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ABSTRACT This paper presents a novel method to identify a class of closed-loop systems, in which both the
forward channel and the feedback channel have unknown time-delays. Taking into account the time-delays,
an overparameterized identification model with a sparse parameter vector is established. Based on the basis
pursuit de-noising criterion, the sparse parameter vector is estimated by solving a quadratic programming.
The time-delays and the parameters are estimated according to the structure of the parameter estimation
vector and the model equivalence principle, respectively. The proposed method is applicable even in the case
of a few number of sampled data. The effectiveness of the proposed algorithm is verified by the numerical
simulation results.

INDEX TERMS Closed-loop system, basis pursuit de-noising, system identification, time-delay estimation.

I. INTRODUCTION
The identification of the closed-loop systems is an active
research in system identification due to its stability, security
and safety. There has been continuing interest in methods
of identifying the closed-loop systems [1]–[4]. For example,
a modified least-squares algorithm was presented to iden-
tify the closed-loop systems in the presence of noises [5].
A hierarchical multi-innovation stochastic gradient algorithm
was developed for the identification of a class of closed-loop
systems [6]. The algorithms used in [5], [6] are suitable for
the closed-loop systems without time-delays. However, time-
delays are common in closed-loop engineering systems due
to the measurement and transmission. For example, in a net-
worked controlled system, due to the network transmission,
the time-delays not only include in the control plant, but
also in the feedback channel [7], [8]. Thus, it is necessary
to address the identification problems of the closed-loop
systems with unknown time-delays both in the forward and
feedback channels.

For the closed-loop systems with unknown time-delays in
the forward and feedback channels, the relationship between
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the reference input and the output can be modeled as a high
dimensional regression vector form,where the parameter vec-
tor is sparse. The identification goal is to estimate the sparse
parameter vector, and then to extract the feedback channel
parameters and time-delays from the estimation vector. Tradi-
tional identification methods need a large amount of sampled
data to identify a high dimensional model, which may not
be available in many cases, such as the linear time-variant
system identification [9]. We aim to develop identification
methods to simultaneously estimate the time-delays and
parameters of the closed-loop systems with a few number of
sampled data.

Since the parameter vector of the parameterized model is
sparse, we need to perform a sparse system identification
first. The compressive sensing recovery techniques discussed
in [10], [11] have been successfully applied to the sparse
system identification [9], [12]–[14]. Among these techniques,
the greedy algorithms and the convex optimization algo-
rithms are most widely used. Greedy algorithms such as the
orthogonal matching pursuit (OMP) algorithm and its vari-
ations have been developed to identify linear and nonlinear
sparse systems for the merits of fast speed and easy imple-
mentation. For example, a block orthogonal matching pur-
suit (BOMP) algorithm was proposed for the identification

99648 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0376-0705
https://orcid.org/0000-0002-3086-3785
https://orcid.org/0000-0001-5615-2255
https://orcid.org/0000-0002-0151-3188
https://orcid.org/0000-0002-3998-7194


Y. Chen et al.: Novel Identification Method for a Class of Closed-Loop Systems Based on BPDN

FIGURE 1. A closed-loop system.

of the sparse ARXmodels [9]. A threshold orthogonal match-
ing pursuit algorithm was presented for multiple input finite
impulse response models and a class of Hammerstein models
[13]–[15]. An auxiliary model based orthogonal matching
pursuit iterative algorithm was proposed for the joint param-
eter and time-delay estimation of multiple input output-error
models [16]. Convex optimization algorithms such as the
basis pursuit, the basis pursuit de-noising (BPDN) can recov-
ery sparse signals with the advantages of high stability and
strong applicability [17]. In the literature of system identifi-
cation, the BPDN criterion was combined with the auxiliary
model idea to jointly estimate the parameters and time-delays
of multivariable output-error systems [18]. In the current
paper, the BPDN criterion is used to identify the parameters
and time-delays of a class of closed-loop systems simultane-
ously due to its robustness.

The structure of this paper is as follows. In Section II,
the introduction and identification model of the closed-loop
system are given. The BPDN based algorithm is described
in Section III. A simulation example is given to verify the
feasibility and effectiveness of the proposed algorithm in
Section IV. Finally, Section V contains some conclusions.

II. PROBLEM DESCRIPTION
Consider a closed-loop system in Figure 1, where u(t) ∈ R
and y(t) ∈ R are the input and output of the system, r(t) ∈ R
is the reference input, v(t) ∈ R is a white noise with zero
mean and variance σ 2, d1 and d2 are unknown time-delays,
A(q), B(q) and C(q) are the polynomials in the unit backward
shift operator q−1,

A(q) = 1+
na∑
i=1

aiq−i,

B(q) =
nb∑
i=1

biq−i,

C(q) = 1+
nc∑
i=1

ciq−i.

The orders na, nb and nc are known, while the parameters ai,
bi and ci are unknown.Without loss of generality, we suppose

that d1 + d2 > na, y(t) = 0, u(t) = 0 and v(t) = 0 for t 6 0.
The identification goal is to estimate the coefficients in A(q),
B(q) and C(q), and the unknown time-delays d1 and d2 from
the input and output data {r(t), y(t), t = 1, 2, · · · }.

From Figure 1, the relationship between the reference input
r(t) and the output y(t) can be expressed by an ARX model,

(A(q)+ q−(d1+d2)B(q)C(q))y(t) = q−d1B(q)r(t)+ v(t). (1)

Define

β(q) := B(q)C(q) = β1q−1 + β2q−2 + · · ·βnβq
−nβ ,

nβ := nb + nc,
α(q) := A(q)+ q−(d1+d2)B(q)C(q)

= 1+ a1q−1 + a2q−2 + · · · + anaq
−na

+ q−(d1+d2)(β1q−1 + β2q−2 + · · · + βnβq
−nβ ). (2)

Then Equation (1) can be rewritten as

α(q)y(t) = q−d1B(q)r(t)+ v(t). (3)

In order to ensure the identifiability of the closed-loop sys-
tem, the following assumptions are generally made [19]:
• The noise v(t) is stationary.
• The reference input r(t) is a stationary random process,
and independent of the noise v(t).

• The polynomials α(q) and B(q) are coprime.
Taking into account the unknown time-delays, an overparam-
eterization method is applied to form an identification model
by setting a maximum output regression length l1 and a max-
imum input regression length l2, satisfying l1 > d1+d2+nβ
and l2 > d1+nb [15]. Define the information vector ϕ(t) and
the parameter vector θ as

ϕ(t) := [−y(t − 1), · · · − y(t − l1), r(t − 1), · · · ,
r(t − l2)]T ∈ Rn, n = l1 + l2,

θ := [a1, · · · , ana , 0, · · · , 0︸ ︷︷ ︸
d1+d2−na

, β1, · · · , βnβ ,

0, · · · , 0︸ ︷︷ ︸
l1−d2−nβ

, b1, · · · , bnb , 0, · · · , 0︸ ︷︷ ︸
l2−nb−d1

]T ∈ Rn. (4)

Then Equation (3) can bemodeled by a simplified vector form

y(t) = ϕT(t)θ + v(t). (5)

It is worth to note that the parameter vector θ is sparse since
most of the entries are zero and the sparsity level isK := na+
nβ + nb. The first task of the identification is to estimate the
coefficients in α(q) and B(q), i.e., the nonzero parameters in
θ . Generally, under the case of m observations, the parameter
vector θ can be estimated by the least squares (LS) algorithm,
i.e.,

θ̂LS = (ΦTΦ)−1ΦTY , (6)

where

Y := [y(1), y(2), · · · , y(m)]T ∈ Rm,

Φ := [ϕ(1),ϕ(2), · · · ,ϕ(m)]T ∈ Rm×n,

V := [v(1), v(2), · · · , v(m)]T ∈ Rm.
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However, it may require a lot of identification cost and take
a long time to get enough data since the dimension of the
parameter vector θ is high, and the computational burden
is heavy because of the matrix inversion in (6). Moreover,
using the LS algorithm, the sparse solution as well as the
time-delays cannot be obtained [12]. In order to effectively
identify the sparse systems and to save the identification
cost, we aim to find identification methods to get the param-
eter vector θ and the time-delays from a few number of
measurements.

III. IDENTIFICATION ALGORITHM
The sparse identification of θ can be expressed as

θ̂ = argmin‖θ‖0, s.t. ‖Y −Φθ‖ 6 ε, (7)

where θ̂ is the estimate of θ , ‖θ‖0 represents the number of
non-zero parameters in θ , ‖θ‖ denotes the l2 norm of θ , and
ε > 0 is the error tolerance. However, the noncontinuous
sparse optimization problem in (7) is difficult to solve in
practice. An alternative is the following relaxed l1 norm [20],

θ̂ = argmin‖θ‖1, s.t. ‖Y −Φθ‖ 6 ε, (8)

where ‖θ‖1 represents the l1 norm of θ . Many greedy algo-
rithms have been proposed to solve this problem [9], [12],
[15]. For comparison, we list the steps of the threshold orthog-
onal matching pursuit (Th-OMP) algorithm in Figure 2.

Several conditions on the information matrix have been
established to guarantee the recovery of the sparse vector.
It has been proved that the sparse recovery can be guaran-
teed as long as the information matrix satisfies the restricted
isometry property (RIP) [21]. However, it is difficult to verify
the RIP in system identification because the columns of the
information matrix are correlated with each other. A weaker
condition based on the mutual coherence was discussed in
[9]. In order to guarantee the recovery, the mutual coherence
of the information matrix should be as low as possible. In
the ARX framework, the mutual coherence is bounded and
can be reduced by pre-filtering the measurements. However,
how to choose the filter is still an issue. An exact recovery
condition (ERC) has been developed in [22]. The consistent
properties of identifying the sparse ARX models was dis-
cussed in [12] by using the ERC.

In this paper, we focus on the BPDN criterion to solve
this optimization problem due to its robustness. First we
normalize the information matrixΦ by dividing the elements
in each column by the l2 norm of that column and let Φo be
the normalized information matrix, i.e.,

Φo := ΦΦ l
−1,

Φ l :=


8(1) 0 0 · · · 0
0 8(2) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 8(n)

 ∈ Rn×n, (9)

FIGURE 2. The threshold orthogonal matching pursuit algorithm.

where 8(j) :=
√∑m

i=18
2
ij. From (9), we have Φ = ΦoΦ l .

Thus, the system in Equation (5) can be modeled by the
matrix form

Y = Φoθo + V ,

where

θo := Φ lθ . (10)

Note that the positions of the nonzero parameters in the
parameter vectors θo is the same as that in the parameter vec-
tor θ . Thus, the sparse optimization problem in Equation (8)
equals to

θ̂o = argmin‖θo‖1, s.t. ‖Y −Φoθo‖ 6 ε. (11)

The constrained optimization problem in Equation (11) can
be cast as a convex unconstrained optimization problem,
which consists of a quadratic l2 error and an l1 regularization,

min
θ o

1
2
‖Y −Φoθo‖

2
+ λ‖θo‖1, (12)
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where λ is a non-negative parameter and can be set as λ =
σ
√
2 log(n) [17]. Two non-negative vectors uo and vo are

introduced to convert the problem in (12) into a quadratic
program [18], [23], and let uoj := (θoj)+, voj := (−θoj)+ and
(θo)+ := max{0, θo} for all j = 1, 2, · · · , n, where θoj, uoj
and voj represent the j-th element of the vectors θo, uo and vo,
respectively. Then the parameter vector θo can be expressed
as

θo := uo − vo.

Let 1n := [1, · · · , 1]T ∈ Rn, 12n := [1, · · · , 1]T ∈ R2n and

zo := [uT
o, v

T
o]

T
∈ R2n, (13)

then the l1 norm of θo can be expressed as

‖θo‖1 = 1T
nuo + 1T

nvo = 1T
2nzo. (14)

It is obvious that all elements in zo are nonnegative. Using the
above expression, the quadratic error can be written as

‖Y −Φoθo‖
2

= ‖Y − [Φo,−Φo]zo‖2

= Y T(Y − [Φo,−Φo]zo)− zTo[Φo,−Φo]T(Y−[Φo,−Φo]zo)

= Y TY − Y T[Φo,−Φo]zo − zTo[Φo,−Φo]TY

+ zTo[Φo,−Φo]T[Φo,−Φo]zo. (15)

Since Y T[Φo,−Φo]zo is a scalar, we can derive that

Y T[Φo,−Φo]zo = (Y T[Φo,−Φo]zo)T

= zTo[Φo,−Φo]TY

=

[
ΦT

oY
−ΦT

oY

]T

zo.

Let γ := ΦT
oY ∈ Rn and B :=

[
ΦT

oΦo −Φ
T
oΦo

−ΦT
oΦo ΦT

oΦo

]
∈

R(2n)×(2n). It further follows that

‖Y −Φoθo‖
2

= Y TY − 2
[
γ

−γ

]T

zo + zTo[Φo,−Φo]T[Φo,−Φo]zo

= Y TY − 2
[
γ

−γ

]T

zo + zToBzo, (16)

and

min
θo

1
2
‖Y −Φoθo‖

2
+ λ‖θo‖1

= min
zo

1
2
Y TY −

[
γ

−γ

]T

zo +
1
2
zToBzo + λ1

T
2nzo

= min
zo

1
2
Y TY + CTzo +

1
2
zToBzo, (17)

where

C : =
[
−γ

γ

]
+ λ12n

=

[
−γ

γ

]
+ σ

√
2 log(n)12n ∈ R2n. (18)

Since 1
2Y

TY is a constant, the problem (17) equals to a
standard quadratic programm form

min
zo

CTzo +
1
2
zToBzo, s.t. zo > 0. (19)

Generally, the above inequality constrained quadratic pro-
gramm can be solved by the active set method [24]. For
simplicity, the quadratic programm problem can be solved
by invoking the function of the standard scientific software
toolbox. For example, the MATLAB provides a function
named ‘quadprog’ to obtain the optimum solution ẑo. Then
the parameter estimation vector θ̂o can be obtained by

θ̂o = ẑo(1 : n)− ẑo(n+ 1 : 2n). (20)

Since the system is corrupted by noise, the parameter esti-
mation error may be large. In order to reduce the estimation
error, the parameter estimation vector θ̂o is filtered by setting
a small threshold ε > 0. The filtered parameter estimation
vector can be written as θ̂ ε . Thus, the parameter estimation
vector θ̂ can be obtained from (10) as

θ̂ = Φ−1l θ̂ ε . (21)

The coefficients ai(i = 1, 2, · · · , na), bj(j = 1, 2, · · · , nb)
and βr (r = 1, 2, · · · , nβ ) can be directly obtained from (21)
while parameters ck (k = 1, 2, · · · , nc) cannot. The following
step is to estimate the feedback channel parameters. Accord-
ing to the model equivalence principle [25], and from (2), we
have

Ŝ = η̂θ̂c,

where

η̂ : =



b̂1 0 · · · 0
b̂2 b̂1 · · · 0
...

...
. . .

...

b̂nc
b̂nc+1

b̂nc−1
b̂nc

· · ·

· · ·

b̂1
b̂2

...
...

. . .
...

b̂nb−1 b̂nb−2 · · · b̂nb−nc
b̂nb b̂nb−1 · · · b̂nb−nc+1
0 b̂nb · · · b̂nb−nc+2
...

...
. . .

...

0 0 · · · b̂nb



,

Ŝ : = [β̂2 − b̂2, β̂3 − b̂3, · · · , β̂nc+1 − b̂nc+1, β̂nc+2 −

b̂nc+2, · · · , β̂nb − b̂nb , β̂nb+1, β̂nb+2, · · · , β̂nβ ]
T,

θ̂c = [ĉ1, ĉ2, · · · , ĉnc ]
T.

Using the LS algorithm, the parameters ci can be estimated
by

θ̂c = (η̂T
η̂)−1η̂TŜ. (22)

Once the sparse parameter vector is recovered, the unknown
time-delays can be estimated based on the positions and
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FIGURE 3. The Th-BPDN based identification algorithm.

the number of zeros of each zero-block in the parameter
estimation vector. Obviously, there are three zero-blocks in
θ̂ from (4). Let the number of zeros in each zero-block be
zp(p = 1, 2, 3). Then the time-delays can be estimated as
follows,

d̂1 = l2 − nb − z3,

d̂2 = l1 − nβ − z2. (23)

It is noteworthy that the noise vector V can be both the
white noise and the colored noise. Equations (7)-(23) form the
threshold basis pursuit de-noising (Th-BPDN) based identifi-
cation algorithm for a class of closed-loop systems. The steps
of the Th-BPDN based identification algorithm are shown
in Figure 3.

IV. SIMULATION EXAMPLE
Example 1:Consider a closed-loop system in Figure 1 with

A(q) = 1− 0.20q−1 + 0.30q−2,

B(q) = 3.50q−1 + 2.90q−2,

C(q) = 1+ 0.30q−1,

d1 = 45, d2 = 50. (24)

TABLE 1. The parameter estimation errors δ versus different noise
variances σ2.

TABLE 2. The parameter estimation errors δ with different sampled data
lengths m.

FIGURE 4. Predicted output ŷ (t), true output y (t), and errors.

Then

β(q) = B(q)C(q) = 3.50q−1 + 3.95q−2 + 0.87q−3.

Let the input and output maximum regression lengths be
l1 = 80 and l2 = 120. Then the parameter vector to be
recovered is

θ = [−0.2, 0.3,093, 3.5, 3.95, 0.87,027, 3.5,

2.9,073]T ∈ R200,

where 0j denotes a j dimensional vector. Obviously, there are
seven nonzero parameters in θ , i.e., K = 7.

In simulation, we take the reference input {r(t)} as a per-
sistent excitation signal sequence with zero mean and unit
variance and {v(t)} as a white noise sequence with zero mean
and different variances σ 2.
Let ε = 0.03. For a sampled data length m = 150, the

Th-BPDN algorithm and the Th-OMP algorithm are used
to estimate the system, respectively. To test the robustness
of the two algorithms [26], the parameter estimation errors
δ := ‖θ − θ̂‖/‖θ‖ with different noise levels of the two
algorithms are shown in Table 1. It is observed from Table 1
that the Th-BPDN algorithm is more robust than the Th-OMP
algorithm.

When the noise variance is σ 2
= 0.302, applying the

Th-BPDN algorithm and the LS algorithm to identify the
close-loop system, respectively, Table 2 shows the parameter
estimation errors versus different sampled data lengths. It
can be seen from Table 2 that the estimation accuracy of the
Th-BPDN algorithm is much higher than the LS algorithm.
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For a sampling data length m = 300 and the noise variance
σ 2
= 0.102, using the proposed Th-BPDN algorithm to

estimate the sparse vector with the first 150 data, and using
the remaining 150 data to validate the model, the parameter
estimation vector is

θ̂ = [−0.1960, 0.2913,093, 3.4841, 3.9644, 0.8180,

027, 3.4622, 2.8900,073]T ∈ R200, (25)

and the root mean square error of the output is

δs :=

√√√√ 1
me

300∑
t=151

[ŷ(t)− y(t)]2 = 0.1258,

which is close to standard deviation of the noise σ = 0.10.
Therefore, the estimationmodel canwell capture the dynamic
performance of the true system. Figure 4 shows the true
outputs, the predicted outputs of the estimation model and
their errors. As can be seen, the predicted outputs ŷ(t) are
very close to the true outputs y(t), and their errors are close
to zero. From (25), we have

â1 = −0.1960, â2 = 0.2913,

β1 = 3.4841, β2 = 3.9644, β3 = 0.8180,

b̂1 = 3.4622, b̂2 = 2.8900.

Using the model equivalence principle, we have

ĉ1 = 0.2991.

From (25), it can be seen that the numbers of zeros in each
zero-block are z1 = 93, z2 = 27 and z3 = 73. Then, accord-
ing to (23), the estimated time-delays can be computed by

d̂1 = l2 − nb − z3 = 45,

d̂2 = l1 − nβ − z2 = 50.

It is obvious that the estimated time-delays are identical to the
true time-delays.
Example 2: Consider a closed-loop system with the same

parameters as Example 1 but a colored noise.
Taking m = 150, ε = 0.03, applying the Th-BPDN

algorithm to identify the system, the parameter estimation
vector is

θ̂ = [−0.1991, 0.2921,093, 3.4751, 3.9282, 0.8131,

027, 3.4712, 2.8679,073]T ∈ R200. (26)

From (26), it can be seen that the numbers of zeros in each
zero-block are z1 = 93, z2 = 27 and z3 = 73. Then, the
estimated time-delays are d̂1 = 45, d̂2 = 50, which are the
same as Example 1.

The parameter estimation errors with different noise lev-
els of the Th-BPDN algorithm and the Th-OMP algorithm
are shown in Table 3. It can be seen from Table 3 that
the Th-BPDN algorithm is more robust than the Th-OMP
algorithm.

From Examples 1 and 2, we can see that the proposed
method can effectively estimate the parameters and the

TABLE 3. The parameter estimation errors δ versus different noise
variances µ2.

time-delays for the closed-loop systems with white Gaus-
sian noise and non-Gaussian noise. Moreover, the simulation
results show that the proposed Th-BPDN algorithm is robust
to white Gaussian noise and non-Gaussian noise.

V. CONCLUSION
This paper presents a novel identification method based on
the Th-BPDN algorithm and the model equivalence principle
for a class of closed-loop systems with unknown time-delays.
The system parameters and the time-delays can be jointly
estimated with a few number of data by the proposed method.
For the sparse system identification in the first step, the pro-
posed Th-BPDN algorithm is more robust than the Th-OMP
algorithm. The simulation results verify that the proposed
method is effective.
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