using this model, when solving practical problems, all
we need to do is focus on the front-end ‘S’ (soft sets) and
back-end ‘F’ (fuzzy sets), and the neural network used as
a tool for solving {(W1, b1), (W2, b2), · · · , (Wn, bn)}. At the
front-end and back-end, we can take full advantage of the
soft sets and fuzzy sets theories, to realize the information
fusion/reduction, etc. Since we integrate soft sets, fuzzy sets,
and neural network theory by using SF-ANN, these theo-
ries can be viewed from a holistic perspective, which pro-
vides a more practical model for solving practical problems.
Finally, the proposed algorithm is simulated and uploaded
to [32], which can be easily downloaded to validate all
the examples.

The rest of this paper is organized as follows. Section II
reviews the basic concepts of fuzzy set, soft set, and induced
soft set. Section III discusses the existing transformation
methods between fuzzy sets and soft sets. In Section IV,
we propose a fuzzy learning model–SF-ANN based on the
neural network, including examples. Finally, Section VI
presents the conclusion and future work.

II. PRELIMINARIES
In this section, we will briefly recall some related basic
concepts. These concepts include fuzzy sets, soft sets, and
some examples are given to illustrate the concepts.

A. FUZZY SETS
In 1965, Zadeh [1] proposed a mathematical method of
describing the fuzzy phenomenon in mathematics: fuzzy set
theory. A fundamental notion in this theory is as follows:
Definition 1 [1]:LetU be a set, called a universe. A fuzzy

set µ on U is defined by a membership function µ : U →
[0, 1]. For any x ∈ U , the value µ(x) represents the extent to
which x belongs to the fuzzy set µ.
The fuzzy set µ is also denoted as follows:

µ = {(x, µ(x)) : x ∈ U} (1)

A fuzzy set can be either discrete or continuous. For discrete
fuzzy sets, µ(x) can also be expressed as follows:

µ(x) =
n∑
i=1

(µ(xi)/xi) (2)

n being the number of elements in U .
There are several forms of operations on fuzzy sets.

According to maximum - minimal operator proposed by
Zadeh [1], the intersection, union, and complement of fuzzy
sets are defined as follows:

(µ ∩ υ)(x) = µ(x) ∧ υ(x),

(µ ∪ υ)(x) = µ(x) ∨ υ(x),

µc(x) = 1− µ(x).

B. SOFT SETS AND INDUCED SOFT SETS
Let U be the universe set and E the set of all possible param-
eters under consideration with respect to U . Usually, param-
eters are attributes, characteristics, or properties of objects in
U . (U ,E) will be called a soft space. Let P(U ) denote the set
of all subsets ofU . Molodtsov defined the notion of a soft set
in the following way:
Definition 2 [2]: A pair (F,A) is called a soft set over U ,

when A ⊆ E and F is a mapping given by F : A→ P(U ).
That is, a soft set over U is a parameterized family of

subsets of U . A is called the parameter set of the soft set
(F,A). For e ∈ A, F(e) may be considered as the set of
e−approximate elements of (F,A).
Definition 3 [33]: For any soft set (F,E) over U , a pair

(F−1,U ) is called an induced soft set over E of (F,E), where
F−1(x) = {a ∈ E : x ∈ F(a)} for each x ∈ U .
Definition 4: The set X is indexed by a set I , if there is an

onto function f : I → X . Let C = {Xi : i ∈ I } be an indexed
collection of sets Xi. The Cartesian product of C is the set of
functions that assign to each index i ∈ I an element xi ∈ Xi.
That is,∏
i∈I

Xi=

{
f : I →

⋃
i∈I

Xi such that f (i) ∈ Xi for every i ∈ I

}
Let ς = {0, 1} be a set with two elements. Let 6 = ςN =
{(s1, s2, s3, · · · , sk , · · · ) : sk ∈ ς} denote the set of all binary
sequences, that is, sequences whose terms are either 0 or 1.
Proposition 1: Let I be a set. A subset A ∈ I can be

identified with its characteristic function χA : I → ς defined
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TABLE 1. An induced soft set represented as a Boolean-valued
information system.

FIGURE 1. The induced soft sets in three-dimensional space.

by: i ∈ A if and only if χA(i) = 1. Thus, A 7→ χA defines
a one-to-one map from P(I ) onto 2I , the set of functions
from I to ς .

When I is is finite with cardinality n, each χA can be
identified with a sequence from ςn. When I is denumerably
infinite, each χA can be identified with a sequence from 6.
In our example, one readily checks that we can represent

the induced soft set in Table 1 by the following expression:

(F−1,U ) =
(0, 0, 0)
x1

+
(0, 1, 0)
x2

+
(0, 1, 1)
x3

+
(1, 0, 0)
x4

+
(1, 0, 1)
x5

The induced soft set can be regarded as a group of points in
n-dimensional space composed of parameter sets, as shown
in Figure 1. Therefore, the soft set and machine learning
methods can be intuitively linked.

III. THE NEURON BASED ON SOFT SET AND FUZZY
SET AND ITS LIMITATIONS
In practical applications, fuzzy sets and soft sets are often
used as independent tools to solve practical problems.
As shown in Figure 2(a), the current difficulties are:

(1) When fuzzy sets are used to solve practical problems,
the construction of membership functions is difficult and
subjective;

(2)When using soft sets to solve practical problems, it usu-
ally has a large amount of data, and the essential charac-
teristics behind the data are not revealed. That means, all
operations are based on the original data, this is usually not a
good idea under big data conditions.

Taking the experimental V as an example, it is challenging
for us to build the membership function µ(x)mammals directly,
but it is easier to describe ‘mammals’ with (F,A)mammals.
According to the existing research on soft sets, we can use
soft set (F,A)mammals to perform similarity measurement,
classification, etc. on ‘mammals,’ but this usually has a large

FIGURE 2. The logical relationship of soft set and fuzzy set.

amount of computation, and the implied ‘mammals’ abstract
characteristics of these samples are not revealed. Inspired by
the idea of transformation between soft sets and fuzzy sets
[34], we can find an appropriate method to convert soft sets
into fuzzy sets, thus constructing the membership function
µ(x)mammals of the fuzzy set about ‘mammals.’ This idea can
be expressed in Figure 2.

This method of constructing membership functions can
also be considered as the original intention of Molodtsov’s
proposed soft set: ‘In classical mathematics, we construct a
mathematical model of an object and define the notion of the
exact solution of this model. Usually, the mathematical model
is too complicated, and we cannot find the exact solution. So,
in the second step, we introduce the notion of an approximate
solution and calculate that solution’ [2].

The idea of using the SF-ANN model to solve the problem
is similar to the neural network. As shown in Figure 2:

1) As previously described, an induced soft set can be
represented as a set of points in an n-dimensional space,
as shown in Figure 1;

2) Training the soft set by using neural networks, we can
construct a fuzzy set µ(x). From the perspective of
classification,µ(x) is actually a curve, surface or hyper-
surface in n-dimensional space;

3) For a new sample T , µ(T ) indicates the extent to which
T belongs to that category.

The SF-ANN model has the following advantages:
1) It can be used as a general method to construct the

membership function of the fuzzy set;
2) It reveals the relationship between ambiguity and accu-

racy, and provides a new perspective for the relation-
ship between fuzzy set and soft set;

3) It provides a further reference for the application of soft
set and fuzzy set in the field of artificial intelligence.

Generally speaking, we give a general way to construct
membership functions of fuzzy sets, and this paper reveals
the implicit relationship between soft set, fuzzy set, and
neural network.
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A. THE CONSTRUCTION OF FUZZY SETS FROM SOFT
SETS BASED ON MODAL LOGIC OPERATOR
Klir [35] proposed a formulation of fuzzy sets based onmodal
logic. In this model, a vague concept is characterized by
some, possibly different, crisp sets. Let W = {w1, · · · ,wn}
denote a set of n possible states of the world or simply states.
With respect to W , a vague concept is represented by n crisp
sets: A = (Aw1 , · · · ,Awn ). In each world wi, the vague
concept is described precisely by a crisp set Awi .

Let U be a finite and non-empty set called universe. The
set all families of n crisp sets is given by the n-fold Cartesian
product of 2U , 5n2U = 2U × · · · × 2U . Suppose � :
W → [0, 1] is a weighting function satisfying the condition:∑n

i=1 ωi = 1. For an element of 5n2U representing a vague
concept, Yao [18] proposed a fuzzy set model defined by:

µA(x) =
n∑
i=1

ωiµAwi (x), (3)

where µAwi is the characteristic function of Awi . If each crisp
set Awi represents one view of the vague concept, a fuzzy set
may be interpreted as a weighted combined view [18].

An aggregation operator is mapping a function, which
assigns a real number to any n-tuple (e1, e2, · · · , en) of real
numbers [36]:

µ = Aggreg(e1, e2, · · · , en)

Thus, each soft set can be transformed into a fuzzy set
by using an aggregation operator. The different aggregation
operators have different physical meanings. By Eq. (3), which
interprets a fuzzy set as a weighted combined view of soft set,
as shown in Figure 3.

µ(x) = (F,A)W =


u11 u12 . . . u1k
u21 u22 . . . u2k
...

...
. . .

...

un1 un2 . . . unk



ω1
ω2
...

ωk



=



∑k

i=1
ωiu1i∑k

i=1
ωiu2i
...∑k

i=1
ωiuni

 (4)

where (F,A) and W are described as matrices.

B. THE SOFT SETS AND FUZZY SETS
BASED PERCEPTRON
In 1943, McCulloch and Pitts [23] introduced the first arti-
ficial neurons. A neural network is a bio-inspired system
with several single processing elements, called neurons. The
neurons are connected to each other by a joint mechanism
which is consisted of a set of assigned weights. The neuron
calculates the weighted sum of the inputs and compares the
result with a threshold value 2. If the final sum is less than

FIGURE 3. The construction of fuzzy sets from soft sets based on modal
logic operator.

FIGURE 4. The perceptron.

the threshold, the output is set to −1, otherwise to +1. It can
be represented as:

Y = sign[
n∑
i=1

xiωi −2] (5)

that is,

X =
n∑
i=1

xiωi, Y =

{
+1 if X ≥ 2
−1 if X < 2

A neuron with k inputs is shown in Fig.(4), it’s a multiple-
input neuron [37].

Let U = {u1, u2, · · · , un}, (F,A) be a soft set with k
attributes E = {e1, e2, · · · , ek}, and µ(x) be a fuzzy set.
They can be expressed as a matrix. We consider using the
soft set as input and fuzzy set as output and using the sigmoid
function as the activation function. The inputs e1, e2, · · · , ek
each weighted by corresponding elements w1,w2, · · · ,wk of
the weight matrix W . The b is the bias of the neuron, and
it sums the weighted input to form a net input n. As shown
in Figure 3.

n = w1e1 + w2e2 + · · · + wkek + b

This expression can be written in matrix form:

n = WE + b (6)

The neuron output can be written as

y = f (WE + b) (7)

where f = 1
1+e−X .
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FIGURE 5. The perceptron based on soft set.

By Eq. (4), we have:

µ(x) = f ((F,A)W + b) (8)

As shown in the Fig.(5).
Fig. (4) and (5) shows that the conversion of soft sets to

fuzzy sets has the same structure as themultiple-input neuron.
That means we can use the soft set (F,A) as input and get the
membership function µ(x) of fuzzy set by training the neural
networks.

C. THE LIMITATIONS OF THE SOFT SETS AND FUZZY
SETS BASED PERCEPTRON
Although Eq. 8 can already be used to calculate membership
function and apply it to classifications. But based on existing
research of neural network, we already know that the structure
of the perceptron is limited. That is:

1) Marvin and Seymour [38] in 1969 illustrated the short-
comings of Rosenblatt’s [39] single-layer perceptron.
The multiple-input neuron is not enough to solve com-
plex classification problems, and a single-layer percep-
tron can only learning linearly separable patterns.

2) For µ(x) = (F,A)W , it is actually a single layer
perceptron, and this model also can perform pattern
classification only on linearly separable patterns. This
means, µ(x) is just a line in two-dimensional space or
a hyperplane in a multi-dimensional space. Sometimes
there are complex problems, and the data for these
problems cannot be divided into separate classes by
using a single straight line.

The multi-layer perceptron and the back-propagation algo-
rithm overcomes many of the shortcomings of the single-
layer perceptron. In practice, many complex problems need
to have multiple decision lines for a well acceptable solu-
tion. Multiple-layer perceptrons realize this task by the intro-
duction of one or more hidden layers. So, we introduce
the soft sets and fuzzy sets based multi-layer perceptron in
subsection (IV-A).

IV. THE SF-ANN MODEL
In this section, the soft sets and fuzzy sets based neural
network (SF-ANN) is proposed. As shown in Fig. (6). As can
be seen from the discussion above, the soft sets and fuzzy
sets interconnected each other throughW . And the key isW ,

FIGURE 6. The soft sets and fuzzy sets based neural network.

a properly configured W can generate membership function
of µ(x), which can be used to solve complex problems, such
as decision-making, pattern recognition, and so on.

The discussion mentioned in the previous chapters reveals
that the data behind the soft set is the abstract features of
samples. That is, the soft set (F,A) can be used as a training
data set, this ‘training set’ can be ‘trained’ by a certainmethod
and abstracted into an abstract description function of an
object, that is, the fuzzy set µ(x). As shown in Fig.(6).
By using this model, we can achieve the following

effects:
1) For any soft set (F,A), take it as a neural network input,

we can generate the membership function of the fuzzy
set µ(x).

2) As an abstract description of an object,µ(x) can be used
directly in classification, pattern recognition, decision-
making and so on.

3) The neural network is used as a black box for solving
W . It’s flexible and substitutable, we can easily replace
it without affecting existing applications.

All we need to do is focus on the soft sets and solve
practical problems conveniently. That is, in the practical
application, we only need to prepare the front-end ‘S’ (soft
sets), and using the back-end ‘F’ (fuzzy sets).

A. THE PRINCIPLE AND IMPLEMENTATION
OF SF-ANN
A multilayer perceptron is a class of feedforward neural net-
works [40]. The network consists of an input layer of source
neurons, at least one middle or hidden layer of computational
neurons, and an output layer of computational neurons. The
input signals are propagated in a forward direction on a layer-
by-layer basis.

Let U = {u1, u2, · · · , un} and (F,A) be a soft set with k
attributes E = {e1, e2, · · · , ek}, µ(x) be a fuzzy set. Similar
to the multilayer perceptron, the SF-ANN always takes soft
sets as input and fuzzy sets as output. As shown in the
Figure (6).

For convenience, let (F,A) be an n×k matrix,andµ(x) be a
n×1 matrix. TheW1 andW2 are also represented as matrices
based on the number of neurons nodes. Here we only use the
two-layer neural network, which can be easily extended to
multi-layer neural networks.
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The SF-ANN is formulated as follows:

µ(x) = f (f ((F,A) ·W1) ·W2) (9)

where,

u(x) =


u1
u2
...

un



(F,A) =


u11 u12 . . . u1k
u21 u22 . . . u2k
...

...
. . .

...

un1 un2 . . . unk



W1 =


w1,1 w2,1 . . . wm,1
w1,2 w2,2 . . . wm,2
...

...
. . .

...

w1,k w2,k . . . wm,k



W2 =


w1,1
w1,2
...

w1,m


m is the number of neurons.
First, it computes the net weighted input as before:

X = (F,A)W −2 =
k∑
i=1

eiωi −2 (10)

where k is the number of attributes, and 2 is the threshold
applied to the neuron.

This input value is passed through the activation function,
and the neurons use a sigmoid activation function:

µ(x) = Y sigmoid =
1

1+ e−X
(11)

A significant advantage of the sigmoid function is the deriva-
tive is easy to compute, and it also guarantees that the µ(x)
output is bounded between 0 and 1.

To derive the back-propagation learning law, we refer to
the idea of the three-layer network shown in Figure (6). The
indices i, j and k refer to neurons in the input, hidden and
output layers. The symbol wij indicates the weight for the
connection between neuron i and neuron j, and the symbol
wjk the weight between neuron j and neuron k . To propagate
error signals, we start at the output layer and work backward
to the hidden layer. The error signal at the output of neuron k
at iteration p is defined by

errk (p) = yd,k (p)− yk (p) (12)

where errk (p) is the error signals, and yd,k (p) is the desired
output of neuron k at iteration p, yk (p) is the output of neuron
k at iteration p.

We use a straightforward procedure to update weight wjk .

wjk (p+ 1) = wjk (p)+1Wjk (p) (13)

where 1Wjk (p) is the weight correction.
The weight correction in the multilayer network is com-

puted by (Fu, 1994) [41]:

1Wjk (p) = α × yi(p)× δk (p) (14)

where δk (p) is the error gradient at neuron k in the output
layer at iteration p.

The error gradient is determined as the derivative of the
activation function multiplied by the error at the neuron
output. For neuron k in the output layer, we have

δk (p) =
∂yk (p)
∂Xk (p)

× errk (p)

=

∂{ 1
1+exp[−Xk (p)]

}

∂Xk (p)
× errk (p)

=
exp[−Xk (p)]

1+ exp[−Xk (p)]
× errk (p) (15)

where yk (p) is the output of neuron k at iteration p, and Xk (p)
is the net weighted input to neuron k at the same iteration.
Thus,

δk (p) = yk (p)× [1− yk (p)]× errk (p) (16)

where

yk (p) =
1

1+ exp[−Xk (p)]

To calculate the weight correction for the hidden layer,
we can apply the same equation as for the output layer:

1wij(p) = α × xi(p)× δj(p) (17)

where δj(p) represents the error gradient at neuron j in the
hidden layer:

δj(p) = yj(p)× [1− yj(p)]×
l∑

k=1

δk (p)wjk (p) (18)

where l is the number of neurons in the output layer;

yj(p) =
1

1+ e−Xj(p)
(19)

where

Xj(p) =
n∑
i=1

xi(p)× wij(p)−2j

and n is the number of neurons in the input layer.
Now we can derive the SF-ANN training algorithm:
1) Initialisation

Input the soft set (F,A) and the fuzzy set µ(x) for
training. Set all the weights and threshold levels of the
network to random numbers. The number of hidden
neurons should be 2/3 the size of the input layer, plus
the size of the output layer [42].
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2) Activation
a) Calculate the outputs in the hidden layer: yj(p) =

f (
∑n

i=1 xi(p)×wij(p)−2j), where n is the number
of inputs of neuron j in the hidden layer, and f is
the sigmoid activation function.

b) Calculate the outputs in the output layer: yk (p) =
f (

∑n
i=1 xij(p) × wjk (p) − 2k ), where m is the

number of inputs of neuron k in the output layer.
3) Weight training

a) Calculate the error gradient in the output layer:
δk (p) = yk (p) × [1 − yk (p)] × errk (p), where
errk (p) = yd,k (p)− yk (p)
Update the weights at the output layer: wjk (p +
1) = wjk (p) + 1jk (p) where, 1wjk (p) = α ×

yj(p)× δk (p),
b) Calculate the error gradient in the hidden layer:

δj(p) = yj(p)× [1− yj(p)]×
∑l

k=1 δk (p)×wwj(p)
Update the weights at the hidden neurons:
wij(p+ 1) = wij(p)+1wij(p)

where, 1ij(p) = α × xi(p)× δj(p)
4) Iteration

Go back to Step 2 and repeat the process until the
selected error criterion is satisfied.

Until all training instances have been trained, the SF-ANN
is ready for classification. In the classification phase, the net-
work only executes feed-forward to get the final classified
result.

For n-layer artificial neural network, input (F,A) andµ(x),
u(x) = f (f (f ((F,A) ·W1) ·W2) · · ·Wn +2), f is the sigmod
function, until all training instances have been trained, the
W1,W2, · · · ,Wn,2 is generated. Now µ(x) can be used for
decision-making, classification, pattern recognition and so
on. Let T be a sample to be tested, thenµ(T ) = f (f (f (T ·W1)·
W2) · · ·Wn+2) used to determine if this sample T belongs to
‘this class’. The algorithm can be expressed as Algorithm (1),
and the source code can be found at [32].

Advantages of the SF-ANN:
1) This model µ(x) = (F,A)W has the same struc-

ture as the single layer neural network, which can
be easily extended to two layers or multilayer neural
networks.

2) With the help of the model, we can focus on the soft set
and the fuzzy set when solving the practical problems,
and reduce the difficulty and complexity of construct-
ing the neural network. Correspondingly, our focus is
on the data itself.

3) A single (F,A) can be considered a ‘class’, a com-
bination of multiple classes can make up more com-
plex things. Let (F,A),(G,B) be two soft sets, through
SF-ANN, we can generate µ(F,A)(x) and µ(G,B)(x).
According to the research of soft set, we can also gen-
erate µ(F,A)∪(G,B)(x) or µ(F,A)∩(G,B)(x). On the other
hand, the attribute reduction [43] can be performed on
(F,A), and then we can greatly reduce the neuron input
during training.

Algorithm 1 The SF-ANN Training and Testing

1 function SF-ANN-Training < (F,A), µ(x) >;
Input : The matrix expressed (F,A) and the

corresponding µ(x), as show in Eq. 10
Output: W1 and W2, as show in Eq. 10

2 Initialize W1 and W2 based on number of neurons;
3 while Error > Tolerance do

// dot:Multiplying a Matrix;f:The
Sigmod Function

4 Calculate hidden layer values:
Z1 = f (dot((F,A),W1))

5 Calculate output layer values: Z2 = f (dot(Z1,W2))
6 Observe Error:{

ErrZ2=µ(x)− Z2;1Z2 = ErrZ2 × Z2 × (1− Z2)
ErrZ1=dot(1Z2 ,W2);1Z1=ErrZ1× Z1 × (1− Z1)

7 Update hidden layer weights: W1+ = dot(ZT1 ,1Z1 )
8 Update output layer weights: W2+ = dot(ZT2 ,1Z2 )
9 end

10 function SF-ANN-Testing (F,A);
Input : A test sample T
Output: The value of µ(T )

11 Initialize the threshold λ ;
12 Calculate output value:
µ(T ) = f (dot(f (dot(T ,W1),W2))

13 if 1− µ(T ) > λ then
14 return True;
15 else
16 return False;
17 end

V. NUMERICAL EXPERIMENTS
In this application, we will be testing SF-ANN with Zoo
Dataset [44]. The Zoo Database from the UCI Machine
Learning Database Repository, which contains 101 tuples
on 15 Boolean attributes and two numerical attributes, such
as hair (Boolean), feathers (Boolean) and the number of
legs (numeric). All tuples are classified into seven categories
(mammals, birds, reptiles, fish, amphibians, insects, and
invertebrates). The task of the classifier is to produce the clas-
sification number given the animal name or id. For the 7 cat-
egories, we will create µmammals(x), µbirds(x), µreptiles(x),
µfish(x), µamphibians(x), µinsects(x), µinvertebrates(x) by using
SF-ANN, respectively.

The experimental of ‘mammals’ described below, the other
experiments are similar. We wrote programs for all exper-
iments and uploaded it to [32] for easy validation and
improvement.

In order to test the SF-ANN model, there are four steps to
be made:

1) Normalizing the data
First, the dataset must be normalized. In this case,
the thirteenth column must be normalized. After we
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FIGURE 7. The SF-ANN for training mammals with NeurophStudio.

TABLE 2. Zoo dataset.

TABLE 3. The training set (F ,A)mammals and µmammals(x).

finished that, we got 22 columns. Exactly we got
21 inputs ((F,A)) and 1 output (µ(x)). As shown
in Table (2).

2) Create the training dataset
Generate soft Set (F,A) and µ(x) as training samples
based on ZooDataset.We sampled 30 samples from the
dataset as training samples and established the first type
of animal training sample (F,A)mammals. (F,A)mammals
contains 21 attributes (ei, 0 < i < 22) and 30 objects
(ui, 0 < i < 31). We extract the last column from the
dataset to establish µmammals(x), if ui is the first type
of animal mammals, then µmammals(ui) = 1, otherwise
µmammals(ui) = 0. As shown in Table (3).

3) Training the SF-ANN
The SF-ANN automatically sets the number of nodes
of the network according to the number of samples and
attributes of the input soft set. The number of inputs
is 21, and hidden neurons number is 6, the number of
outputs is 1. As shown in Figure (7).

4) Testing the neural network
After the network is trained, we use the remaining
101 datasets to test the SF-ANN, and the test results
are shown in Table (4) (See Appendix for details).

The SF-ANN is sensitive to the problem of class imbalance
in training samples. Balanced categories tend to get the best
performance, while unbalanced categories tend to reduce the
effect of the model. As shown in Table (4), the experimental
results of ‘REPTILES’ and ‘INSECTS’ appear to be rela-
tively poor because they have fewer samples in the datasets
(The number of ‘REPTILES’ and ‘INSECTS’ is 5 and 4,
respectively).
Remark 1: The SF-ANN is essentially a two-class classi-

fier (in the training samples,the value of µ(x) is either 0 or 1),
which has its own advantages:

(1) The scale of training is small, and we have narrowed
down the problem at the data level.

(2) The number of hidden layers decreases, and the com-
putational complexity is reduced.
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TABLE 4. The accurate of testing SF-ANN.

(3) In practice, samples aremore comfortable to collect and
fewer samples are needed.

(4) According to the meaning of µ(x), we can set the
threshold value to improve the recognition rate.

We can solve the complex classification problem with
fuzzy sets and soft sets and avoid the construction of complex
neural networks. That is, in the practical application, we only
need to focus on the front-end ‘S’ (soft sets), and take advan-
tage of the back-end ‘F’ (fuzzy sets).

VI. CONCLUSION
This paper focuses on the relationship between fuzzy sets
and soft sets. Inspired by the idea of transformation between
fuzzy sets and soft sets, we construct a neuron-like struc-
ture and extend it to multilayer neural network structures.
Furthermore, a neural network learning model—SF-ANN is
constructed. By using soft set theory and machine learning
method, this paper gives the general construction method of
membership function of fuzzy set. An illustrative example
shows that the model can be used to establish the membership
function of fuzzy sets. In general, it provides a new perspec-
tive to observe the relationship between soft sets and fuzzy
sets and a practical model for solving practical problems.

Further, the SF-ANNmodel can be studied in three aspects.
Firstly, at the front-end, the soft sets can be used for informa-
tion fusion, attribute reduction, and so on. The information
fusion based on the soft sets will play a significant role in
promoting the model proposed in this paper. Secondly, at the
back-end, we can study and replace the sigmoid functions
from the perspective of membership function construction.
This is also indirectly beneficial to the neural network and
improves its learning ability. Finally, by using the SF-ANN
model, the researchers of fuzzy sets or soft sets can focus on
their field and avoid constructing complex neural networks.
As a tool, the neural network is flexible and substitutable,
and the support vector machine may be considered as an
alternative.

APPENDIX
THE EXPERIMENT OF ‘MAMMALS’
1 . T r a i n t h e SF−ANN
S o f t s e t ==
[ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]

[ 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ]
[ 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ]
[ 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ]
[ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ]
[ 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ]
[ 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 ]
Fuz zy s e t ==
[ 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 ,
0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 ]
W1==
[[−0.46374472 1 .1011822 −1.14662219 0 .51217834
−1.30600343 −1.74795964 −1.17362203 −0.2059837 ]
[−0.16589491 −0.43320794 −0.03762993 −0.12038066
−0.39589952 1 .07887511 −0.86764188 0 .22990682 ]
[ 0 .07800391 −1.3161552 −0.43658647 −2.19229382
1 .31737883 2 .61284989 0 .43359323 0 .09325996 ]
[ 0 .34655106 1 .93867029 −0.99199591 0 .24742641
−1.3467796 −0.6121514 −1.73276001 −0.04332664]
[ 0 .87364505 −0.25208039 0 .47404662 −0.58256035
0 .36918331 0 .69278321 −0.90817993 0 .4189295 ]
[ 1 .0665062 0 .17159622 −0.34485928 −0.15843924
−0.39634673 0 .59698584 1 .07856339 −0.5559415 ]
[−0.42061591 −0.83890556 −0.90120004 −0.14995517
−0.31857957 0 .01149887 0 .06829555 −1.01788612]
[−0.08005091 −0.2172667 0 .08681253 0 .75936532
−1.0623397 −0.53608754 0 .04249259 −0.16256934]
[−1.08780906 0 .05022755 0 .35977179 −0.10119284
0 .81737693 0 .1315508 0 .53807904 −0.82700666]
[−1.0427852 0 .87793024 −0.15395053 −0.3047882
0 .51822182 −0.98393879 −0.18586671 0 .39838517 ]
[ 0 .78082391 0 .15215159 0 .51886844 −0.39030799
−0.41656958 0 .84596421 −0.11054856 0 .91268806 ]
[ 0 .36659524 0 .29196333 −0.74621382 0 .55261134
0 .12674328 0 .56566582 −0.05852341 −0.59336137]
[ 0 .84745287 0 .16938979 −0.96280508 −0.16654548
−0.10774737 0 .50206771 0 .91212072 −0.37159248]
[ 0 .77493629 −0.07169073 −0.87806512 0 .64528285
0 .37797528 1 .01817757 −0.60007547 −0.80708763]
[ 0 .68361681 0 .5962679 −0.94416315 0 .8773105
0 .23214675 0 .40752333 −0.00485294 −0.71644802]
[−0.96023973 −0.94757803 −0.94338702 −0.50757786
0 .7200559 0 .07766213 0 .10564396 0 .68406178 ]
[−0.73147201 −0.63196196 0 .24649072 0 .76805407
0 .19197104 −0.68777272 0 .71097897 −0.57849753]
[ 0 .61421039 −0.22427871 0 .72708371 0 .49424329
0 .11248047 −0.72708955 −0.88016462 −0.75731309]
[−1.02274043 −0.75407113 −0.51144923 0 .23332069
0 .06181266 −0.85669132 −0.92989794 0 .83452803 ]
[ 0 .07966276 −0.61981983 −0.48610253 0 .4644802
−0.62872566 0 .05466 0 .77654787 0 .66799597 ]
[−0.66288097 0 .29976419 0 .22114261 0 .83142582
−0.79337536 −1.12556746 −1.20793854 −0.01633509]]
W2==
[[−0.64034914]
[ 3 . 62908286 ]
[−0.72785483]
[ 2 . 54136244 ]
[−2.04055295]
[−4.06408276]
[−2.03575245]
[ 0 . 10484768 ] ]

2 . Te s t t h e SF−ANN on t h e t e s t d a t a
a a rdva rk , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 mux=0.99667 De s i r eOu t pu t : 1
Outpu t : 1 OK
an t e l o p e , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
bear , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 mux=0.99667 De s i r eOu t pu t : 1
Outpu t : 1 OK
boar , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
bu f f a l o , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
c a l f , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 mux=0.99713 De s i r eOu t pu t : 1
Outpu t : 1 OK
cavy , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 mux=0.99455 De s i r eOu t pu t : 1
Outpu t : 1 OK
chee t ah , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
deer , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
do lph in , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.98725 De s i r eOu t pu t : 1
Outpu t : 1 OK
e l e ph an t , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
f r u i t b a t , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99149 De s i r eOu t pu t : 1
Outpu t : 1 OK
g i r a f f e , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
g i r l , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 mux=0.99602 De s i r eOu t pu t : 1
Outpu t : 1 OK
goat , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 mux=0.99713 De s i r eOu t pu t : 1
Outpu t : 1 OK
g o r i l l a , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 mux=0.99630 De s i r eOu t pu t : 1
Outpu t : 1 OK
hamste r , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 mux=0.99593 De s i r eOu t pu t : 1
Outpu t : 1 OK
hare , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99569 De s i r eOu t pu t : 1
Outpu t : 1 OK
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l e opa rd , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
l i o n , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
lynx , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
mink , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99662 De s i r eOu t pu t : 1
Outpu t : 1 OK
mole , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99527 De s i r eOu t pu t : 1
Outpu t : 1 OK
mongoose , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
opossum , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99527 De s i r eOu t pu t : 1
Outpu t : 1 OK
oryx , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99703 De s i r eOu t pu t : 1
Outpu t : 1 OK
p l a t y pu s , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.95632 De s i r eOu t pu t : 1
Outpu t : 1 OK
po l e c a t , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
pony , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 mux=0.99713 De s i r eOu t pu t : 1
Outpu t : 1 OK
po rpo i s e , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.98725 De s i r eOu t pu t : 1
Outpu t : 1 OK
puma , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
pus syc a t , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 mux=0.99662 De s i r eOu t pu t : 1
Outpu t : 1 OK
raccoon , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK
r e i n d e e r , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 1 mux=0.99713 De s i r eOu t pu t : 1
Outpu t : 1 OK
se a l , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 mux=0.99410 De s i r eOu t pu t : 1
Outpu t : 1 OK
s e a l i o n , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99624 De s i r eOu t pu t : 1
Outpu t : 1 OK
s q u i r r e l , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99472 De s i r eOu t pu t : 1
Outpu t : 1 OK
vampire , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99149 De s i r eOu t pu t : 1
Outpu t : 1 OK
vole , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 mux=0.99569 De s i r eOu t pu t : 1
Outpu t : 1 OK
wal laby , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99664 De s i r eOu t pu t : 1
Outpu t : 1 OK
wolf , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 1 mux=0.99680 De s i r eOu t pu t : 1
Outpu t : 1 OK

3 . The r e s u l t s
T o t a l number : 41
Find numper : 41
E r r o r numper : 0
Cor re number : 41
PRECISION : 1 . 0 0 0 RECALL: 1 . 0 0 0 F1−SCORE: 1 . 0 0 0
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