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ABSTRACT In this paper, we address a decentralized power production and management system based on
Game Theory (GT) for Electric Vehicles’ (EVs’) interplay with a Decentralized Electric Vehicle Supply
Equipment (D-EVSE) located at the public supply station. Renewable energy production such as solar
energy (PV) is considered as the main power source for our D-EVSE and we consider the connection
to the grid when the solar renewable energy system is failing to respond to the demand. We propose a
decentralized GT (D-GT) scheme aiming to optimize the EVs’ interaction with the D-EVSE considering
both EVs’ satisfaction as well as the D-EVSEs’ stability. Also, the D-GTmodel is used to choose the optimal
available solution for EV charging or discharging services that fulfill predefined constraints. A realistic
scenario is considered as a testbed for our D-GT optimization model. Simulation results indicate that the
proposed model can manage and control the interaction between EVs and D-EVSEs efficiently.

INDEX TERMS Electric vehicles, electric vehicles charging, electric vehicles discharging,
decentralized-energy storage system, decentralized-electric vehicle supply equipment, decentralized
game theory, renewable energy, smart cities.

NOMENCLATURE
Parameter Description
Nch number of EV in charging service not plugged

in yet
Ndis number of EV in discharging service not

plugged in yet
N j
ch number of EV in charging service plugged in

D-EVSEj
N j
dis number of EV in discharging service plugged

in D-EVSEj
i EV number dedicated for charging
j D-EVSE number, j = 1.. M
h EV number dedicated for discharging
Rch charging rate

The associate editor coordinating the review of this manuscript and

approving it for publication was Anna Visvizi .

Rdic discharging rate
SoCmin minimum EV SoC
SoCEVi

ch initial EV SoC (charging services)
SoCmax maximum EV SoC
SoC i

need SoC needed by EV
SoC i

trip SoC requirement to reach the final destination
SoC i

j SoC requirement to reach the D-EVSE
Trip(i, j) distance between EVi and D-EVSEj
Drat EV consumption rate
tEV ich EV charging time
tEV i1 EV arrival time (charging services)
tEV i2 EV departure time (charging services)
SpEVi EV’s speed
SoC j

ch total EVs charging power requested
T slot time number
M number of D-EVSE station
D-ESS(t) current battery storage for D-EVSE
bEVMax Max battery power for EV
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t time variation, t = 1 .. T
PPV Photovoltaic power
SoCEVh

dis initial EV SoC (discharging service)
d0 EV battery Deep of discharge (DoD)
SoCh

trip SoC requirement to reach the final destination
SoCh

j SoC requirement to reach the D-EVSE
Triph distance between EVh and final destination
Trip(h, j) distance between EVh and D-EVSEj
SoCh

Av available power offered by EV
tEV hdis EV discharging time
tEV h1 EV arrival time (discharging services)
tEV h2 EV departure time (discharging services)
SoC j

dis total EVs discharging power offered
D-ESS0 DoD for D-ESS battery
D-ESSjmin minimum D-ESS power level

I. INTRODUCTION
With the growth in the Electric vehicle (EV) market due to its
releasing of zero air pollution and reduction of greenhouse
gas (GHG) emissions in smart cities, the power demand will
increase accordingly. By 2030, the number of EVs will be
more than 100 million globally [1]. While this will create
a huge power charging demand which must be managed,
EVs have the potential to provide a good opportunity for
power storage by supporting the power grid as Vehicle to Grid
(V2G) service [2], [3]. As well, EVs provide many advan-
tages for EV owners such as minimizing travel expenses
and providing revenue to EV owners by selling their surplus
power.

In our model, the optimization of EV charging and dis-
charging is modelled based on a Decentralized Game The-
ory (D-GT). The D-GT approach is proposed to select and
determine the optimal solution for both EV services and the
Decentralized EVSupply Equipment (D-EVSE). The optimal
solution would increase the D-EVSE stability while also
maximizing EVs’ satisfaction level. The D-GT is the most
important aspect of ourmodel, as it allows each EV tomanage
its charging and discharging service demands based on the
concept of win-win while taking into account the defined
constraints.

Nowadays, the necessity of adopting Renewable Energy
Sources (RES) with an Energy Storage System (ESS) is
growing year by year. The RES and ESS will decrease GHG
emissions and create a clean, sustainable and green envi-
ronment. However, due to discontinuous and unpredictable
RES power prediction, an ESS is most essential to storing
generated power.

In this paper, we consider that decentralized ESSs
(D-ESSs) are installed in D-EVSEs. Each D-EVSE is pow-
ered by the Photovoltaic (PV) energy system. We propose a
solution to resolve the problem of the EV charging or dis-
charging process when EVs need to know the best available
plug-in time for both EV and D-EVSE before the plug-in
phase.

Our contributions are as follows:
1) We introduce a D-GT model to optimize the EV charg-

ing and discharging service demand.
2) We propose a D-GT algorithm to guide EVs for charg-

ing and discharging service.
3) Also, we consider a realistic scenario in the city of

Ottawa, ON, Canada to test our D-GT algorithm.
4) Finally, our D-GT model takes into account the EVs’

satisfaction as well as the D-EVSEs’ stability.
The structure of this paper is organized as follows.

Section II peruses some related works. Section III addresses
the proposed system model and the problem formulation.
In Section IV, performance evaluations are presented. The
conclusions are provided in Section V.

II. RELATED WORKS
Game Theory (GT) operations for EV charging and discharg-
ing services in a supply station have attracted the attention
of researches. In general, GT is classified into three groups,
namely cooperative game theory, noncooperative game the-
ory (competitive), and evolutionary game theory.

Many researchers have studied EVs’ charging and dis-
charging services [4]–[10] based on cooperative GT [11]
and [12]. The authors of [13] and [14] addressed different
mechanisms based on cooperative game theory for EVs’
charging and discharging services. In addition, the authors
of [13] proposed a day-ahead and real-time cooperative
energy management system. The proposed system consid-
ered the power provider to be both a power provider and a
power buyer. EVs were also considered in their system. The
goal of this system was to maximize the revenue for partic-
ipants. Likewise, the authors of [14] studied EVs’ charging
behaviour with the smart grid from an economical perspec-
tive. The study aimed to increase the revenue for both EV
owners as well as the power provider. The authors of [15]
presented two models for EV charging services based on
GT approach. These two models are a Stochastic Dynamic
Programming (SDP) model and a greedy algorithm model.
The power providers have used a renewable energy pro-
duction with an ESS. For all these works the power man-
agement was a centralized approach. Other recent studies
have explored and examined EVs’ charging and discharging
services based on noncooperative game theory [16]–[21].
After investigating the problem of energy management in the
decentralized control, the author of [22] proposed a game
theory-based decentralized control strategy for coordinating
multiple hybrid energy systems aiming to maximize the pref-
erence of each player. However, RESs were not introduced
in the study. Furthermore, the proposed system implemented
a Nash equilibrium in each controller stage with a learning
algorithm. Also, the paper [23] presented a decentralized
charging scheme model based noncooperative game theory.
The presented model coordinated the competitive of electric
vehicles (EVs) with aggregator via a population coordinator
to manage the interaction. The authors of [24] introduced a
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mean filed (MF) game theory scheduling model to manage
and schedule the plug-in hybrid electric vehicles PHEVs
(Gas/Electric) charging. The goal of this model was to min-
imize the trip time as well as trip distance. The authors
of [25] proposed an EV charging model based on two stages
of noncooperative game theories. The proposed model has
considered ideal and non-ideal actions of many aggregators in
the same area. The authors of [26] introduced a decentralized
hierarchical EV charging mechanism based on the GTmodel.
The GTmodel is formulated to be combined betweenMF-GT
and Stackelberg-GT. The MF-GT was used to minimize the
computational cost and communication overhead between
power sellers. The Stackelberg-GT was used to define the
optimal linear price for the consumer. The model considered
the aggregator as power buyer with power grid and as power
seller to the EVs. Also, the aggregator was considered to
control EV charging processes as well as the charging power
prices.

The authors of [27] and [28] studied the implementation of
both competitive and cooperative game theories in the same
model of EV charging mechanism in centralized way. The
authors of [29] proposed a Bi-level optimization model based
on AC/DC hybrid multi-microgrids (HMM). The structure of
HMM used distributed power and management mechanisms
with two model systems. A Bi-level optimization model
has been considered to coordinate between the utility and
the supply level, aiming to minimize the operation cost for
each level. The difference between the Bi-level optimiza-
tion model and the proposed D-GT optimization model is
that the Bi-level optimization was based on the distributed
power source and management system. In contrast, the D-GT
optimization model is based on a decentralized power pro-
duction and management system. Moreover, the Bi-level
optimization model has used the Diesel engine generator
as the primary power source. Still, our proposed model
used the Renewable Energy Source (PV) as the primary
power source and used the power grid source as a backup
source.

Other studies have investigated the EVs’ charging and
discharging services based on evolutionary game theory. The
authors of [30] presented an energy management system
based on an escort evolutionary game theory. The system’s
goal was to study the EVs charging behaviour with aggre-
gators as a power provider. The multi-population approach
was considered. In addition, a battery storage system based
on renewable energy was used to reduce the EVs’ charg-
ing during the peak demand. The investigation concluded
that the peak of EV charging demand and generated power
from renewable sources were changed simultaneously. The
paper [31] presented a competitive and an evolutionary game
theory systems for EV charging mechanisms at the EV charg-
ing station. The first model was based on the competitive
game theory to manage the charging price contest between
charging stations. The second system was based the evolu-
tionary game theory and it was implemented to improve the
charging decision maker for all EVs. Also, this model was

taken into account both power and transportation systems.
The goal was to decrease the charging demand at the
peak time and, also to increase the EV charging stations’
revenue.

Our work in [32] established an EV interacting with a
decentralized energy storage system (DESS) model based on
renewable energy. The goal of this study was how to organize
the EV demand for charging and discharging services as a
way to lower the power stress level as well as to increase
the EV owner’s satisfaction. Similarly, decentralization of
power generation and management in the electric vehicle
supply station (D-EVSS) is proposed in [33]. The proposed
model introduced two schemes to organize the interaction
between EV and the D-EVSS as a public supply station.
The first scheme was applied to planned EV charging or
discharging requested service, while the second scheme was
applied to unplanned EV charging or discharging requested
service. The goal of the model was to minimize the power
stress level on D-EVSSs and maximize the EV owner’s
satisfaction by taking into account the reduction in waiting
time for service. Furthermore, a realistic case study in the
city of Ottawa (Canada) was presented to study the interac-
tion behaviour of EV and D-EVSS. Public supply stations
(D-EVSSs) were placed based on the chosen gas station in the
city of Ottawa. The last two works, however, did not consider
GT.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we suppose that each D-EVSE operates a set
of charging and discharging sockets in a city. We also assume
that all D-EVSEs are equipped with a Decentralized Energy
storage system (D-ESS) and powered by renewable energy
(Photovoltaic [PV]) as the main power source. The generated
power from PV is stored in a very large battery (D-ESS) as
shown in Figure. 1. Moreover, in our model, we assume that
all EVs’ batteries have at least 20% of their maximum battery
capacity at all times.

We present two investigation systems: random and realistic
system. In both models, we consider that each D-EVSEj
broadcasts periodically its updated availability schedule as
well as the battery storage capacity D-ESS(t)j every five
minutes. Each EV that willing to participate in charging
or discharging service will calculate and choose the best
available D-EVSEj and send a reservation request. As well
as, the D-EVSE will send back a conformation response
to the EV. Whereas, the D-EVSE will use a reservation
system based on first come first served. In the realistic
scenario, we have chosen 6 gas stations close to the high-
ways in the city of Ottawa, Ontario and relocate them with
our proposed D-EVSEs based on D-GT model as shown in
Figures.2,3, 4 and 5.

We propose the following four models, each with two sce-
narios: (1) charging model, (2) discharging model, (3) D-ESS
capacity variation model, and (4) optimization model based
on D-GT. The scenarios are mono D-EVSE and multi
D-EVSEs.
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FIGURE 1. System model and problem formulation.

FIGURE 2. Overview of D-EVSE locations.

A. CHARGING MODEL
The only EV services considered in this model are the charg-
ing services. The purpose of this model is to find a charging
service for EVs without taking into account our defined con-
straints. We also aim to investigate the interaction behaviour
between EVs’ charging requests and D-EVSEs as power

provider. In the proposed model, the state of charge (SoC)
of ith EV is given by Eq. 1:

SoCmin ≤ SoC
EVi
ch ≤ SoCmax (1)

where the i is the EV number, i = 1.. Nch.
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FIGURE 3. 417 and 174 highways in the city of Ottawa, Ontario, Canada.

FIGURE 4. 417 highway in the city of Ottawa, Ontario, Canada.

FIGURE 5. 417, 174, and 416 highways in the city of Ottawa, Ontario,
Canada.

The SoC requirement to reach the final destination for the
ith EV is given by Eq. 2:

SoC i
Trip = Tripi × Drate (2)

where the Tripi is the distance between EVi and the final
destination.

The SoC requirement to reach the D-EVSEj [34] for the ith

EV is given by Eq. 3:

SoC i
j = Trip(i, j)× Drate (3)

The amount of charging energy for the ith EV is given by
Eq. 4:

SoC i
need = SoCmax − SoC

EVi
ch + SoC

i
Trip (4)

where the SoC i
need is the power needed by EV and If

SoC i
need ≥ SoCmax then SoC i

need = SoCmax.
The charging time [32] for the ith EV is given by Eq. 5:

tEV ich =
SoC i

need

Rch
(5)

The arrival time for the ith EV is given by Eq. 6:

tEVi1 =
Trip(i, j)
SpEVi

+ β (6)

where the β is the weather and driver behaviour.
The arrival and departure time for the ith EV is given by

Eq. 8:

tEV i2 = tEV i1 + tEV ich (7)

tEV i1 ≤ tEV ich ≤ t
EV i
2 (8)

The total amount of energy requested by N j
ch EVs is given

by Eq. 9:

SoC j
ch =

N j
ch∑

i=1

SoC i
need (9)

1) FOR MONO D-EVSE
The dynamic variation of the jth D-ESS battery SoC which
depends on the its previous status is given by Eq. 10:

D-ESS(t)j = D-ESSj(t − 1)− Pjch(t) + P
j
PV (t) (10)

where:

Pjch(t) = SoC j
ch(t)× b

EV
Max (11)

2) FOR MULTI D-EVSEs
The dynamic variation of the total energy storage in the
D-EVSEs is given by Eq. 12:

M∑
j=1

D-ESS(t)j =
M∑
j=1

D-ESSj(t − 1)

−

M∑
j=1

Pjch(t)+
M∑
j=1

PjPV (t) (12)
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B. DISCHARGING MODEL
The only EV services considered in this model are the dis-
charging services. The aim of this model is to find a dis-
charging service demand for EV. We also aim to investigate
the EVs’ discharging interaction behaviour with D-EVSEs.
In this model, d0 which is Deep of Discharge (DoD) for
each EV, must meet Eq.13:

d0 ≤ SoCmin ≤ SoC
EVh
dis (13)

The SoC requirement to reach the final destination for the
hth EV is given by Eq. 14:

SoCh
Trip = Triph × Drate (14)

The SoC requirement to reach the D-EVSEj for the hth EV
is given by Eq. 15:

SoCh
j = Trip(h, j)× Drate (15)

The amount of discharging energy for the hth EV is given
by Eq. 16:

SoCh
Av = SoCEVh

dis − [d0 + SoCh
Trip] (16)

The arrival time for the hth EV is given by Eq. 17:

tEVh1 =
Trip(h, j)
SpEVh

+ β (17)

The discharging time [33] for the hth EV is given by Eq. 18:

tEV hdis =
SoCh

Av

Rdis
(18)

The arrival and departure time for the hth EV is given by
Eq. 20:

tEV h2 = tEV h1 + tEV hdis (19)

tEV h1 ≤ tEV hdis ≤ t
EV h
2 (20)

The total amount of energy that is offered by N j
dis EVs is

given by Eq. 21:

SoC j
dis =

N j
dis∑

h=1

SoCh
Av (21)

where the SoC j
dis is the total EVs discharging power offered.

1) FOR MONO D-EVSE
The dynamic variation of the jth D-ESS battery SoC is given
by Eq. 23:

PDis = SoC j
dis × b

EV
Max (22)

D-ESS(t)j = D-ESSj(t − 1)+ PjPV (t)+ P
j
Dis(t) (23)

2) FOR MULTI D-EVSEs
The dynamic variation of the total energy storage in the
D-EVSEs is given by Eq. 24:

M∑
j=1

D-ESS(t)j =
M∑
j=1

D-ESSj(t − 1)

+

M∑
j=1

PjPV (t)+
M∑
j=1

PjDis(t) (24)

C. D-ESS CAPACITY VARIATION MODEL
Both EV charging and discharging services are considered
in this model. The purpose of this model is to update and
monitor the D-ESS battery status regarding the charging and
discharging service demands that are requested or ordered by
EVs. In addition to this model, we considered the use of the
charging model’s Eqs. 1 to 9 and the discharging model’s
Eqs. 13 to 21.

1) FOR MONO D-EVSE
The variation of the charging and discharging D-EVSE bat-
teries is given by Eq.25

D-ESS(t)j=D-ESSj(t − 1)−Pjch(t)+P
j
PV (t)+P

j
Dis(t) (25)

2) FOR MULTI D-EVSEs
The total variation of the charging and discharging D-EVSE
batteries is given by Eq.26

M∑
j=1

D-ESS(t)j =
M∑
j=1

D-ESSj(t − 1)

−

M∑
j=1

Pjch(t)+
M∑
j=1

PjPV (t)+
M∑
j=1

PjDis(t) (26)

D. OPTIMIZATION MODEL FOR CHARGING AND
DISCHARGING SERVICES BASED ON GAME
THEORY FOR MULTI D-EVSEs
Each EV aims to increase each D-ESEV’s stability and maxi-
mize its own satisfaction by using aDecentralizedGT (D-GT)
approach. The purpose of this model is to find an optimal
charging or discharging service for each EV while taking
into account our defined constraints. As well, we aim to
investigate the EVs’ charging and discharging interaction
behaviour with D-EVSEs. First, we optimize the EV charging
model, and still, we considered the use of Eqs. 1 to 12 in this
optimization model. Second, we optimize the EV discharging
model; also, we considered the use of Eqs. 13 to 24 in this
optimization model. Finally, we optimize both the charging
and discharging model, and likewise, we considered the use
of Eqs. 1 to 9, 13 to 21 and 25 to 26 in this optimization
model.

Max

N j
ch∑

i=1

SoC i
ch(t),

N j
dis∑

h=1

SoCh
dis(t)

 (27)
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st.



SoCmin ≤ SoC
EVi
ch (t) ≤ SoCmax

SoCmin ≤ SoC
EVh
dis (t)

tEV i1 ≤ tEV ich ≤ t
EV i
2

tEV h1 ≤ tEV hdis ≤ t
EV h
2

D-ESSjmin ≤ D-ESSj(t) ≤ D-ESSjmax

0 ≤
D-ESSjmin

D-ESSjmax
≤

D-ESSj(t)
D-ESSjmax

≤ 1



j = 1..M

D-ESS0 = min(D-ESSj(t)) (28)

0 ≤ D-ESS0 ≤ D-ESSjmin (29)

Both EV charging and discharging services are consid-
ered in this optimization model. The purpose of this model
is to determine and select the optimal solution for the EV
charging or discharging request that fulfills our constraints.
Eq. 27 represents the optimal solution considering both EV
charging and discharging services. The defined constraints
are applied to help the EV choose the optimal solution.
We assume that each EV in the optimization model will
interplay with all D-EVSEs for its charging or discharging
service request while aiming to maximize the D-EVSEs’ sta-
bility and the EVs’ satisfaction level. Once the EV selects the
proper D-EVSE, then the EV needs to find the best available
charging or discharging spot.

We use Algorithm 1 to test our optimization model. The
D-GT select Algorithm is started once the EV receives the
updated information from the D-EVSEs and selects the best
D-EVSE that satisfies the predefined constraints. We con-
sider the off-grid mode if the D-ESS is not empty (eg. For
a sunny day). If D-ESS is empty, we switch to the power grid
to provide continuity of EV charging services.

IV. PERFORMANCE EVALUATION
In this section, we discuss the performance of the proposed
model. Also, we consider two scenarios on our simulation
discussion: Random and Realistic scenarios.

A. RANDOM SCENARIO
Table 1 shows the random simulation parameters.We suppose
that all D-EVSEs are equipped by level 3 DC. We assume
that there are six distributed D-EVSEs, each with a storage
capacity of 30 MW. The number of EVs is 3000, 4000, 5000,
and 8000. Also, we assume that each EV will make its deci-
sion using our proposed model. Moreover, the D-EVSE will
send the reservation confirmation based on first come, first
served asmentioned previously. EachD-EVSEwill broadcast
its availability schedule once every five minutes. In addition,
all D-EVDEs will operate from 6 a.m. until 6 p.m.

The discussion of performance is divided into two parts.
The first part discusses the average satisfaction of EVs,
and the second part discusses the average of D-ESS SoC
during the daytime (6 a.m. to 6 p.m.). The Monte Carlo

Algorithm 1 D-GT Select Algorithm

Input EV [Nch, Ndis, N
j
ch, N

j
dis, D-ESSj(t), P

j
PV , SoCmin,

SoCmax, SoC
EVi
ch , SoCEVh

dis , SoCh
Av, D-ESSj, d0, D-ESS0 ].

Output D-EVSE [j].
1: for i = 1.. Nch do
2: if SoCEVi

ch ≤ SoCmin + SoC i
Trip then

3: Charging services is not available
4: end if
5: Calculate SoC i

need according Eq. (4)
6: select ‘‘ j ’’ according Eq. (27 to 29)
7: N j

ch = N j
ch + 1% update D-EVSE state %

8: end for
9: for h = 1.. Ndis do
10: if SoCEVh

Av ≤ SoC
EVh
dis − SoC

h
Trip then

11: Discharging services can not be done
12: end if
13: Calculate SoCh

Av according Eq. (16)
14: select ‘‘ j ’’ according Eq. (27 to 29)
15: N j

dis = N j
dis + 1% update D-EVSE state %

16: end for

TABLE 1. Simulation parameters for random scenario.

technique is used to calculate the average values for both
parts.

Figure. 6 shows the results of using the proposed model
with different numbers of EVs. We can see that the average
EV satisfaction is usually higher than 78% when the number
of EVs is 3000 or 4000. However, when the number of EVs is
8000, the average EV satisfaction decreases after four hours
due to the massive number of EVs and their power demand.
According to Table 2, we can see that the EV satisfaction level
at the beginning and the end of operation is not the same as
the EV satisfaction level during the day due to the renewable
energy production.

Figure. 7 shows the average of D-ESS SoC during the
operation time (6 a.m. to 6 p.m.) between the proposed
model based on D-GT and the EV charging and discharging
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FIGURE 6. Average EV satisfaction level during the operation time for
Random Scenario.

TABLE 2. Average EV satisfaction for random scenario.

FIGURE 7. Average of the D-ESSs’ SoC level during the operation time for
Random Scenario.

without using D-GT model. We can observe that the pro-
posed model shows better performance than the other model
during the operation time, more specifically from 8 a.m.
to 3 p.m. Table 3 presents a clear comparison of the savings
rate between both models. As we can see, the savings rate for
the proposed model is good from 6 a.m. to 10 a.m.; however,
between 10 a.m. to 2 p.m. there is a significant savings rate
of almost 26.6%.

As demonstrated in both figures and tables, the D-GT
model in the random scenario can manage the interplay

TABLE 3. D-ESSs’ Soc average level for random scenario.

TABLE 4. Simulation parameters for the realistic scenario.

FIGURE 8. Average EV satisfaction level during the operation time for
realistic scenario.

between EVs and D-EVS effectively while taking into
account the defined constraints.

B. REALISTIC SCENARIO
Table 4 shows our realistic scenario simulation parameters.
We suppose that all D-EVSEs are equipped by level 3 DC.
We assume that there are six distributed D-EVSEs, each with
a storage capacity of 40 MW based on real PV date [37]. The
number of EVs is 3000, 4000, 5000, and 8000 same as the
random scenario. Also, we assume that each EV will make
its decision using our proposed model.

In the realistic scenario, the average EV satisfaction level
during the operation time (6 a.m. to 6 p.m.) is shown in
Figure. 8. As seen from this figure, the average EV sat-
isfaction level for all cases (3000 to 8000 ) EVs start-
ing from (6 a.m. to 10 a.m.) are similarly the same with
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TABLE 5. Average EV satisfaction for random scenario.

FIGURE 9. Average of the D-ESSs’ SoC level during the operation time for
realistic scenario.

TABLE 6. D-ESSs’ SoC average level for realistic scenario.

small differences. However, the huge differences in the aver-
age EV satisfaction level between (3000, 4000, and 5000)
EVs and 8000 EVs is growing after 1 p.m. duo to the rush
hour in high ways. Table 5 illustrates the average EV sat-
isfaction level for the random scenario for all cases which
divided into three zones. The D-GT model for 3000 EVs
is the most effective result for the whole entire operation
time. Also, the average EV satisfaction level is kept more
than 74%.

The average of the D-ESSs’ SoC level during the operation
time for realistic scenario comparison between the D-GT
and the regular model is depicted in Figure. 9 and Table 6.
The ability of the D-GT optimization model can be seen by
looking to the average saving rate from 6 p.m. to 2 p.m.
which is 4.6%. Furthermore, the saving rate is much better
from 2 p.m. to 6 p.m., which is more than 20%, as shown
in figure and table.

From the previous two figures and tables, it is clear that
the performance of the proposed optimizationmodel based on
D-GT has proven its robustness of this optimization in terms
of managing the interactions among the EVs and D-EVSEs
while taking into account our defined constraints.

V. CONCLUSION
In this paper, we discussed a decentralized EVSE in terms
of power generation and management model based on a
GT for EVs interacting with D-EVSEs. Renewable energy
production (Photovoltaic) is chosen to be the main power
source for our D-EVSE and we considered the connection
to the grid when the solar renewable energy system is failing
to respond to the demand. We proposed a D-GT scheme for
the optimization of the EVs’ interaction with D-EVSE. Our
optimization model considered both EV’s satisfaction as well
as D-EVSEs’ stability. The optimal available solution for EV
charging or discharging that satisfied the EV’s driver and
maintained the D-EVSE stability is achieved by using the
D-GT algorithm. A realistic scenario in the city of Ottawa
is considered as a testbed for our D-GT optimization model.
Simulation results showed that the proposed model can man-
age and control the interactions between EVs and D-EVSEs
efficiently.

Two case studies were presented for our D-GT optimiza-
tion model in terms of managing and facilitating the inter-
action between D-EVSEs and EVs. Besides, the proposed
model is based on decentralized power generation and man-
agement. Furthermore, the realistic scenario’s results showed
that the proposed model can manage EV charging and dis-
charging services more efficiently during the operation time
and more specifically after 2 p.m. to 6 p.m.

As future work, we will conduct additional investigations
of our D-GT model such as a priority level for EV charging
or discharging demand.
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