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ABSTRACT Imaging of maneuvering targets has become a challenging topic recently. This study proposes
an improved MUSIC-based single-snapshot imaging method for OFDM-MIMO radar. At the transmitter
part, for orthogonal waveform generation, the interleaved OFDM structure is developed that each transmitter
only radiates at an equidistant set of OFDM subcarriers unique to itself. At the receiver part, a novel
preprocessing scheme is presented to separate multiple transmit/receive paths and compensate the reference
point. Preprocessed echo matrix can fit the model of two-Dimensional (2D) MUSIC algorithm, except
for the coupling between radial/cross-range in the virtual antenna array. Correspondingly, we modify the
2D ElementSpace (ES)-MUSIC. In the meantime, a 2D Reduced-Dimension BeamSpace Unitary-MUSIC
(RD-BS-UMUSIC) algorithm is proposed for computational complexity reduction and estimation perfor-
mance enhancement. Numerical results of a simulated target consists of limited number of scatterers and a
complex target (a Boeing 737-800 plane) verify that the proposed algorithm can improve the imaging quality
and reduce computational complexity effectively compared with the traditional method.

INDEX TERMS High-resolution imaging, OFDM-MIMO radar, single-snapshot imaging, 2D modified
ES-MUSIC, 2D RD-BS-UMUSIC.

I. INTRODUCTION
The radar imaging technique provides sufficient information
for target feature extraction and recognition. Traditionally,
a radar system obtains a two-dimensional (2D) image from
multiple wideband returns (multiple real receive anten-
nas or slow-time samples). However, real aperture imag-
ing radar is immobile and expensive. The Inverse Synthetic
Aperture Radar (ISAR) technique requires a comparatively
long Coherent Processing Interval (CPI). And even worse,
for non-cooperative targets, especially those traveling at
high-speed or with maneuvering, the motion compensa-
tion procedures are considerably complex, and the specific
cross-range scaling is hard to attain. Multiple Input Multiple
Output (MIMO) radar technique [1]–[4] has the potential
to solve the problems of traditional radar imaging methods
and a new research hotspot in recent years. A MIMO radar
system consists of M transmit (Tx) and N receive (Rx)
antennas. By adding diversities of the waveform, frequency,
polarization, or spatial, up to MN , independent observation
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channels could be formed, and the degrees of freedom are
greatly improved.

Several approaches for MIMO radar system configuration
were proposed in [5]–[12] to fulfill imaging with the echo
in a single snapshot duration, hence the complex motion
compensation could be avoided. Similar to the traditional
radar imaging techniques, the range resolution was achieved
by transmitting a wideband signal in [5], [7], [8]. The azimuth
resolution increased with the widened virtual antenna array,
which was the spatial convolution of the monostatic Tx/Rx
Uniform Linear Arrays (ULAs). However, the range align-
ment and compensation were still necessary before the
azimuth imaging. In [6], [10], [12], narrowband bistatic
MIMO systems were developed. In [10], the 2D cross-range
images measured by bistatic Tx/Rx antenna arrays were used
to reconstruct a 3D image. The hardware cost of each trans-
mitter was reducedwith the narrowband transmission, and the
range alignment steps were removed since the radial-range
resolution is low. However, the array size and element num-
ber should be large enough for an acceptable resolution.
To further expand array aperture size while reducing element
number, wideband MIMO radars with sparse arrays were
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investigated [9], [11]. In [9], the Rx antenna array is sparse
and non-uniform. In [11], the fast-time sampling was also
sparse, and a 2D (range and azimuth) sparse model was
established for simultaneous 2D imaging.

In the literatures mentioned above, Tx antennas emit wave-
forms which are mutually orthogonal, whereas at each Rx
antenna, a matched filter set associated with multiple trans-
mitted waveforms was utilized for waveform separation and
pulse compression. With the waveform diversity, the vir-
tual array aperture is extended for higher resolution. Thus,
the imaging performance relies on the orthogonal transmit
waveform set considerably. However, the ideal orthogonality
is hard to realize in practice, especially with arbitrary Delay
and Doppler frequency offset. In the past few years, Orthog-
onal Frequency Division Multiplexing (OFDM) technique,
inspired by its application in communication, has attracted
attention in radar community. Applications of OFDMas radar
waveforms were reported in [13]–[20], and the advantages of
OFDM radar are listed as followed: extra frequency diver-
sity, no coupling between delay and Doppler, capacity of
Fast Fourier Transform (FFT) processing with low hardware
cost, flexibility of waveform parameters design, potential of
integrated radar and communication systems, and fine perfor-
mance of anti-interference.

In this paper, we combine OFDM with the MIMO scheme
for high-resolution 2D imaging. Investigations of such appli-
cations were reported in [21]–[32]. Interleaved OFDM
(I-OFDM) signals were firstly introduced in [22] for Simulta-
neous Polarimetric Measurements (SPM), the twice I-OFDM
(I-OFDM) signals were verified theoretically orthogonal to
each other and could significantly increase the efficiency of
SPM. Inspired by the twice I-OFDM, a new way of orthog-
onal waveform set generation was proposed in [23]–[26] by
further interleaving conventional OFDM signal. In [30], with
sufficient Cyclic Prefix (CP), OFDM waveforms emitted by
multiple transmitters shared the same frequency band and
were mutually orthogonal on each subcarrier in the discrete
frequency domain. Complex Orthogonal Designs (CODs)
were applied for subcarriers coding.

The conventional imaging method is the
Delay-and-Sum (DAS) algorithm implemented via the Fast-
Fourier-Transform (FFT). However, the FFT spectrum has
comparatively wide mainlobes and high sidelobes, whereas
the resolutions were limited by the bandwidth and array
aperture. The MUltiple SIgnal Classification (MUSIC)
algorithms [33]–[37], most frequently used for angle esti-
mation, were recently applied in Through-the-Wall Imag-
ing (TWI) [38], MIMO radar [23], [25], [26] and ISAR [39]
for azimuth imaging due to its super-resolution ability.
In these works, the radial-range profile was firstly retrieved
computing FFT. In [25], [26], [39], within each range unit,
the cross-range was estimated using MUSIC afterwards by
exploiting the phase differences among the virtual elements
(virtual antennas in MIMO or Doppler virtual elements in
ISAR). The transmitted waveform bandwidth needs to be
high enough to meet the radial-range resolution requirement,

whereas the computation and storage cost is heavy for these
methods. In [38], the MUSIC algorithm was applied to the
Fourier spatial beams instead of the raw sensor data. The pro-
posed algorithm was referred to as BeamSpace MUSIC (BS-
MUSIC) and outperformed the conventional ElementSpace
MUSIC (ES-MUSIC) in a low Signal-to-Noise Ratio (SNR)
scenarios due to the processing gain offered by beamforming.

In the proposal, we establish a 2D imaging model for
a MIMO radar system with monostatic Tx/Rx ULAs and
I-OFDM sets. Abandoning the matched filtering set, we sep-
arate echoes from multiple Tx antennas and compensate the
reference point in the preprocessing procedures. The matrix
after preprocessing contains echo data from multiple Tx/Rx
paths and on multiple subcarrier frequencies. We adopt the
2D MUSIC algorithm for the simultaneous high-resolution
2D spectrum estimation. Ignore the physical coupling among
real antenna arrays, we consider the coupling between
radial/cross-range in the virtual element array brought by the
I-OFDM configuration. Modified 2D ES-MUSIC is intro-
duced to deal with the coupling. Then in 2D RD-BS-MUSIC
algorithm, we employ the conjugate centrosymmetric Dis-
crete Fourier Transformation (DFT) matrix for Fourier beam-
forming and propose a target beam selection method. The
MUSIC estimation works in Fourier beamspace and involves
only real-valued computations with reduced matrix dimen-
sion. The numerical experiments use synthetic data of a sim-
ulated target composed of several ideal point scatterers and
a real Boeing 737-800 plane. Simulation results show that
the proposed method provides better imaging quality com-
pared to DAS, OMP, 1D ES-MUSIC, and 2D ES-MUSIC,
with comparatively low computational complexity. Estima-
tion error analyses concerning SNR and algorithm parameters
are also given.

The remaining sections are organized as follows. Section II
introduces the 2D imaging model of I-OFDM MIMO radar
and preprocessing steps. Next, Section III details the imag-
ing method, including the modified 2D ES-MUSIC and
2D RD-BS-UMUSIC algorithm, followed by the analysis of
computational complexity. The numerical experiments and
simulation results are presented in Section IV. Finally, this
paper is concluded in Section V.

Notation: (·)T, (·)H, (·)−, (·)† denote transpose, conjugate-
transpose, inverse and pseudo-inverse operation, respectively.
The bold capital and lowercase letters represent the matrices
and vectors, respectively, whereas the euclidean vector from
A to B is represented by

−→
AB, and

∥∥∥−→AB∥∥∥ denotes modulus
of the vector. ⊗, ∗ and � are the Kronecker, Hadamard
and Khatri-Rao product, respectively. diag(a) is a diagonal
matrix whose diagonal is the vector a. mod (·) denotes the
remainder, and b·c is taking integers downwardly.

II. OFDM-MIMO RADAR SIGNAL MODEL AND
PREPROCESSING STEPS
A. SIGNAL MODEL
The signal model of the proposed OFDM-MIMO radar is
built in this section. As is depicted in Fig. 1, the radar system
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FIGURE 1. MIMO radar system configuration.

FIGURE 2. Signal structure for 4-Tx interleaving.

consists of two parallel ULAs collocated on the x-axis. The
Rx ULA has N elements with the inter-element spacing d ,
and the Tx ULA has M elements with the inter-element
spacing Nd . The Tx/Rx ULAs both start at the origin
O = [0, 0, 0], therefore, denote

−−→
ORn = [nd, 0, 0] and

−−→
OTm = [mNd, 0, 0] as vectors from origin O to the n-th
Rx and the m-th Tx antenna, respectively. All antennas are
omnidirectional. The system configuration, along with an
orthogonal transmitted waveform set, leads to an equivalent
ULA of Q = MN virtual single-input-single-output (SISO)
elements [1].

An original OFDM waveform involves P subcarriers
transmitted simultaneously, each of which is modulated by
a K -length phase code sequence. To ensure subcarriers
orthogonality while maximizing the spectrum efficiency, set
1ftb = 1, where 1f is the frequency spacing between
two adjacent subcarriers, and tb denotes the OFDM bit
duration. In real applications, the tail of the OFDM bit is
included at the beginning of each transmitted symbol [30] as a
cyclic prefix (CP). Therefore, the final OFDM symbol width
ts = tb + tc, with tc = αtb being the CP width.

For inter-symbol-interference (ISI) removal, set tc ≥ τmax,
where τmax is the maximum delay of the imaging area. Band-
width and pulse width of the waveform are Bw = P1f and
tp = Kts = K (1+ α) /1f , respectively.

The multiplex of Tx antennas via subcarrier interleav-
ing is performed to combine OFDM technique with MIMO
radar [23]. As the time-frequency structure of the transmitted
waveforms shown in Fig. 2, an equidistant and unique set of
subcarriers is assigned to each Tx antenna. The m-th trans-
mitted waveform has L = P/M (w.l.o.g., P is the integral
multiple ofM ) subcarriers which are equally spaced byM1f .
The (l,m)-th carrier frequency is fl,m = f0 + (lM + m)1f ,
with f0 denoting the system initial carrier frequency. Hence,
the k-th symbol of them-th I-OFDMwaveform is specifically
given by

x(k)m (t) =
L−1∑
l=0

α
(k)
l,me

j2π fl,mtu(k)(t),

m = 0, . . . ,M − 1, k = 0, . . . ,K − 1, (1)

where u(k) (t) is a rectangular window, and α(k)l,m is the payload
subcarrier weighting and phase code modulated onto (l,m)-
th subcarrier and k-th symbol, satisfying

Ek

{
trace

[
C(k)

(
C(k)

)H]}
= 1

for waveform energy normalization, where Ek {·} denote the
expected value toward k , trace (·) is the trace of the matrix
which is the sum of the diagonal elements, Ck =

{
α
(k)
l,m

}
∈

CL×K is the code matrix in the k-th bit. The design and
analysis of the payload codes were reported in our previous
work [15] and not detailed in this paper. With the scheme, for
one thing, the multiple transmit waveforms have a frequency
diversity and hence are mutually orthogonal; for another, they
have the same bandwidth without loss of the range resolution.

Now consider a far-field target modeled as a collection
of I ideal point scattering centers Si. Generally speaking,
the OFDM pulse width tp is a short duration, that the target
could be assumed still, or the velocity could be estimated and
compensated based on our previous work in [17], hence the
Doppler effect is not considered in this work. At each Rx
antenna, the received signal is the superimposition of echo
emitted fromM Tx antenna and reflected by I scatterers

r (k)n (t) =
I∑
i=1

M−1∑
m=0

σ (i)(t)x(k)m

(
t − τ (i)m,n

)
+ υ(k)n (t),

n = 0, . . . ,N − 1, (2)

σ (i)(t) is the complex scattering coefficient of i-th scat-
terer, which is constant for each Tx/Rx pair. τ (i)m,n =(
d (i)t,m + d

(i)
r,n

)
/c denotes the round-way delay, where d (i)t,m =∥∥∥−→OSi −−−→OTm∥∥∥ and d (i)r,n =

∥∥∥−−→ORn −−→OSi∥∥∥ are straight-line

distances, c represents the velocity of light. υ(k)n (t) is the
additive white Gaussian noise (AWGN).
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Echo described in (2) is down-converted to baseband,
sampled from the starting point Tmin, and the sampling
frequency fs = Bw = P1f . Assume τ (i)m,n − Tmin ∈
[0, tc) (∀i,m, n), i.e., all the relative delays lie within the CP
duration. A suitable system parametrization can achieve this.
Hence, after removing CP in front of each OFDM symbol,
there is no interference from adjacent symbols, and what
remains is the cyclic shift of the original OFDM bit. We store
the rest sampling points in a column vector r(k)n , the w-th
element is given by

r(k)n [w] =
M−1∑
m=0

L−1∑
l=0

α
(k)
l,m

I∑
i=1

e−j2π fl,mτ
(i)
m,nσ (i,k)

·me2π(lM+m)w/P + υ(k)n [w]

=

P−1∑
p=0

α(k)p

(
y(k)n [p]+ ϒ (k)n [p]

)
ej2πpw/P,

w = 0, . . . ,P− 1, p = lM + m, (3)

σ (i,k) is the scattering coefficient within k-th OFDM symbol
duration, following the Swerlling II model. α(k)p = α

(k)
l,m is the

phase code, y(k)n is a P-length measurement column vector,
p-th element of which is

y(k)n [p] =
I∑
i=1

e−j2π fl,mτ
(i)
m,nσ (i,k).

υ
(k)
n is the discrete noise vector and ϒ (k)n is its DFT vector

element-wise multiplied with
(
α
(k)
p

)∗
. r(k)n of K OFDM sym-

bols are stacked in a matrixRn =

{
r(0)n , . . . , r(K−1)n

}
P×K

and

Rn = FH [C� (Yn + ϒn)] , (4)

where F =
{
e−j2πpw/P

}
P×P is the DFT matrix,

C =

{
α
(k)
p

}
P×K

is the phase code matrix, Yn ={
y(0)n , . . . , y(K−1)n

}
P×K

, and ϒn =
{
ϒ
(0)
n , . . . , ϒ

(K−1)
n

}
P×K

.

B. PREPROCESSING STEPS
According to (4), multiple subcarriers could be separated via
DFT towards the term w and be demodulated as following

R′n = C∗ � (FRn)

= Yn + ϒn ∈ CP×K , (5)

Based on the interleaved structure, an L × P partial identity
matrix 8m could be used to obtain (m, n)-th spatial channel,
i.e. the Tx-Rx pair, from R′n:

R′m,n = 8mR′n ∈ CL×K , (6)

l-th row vector of 8m is the lM + m-th row vector in the
P-order unity matrix IP.R′m,n is the measurement matrix with
noise of the spatial channel between m-th Tx and n-th Rx
antenna, involving frequency-domain echoes at L uniformly
spaced subcarriers.

The measurement matrix R′m,n is then left-multiplied by
Ām,n for reference point compensation. Set Os as the refer-
ence point (as depicted in Fig. 1), which is usually the centre
of the imaging area, define an L × L diagonal compensation
matrix, the l-th diagonal element is

āl,m,n = e
j2π fl,m

(
d (0)t,m+d

(0)
r,n

)
/c
, (7)

where d (0)t,m =

∥∥∥−−→OOs −
−−→
OTm

∥∥∥ and d (0)r,n =

∥∥∥−−→ORn −−−→OOs

∥∥∥
are pre-known for each Tx/Rx antenna pair. Denote u0 =
−−→
OOs/

∥∥∥−−→OOs

∥∥∥ as the unit vector of radar Line of Sight (LOS),

d0 =
∥∥∥−−→OOs

∥∥∥ is the radial distance from the coordinate center

to the imaging area. Let s̃i =
−→
OSi−d0u0 is the relative vector

of the i-th scatterer with respect to Os. Adopting the lemma
demonstrated in [8], it could be deduced that

1d (i)m,n = d (0)t,m + d
(0)
r,n − d

(i)
t,m − d

(0)
r,n ≈ −2s̃iu

T
0

+

(
s̃i −

(
s̃iuT0

)
u0
) (−−→

OTm +
−−→
ORn

)T
d0

= −2ui + (mN + n)
d
d0
vi. (8)

The secondary and higher order terms in (8) are ignored
for far-field assumption. Further, ui = s̃iuT0 denotes the
radial-range, hence uiu0 is the projection vector of s̃i on u0.
Correspondingly, define vi = s̃i − uiu0 as the discrepancy
vector. Since the m-th transmit antenna

−−→
OTm = mNdx, and

the n-th receive antenna
−−→
ORn = ndx, where x = [1, 0, 0],

define vi = vixT as the cross-range.
The compensation result is Zm,n = Ām,nR′m,n ∈ CL×K ,

the (l, k)-th term of which is specifically given by

z(k)l,m,n =
I∑
i=1

σ (i,k)ej2π[f0+(lM+m)1f ]1d
(i)
m,n + υ̃

(k)
l,m,n

≈

I∑
i=1

σ̃ (i,k)e−j2π(lM+m)ui/(P1u)

· ej2π(mN+n)vid/(d0λ) + υ̃(k)l,m,n

=

I∑
i=1

σ̃ (i,k)ejlMµiejm(µi+Nνi)ejnνi + υ̃(k)l,m,n, (9)

where λ = c/f0 and1u = c/ (2Bw) denote the system wave-
length and the radial-range resolution, respectively, σ̃ (i,k) =
σ (i,k)e−j4πui/λ and υ̃(k)l,m,n = āl,m,nυ

(k)
l,m,n are the modified

scattering coefficient and noise term without change in inten-
sity. Far-filed and narrowband approximation is adopted that
the cross-range frequency offsets among multiple subcarriers
are ignored in (9). Denote (µi, νi) as radial/cross-range fre-
quency, expressed as

µi (ui) = −2π
ui
P1u

,

νi (vi) = 2π
vid
λd0

, (10)
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terms in the brackets are dropped to simplify the expression.
Then we concatenate theMN matrices row-wisely as

Z =
[
ZT
0,0, . . . ,Z

T
M−1,0, . . . ,Z

T
0,n, . . . ,Z

T
M−1,n,

. . . ,ZT
0,N−1, . . . ,Z

T
M−1,N−1

]T
= [Ar (u)� At (u, v)� As (u)]B+ ϒ

= A (u, v)B+ ϒ ∈ CR×K , (11)

R = LMN is the total size of the data matrix,B =
{
σ̃ (i,k)

}
I×K

denotes the scattering coefficient matrix, ϒ ∈ CR×K repre-
sents the noise matrix, A = Ar � At � As ∈ CR×I is the
final array manifold. As (u) ∈ CL×I , At (u, v) ∈ CM×I and
Ar (v) ∈ CN×I are steering matrices of the subcarrier, Tx
antenna and Rx antenna arrays, respectively. The i-th column
vectors of those three matrices are

as (ui) =
[
1, . . . , ejlMµi , . . . , ej(L−1)Mµi

]T
L×1

,

at (ui, vi) =
[
1, . . . , ej(M−1)(µi+Nνi)

]T
M×1

,

ar (vi) =
[
1, . . . , ejnνi , . . . , ej(N−1)νi

]T
N×1

, (12)

definitions of (µi, νi) are shown in (10). For one thing, the vir-
tual element array consists of Q = MN SISO elements [5],
whose steering matrix is Av = Ar ⊗ At. Hence, the Degrees
of Freedom (DOFs) in cross-range improve by M compared
with the traditional phased-array radars. For another, there are
both radial/cross-range terms (u, v) coupled in At due to the
frequency diversity among Tx array for I-OFDM transmis-
sion. Consequently, the coupling of (u, v) also exists in Av.
Modified estimationmethods should be introduced to process
the coupling.

III. SUPER-RESOLUTION IMAGING METHODS
The traditional imaging algorithm via 2D-FFT suffers from
limited resolution (defined by the Rayleigh criterion [40]) and
comparatively high sidelobe level. In [23], the radial-range
image was obtained by FFT, whereas in each radial-range
unit, the MUSIC algorithm was applied for high azimuth
resolution that breaks the Rayleigh criterion. This method
may lose some inherent coupling information between two
directions. Therefore, we modify the 2D ES-MUSIC algo-
rithm to fit the model in (11)-(12) and estimate the 2D
spatial spectrum simultaneously in this section. Additionally,
to lessen the high computational burden in the modified 2D
ES-MUSIC and improve the estimation accuracy, we propose
a 2D BS-UMUSIC (U-MUSIC) algorithm with the reduced
dimension (RD) technique.

A. MODIFICATION OF 2D ES-MUSIC ALGORITHM
For the data matrix in (11), the adoption of the MUSIC
algorithm has to meet the following basic assumptions:

1) Noise covariance matrix

E
{
ϒϒH

}
= σ 2I;

2) Each column of the steering matrix A is linear indepen-
dent;

3) Signal covariance matrix

P = E
{
BBH

}
is nonsingular.

We then construct two mutually orthogonal subspaces by
computing the Singular Value Decomposition (SVD) of Z.
One consists of the I dominant singular vectors and denotes
the signal subspace Es, whereas the other of dimension
(R− I ) is called the noise subspace En. Based on the orthog-
onality between target steering vector and noise subspace,
the 2D ES-MUSIC spectrum is given by

fES (u, v) =
‖[a (u, v)]|2∥∥[a (u, v)]H En

∥∥2 (13)

where (u, v) denote radial/cross-range grids, and a (u, v) ∈
CR×1 is the steering vector.

We modify a (µ, ν) to fit the data model in (12),
the (nLM + mL + l)-th term of which is defined as

anLM+mL+l (µ, ν)

= exp {j [(lM + m) µ+ (mN + n) ν]} , (14)

with l = 0, . . . ,L−1,m = 0, . . . ,M−1, and n = 0, . . . ,N−
1, (µ, ν) calculated with (u, v) following (10). The spectrum
achieves peak only when u = ui, v = vi, at the scatterers’
locations.

B. IMAGING VIA 2D RD-BS-UMUSIC
The 2D ES-MUSIC has high computational complexity in
complex-valued high-order matrix SVD and 2D search-
ing. In this section, matrix Z is firstly transformed into
the real-valued Fourier beamspace. Then, only the target
beams are selected out for the MUSIC spectrum calculation
to reduce computational complexity and improve estima-
tion accuracy. The proposed method is denoted as the 2D
RD-BS-UMUSIC algorithm.

We modify the conjugate centro-symmetrized DFT matrix
in [41] for Fourier beamforming. Denote WH

s and WH
v as

the beamforming matrices of subcarrier and virtual element
arrays. Based on (12), the l-th row vector ofWH

s is given by

wH
s,l = exp

{
jMµ(f)l

L − 1
2

}
·

[
1, e−jMµ

(f)
l , . . . , e−j(L−1)Mµ

(f)
l

]
1×L

, (15)

where µ
(f)
l = 2π [l − (L − 1)/2] /L denotes the l-th

radial-range spatial frequency. Similarly, the q-th row vector
fromWH

v is expressed as

wH
v,q = wH

r,q ⊗ wH
t,q

= exp
{
jν(f)q

Q− 1
2

} [
1, e−jNν

(f)
q ,

. . . , e−j(M−1)Nν
(f)
q , e−jν

(f)
q , . . . ,

e−j(mN+n)ν
(f)
q , . . . , e−j(Q−1)ν

(f)
q
]
1×Q

, (16)
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where Q = MN denotes the virtual element number,
ν
(f)
q = 2π [q− (Q− 1) /2] /Q is the q-th cross-range spatial
frequency.

wH
t,q = ej(M−1)Nν

(f)
q /2

[
e−jmNν

(f)
q
]
1×M

,

and

wH
r,q = ej(N−1)ν

(f)
q /2

[
e−jnν

(f)
q
]
1×N

.

Correspondingly, wH
s,l and wH

v,q represent the Fourier beams

steered at the spatial frequencies µ(f)l and ν(f)q .
Left multiplied with the beamforming matrixWH

s , the sub-
carrier array manifold is transformed into the Fourier
beamspace as Ds, the (l, i )-th element of which is as
following

ds,l (ui) = wH
s,las (ui)

=

sin
[
(L/2)M

(
µi − µ

(f)
l

)]
sin
[
(1/2)M

(
µi − µ

(f)
l

)] . (17)

Based on the Kronecker product property (A⊗ B)
(C⊗ D) = (AC) ⊗ (BD) with the right matrix size, the
(q, i)-th element of the beamspace virtual antenna array
manifold Dv is

dv,q (ui, vi) = wH
v,qav (ui, vi)

=

(
wH
r,qar (vi)

)
⊗

(
wH
t,qat (ui, vi)

)
=

sin
[
(M/2)

(
µi + Nνi − Nν

(f)
q

)]
sin
[
(1/2)

(
µi + Nνi − Nν

(f)
q

)]
·

sin
[
(N/2)

(
νi − ν

(f)
q

)]
sin
[
(1/2)

(
νi − ν

(f)
q

)] , (18)

Let the final Fourier beamforming matrix be

WH
=WH

v ⊗WH
s ∈ CR×R, (19)

and the steering matrix in 2D Fourier beamspace can be
expressed as

D =WHA =
(
WH

v Av

)
�

(
WH

s As

)
= Dv � Ds. (20)

The complex steeringmatrixA is transformed to a real-valued
one D.
Build the matrix Z =

[
<
{
WHZ

}
,=
{
WHZ

}]
, the noise

subspace En is then estimated through computing the SVD
of Z , The 2D BS-UMUSIC spatial spectrum is formed as

fBS (u, v) =
‖d (u, v)‖2∥∥[d (u, v)]T En

∥∥2 , (21)

d (u, v) ∈ RR×1 is the beamspace steering vector towards the
2D coordinates (u, v), and the (qL+ l)-th element is given by

dqL+l (µ, ν) =
sin
[
(L/2)M

(
µ− µ

(f)
l

)]
sin
[
(1/2)M

(
µ− µ

(f)
l

)]

·

sin
[
(M/2)

(
µ+ Nν − Nν(f)q

)]
sin
[
(1/2)

(
µ+ Nν − Nν(f)q

)]
·

sin
[
(N/2)

(
ν − ν

(f)
q

)]
sin
[
(1/2)

(
ν − ν

(f)
q

)] , (22)

where l = 0, . . . ,L − 1, q = 0, . . . ,Q − 1. To note that,
in (17), (18) and (22), (µ, ν) are all calculated following (10).

In order to take advantage of the beamforming gain and
reduce thematrix dimension, we examineZ to choose a small
set of target beams and drop the noise beams, before the noise
subspace and MUSIC spectrum estimation.

Basically, calculate the incoherent mean energy of the r-th
beam, i.e., the r-th row vector in Z as

Er =
‖Zr‖1

2K
=

∑2K−1
k=0

∣∣Zr,k
∣∣

2K

where ‖ · ‖1 is the `1 norm of the vector. If Er ≥ γ , with
γ denoting a specific threshold, then the r-th beam will be
picked out as the target beam. Accordingly, the data matrix
after beams selection is given by

Z̃ = JZ, (23)

J ∈ RR̃×R is a sparse selection matrix. For r = 0, . . . ,R− 1,
if Er ≥ γ , the r-th row vector in the R-order identity matrix
IR will be included in J.
The noise subspace is estimated with the RD matrix Z̃

as Ẽn, and the corresponding RD-BS-UMUSIC spatial spec-
trum is defined similar as (21)

f̃BS (u, v) =
‖Jd (u, v)‖2∥∥∥[Jd (u, v)]T Ẽn

∥∥∥2 , (24)

with d (u, v) the same as in (22).
The degree of matrix dimension reduction in RD-BS-

UMUSIC is determined by the threshold γ for target beams
selection. Here, we employ an adaptive threshold defined as

γ = η + ε

[
R−1∑
r=0

(Er − η)2
]1/2

, (25)

where η =
(∑R−1

r=0 Er
)
/R is the total mean energy, ε is an

adjustment parameter determined by system Signal-to-Noise
Ratio (SNR).

Peaks of f̃BS (u, v) are pick out as
{(
ûi, v̂i

)
|i = 1, . . . , I

}
.

The estimated 2D coordinates are automatically paired in this
procedure. The MUSIC spectrum amplitude does not repre-
sent the corresponding scattering intensity of each grid [33].
Therefore, the scattering coefficients need to be further esti-
mated by least-square (LS) algorithm after peaks searching,
the explicit process of which is ignored in this paper.

Fig. 3 shows the proposed imaging procedures for I-OFDM
signals with a MIMO radar configuration, and the detailed
steps are listed as follows:
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TABLE 1. Computational complexity comparison.

1) For each Rx antenna, sample the echo from Tmin with
fs = Bw, divide the sampling points into K segments, remove
the CP in front of each segment, and store the remaining part
in a matrix Rn as in (4);

2) for each Rx antenna, compute the DFT ofRn for subcar-
rier separation, demodulate phase coding matrix, and select
the row vectors of each Tx antenna to obtain the measurement
matrix Zm,n for each spatial channel as described in (5), (6);
3) compensate the initial phase term of the reference point

Os specific to each spatial channel, and concatenate the MN
compensated matrices row-wise, attain the data matrix Z via
(7)-(11);

4) employ the conjugate centro-symmetrizedDFTmatrices
(15)-(20) for Fourier beamforming, yield the real-valued data
matrix in beamspace Z;

5) calculate the threshold defined in (25), examine Z to
construct the selection matrix J, and get the subset Z̃ follow-
ing (23);

6) compute the SVD of Z̃ and build the noise spaceEn with
the estimated scatterer number I [42]–[44];
7) form the 2D RD-BS-UMUSIC spatial spectrum

f̃BS (u, v) based on (24);
8) search the peaks of f̃BS (u, v) and estimate the scattering

coefficients using LS algorithm [33].

C. COMPUTATIONAL COMPLEXITY
In this section, we analyze the number of real multiplications
involved in echo preprocessing and imaging via 2D RD-BS-
UMUSIC.

The computational complexity of the preprocessing proce-
dure is 4×O (KNP log (P)+ 2KNP), with P = LM denoting
the total number of subcarriers. In Table 1, we compare the
computational complexity of themethod in [23], themodified
2D ES-MUSIC, and the proposed 2D RD-BS-UMUSIC. The
three methods are executed with the same searching grid
numbers in both dimension. For the method in [23], for each
virtual antenna, P̃ = L̃M -points zero-padded FFT is exe-
cuted for radial-range pulse compression, then L̃ radial-range
bins are selected because of the I-OFDM scheme. In each
radial-range bin, One-Dimension (1D) ES-MUSIC estima-
tion is applied to a Q × K matrix, with the cross-range grid
number being Q̃. The 2D MUSIC algorithms have no pulse
compression step, but need a 2D searching process of L̃ × Q̃
grids. Adding the Fourier beamforming and the target beams

FIGURE 3. 2D imaging procedures.

selection, the 2D RD-BS-UMUSIC involves only real-valued
computations afterwards, and thematrix dimension decreases
to R̃, hence the computing burden is released significantly.

IV. SIMULATION RESULTS
In this section, simulation results of I-OFDM MIMO radar
imaging are presented to illustrate the algorithm performance
of the proposed methods. Target location errors are then
analyzed in terms of SNR and various algorithm parame-
ters. We have to mention that, the simulation parameters in
this section are set for theoretical analysis rather than the
real-word measuring.

A. RESULTS WITH A SIMPLE TARGET COMPOSED OF
SEVERAL SCATTERERS
The simulated system parameters are listed as followed: the
initial carrier frequency f0 = 10GHz and the wavelength
λ = 0.03m, N = 8 Rx and M = 4 Tx ULAs are adopted,
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with d = 1.5m and Nd = 12m being the corresponding
element spacing. Therefore, the equivalent array consists of
Q = MN = 32 virtual antennas.

Each transmitted waveform is composed of L = 32 sub-
carriers, i.e., P = 128 subcarriers altogether. The frequency
spacing between two adjacent subcarriers is 1f = 0.5MHz,
with the total bandwidth Bw = P1f = 64MHz. The
bit duration tb = 1/1f = 2µs, the CP duration is set
tc = 0.25tb = 0.5µs, hence the total transmitted OFDM
symbol width ts = tb + tc = 2.5µs. K = 64 symbols are
transmitted consequently as a pulse, the width of which is
Tp = Kts = 0.16ms.

A simulated target model with I = 16 ideal inde-
pendent scatterers depicted in Fig. 4, size of each point
denotes the scattering intensity. Set the reference center
Os = [5000m, 5000m, 6000m], the radial/cross-range coor-
dinates (ui, vi) (computed following (8)) and the correspond-
ing scattering intensities |σi| are listed in Table 2. {|σi|} are
chosen randomly.

FIGURE 4. Simulated target model.

TABLE 2. Target scatterers setting.

Denote Sn and ϒn as the noiseless echo and AWGNmatri-
ces at the n-th Rx antenna, i.e., Rn = Sn+ϒn is the received
signal. The Signal-to-Noise Ratio (SNR) is then defined as

SNRn = 10 lg
‖Sn‖2

‖ϒn‖
2 , (26)

with ‖·‖ being the Frobenius norm of the matrix. In our
simulation, set ∀n, SNRn = SNR = −5 dB, the esti-
mated spatial spectrum, reconstructed scatterers and running
time are shown in Fig. 5. The proposed imaging methods is
compared with 2D-FFT, 2D-OMP, and the method in [23].
To implement 2D-FFT, we reshape each column vector zk of

Z as an L×Qmatrix. The zero-padded lengths are set 512 and
128 for u and v, respectively. Without regard to windowing,
rectangular window is chosen in both dimensions. Ampli-
tudes of K 2D-FFT outputs are summed up for incoherent
integration. The radial/cross-range resolutions for 2D-FFT
are

1u = c/ (2Bw)

1v = λd0/ (2Lv) , (27)

where Bw = P1f is the transmitted signal bandwidth,
Lv = Qd/2 is the virtual array aperture, d0 is the radial
range from coordinate center to imaging area center. Thus
1u = 2.3438m and 1v = λd0/ (Qd) = 5.7960m in the
simulation, whereas the FFT unit width is u0 = 0.5859m
and v0 = 1.4490m, respectively. The 2D-FFT spectrum
in Fig. 5(a) has wide mainlobes and high sidelobes, but owns
a good reconstruction accuracy, due to the robustness of DAS
method to the noise.

According to (10) and (12), the maximum unambiguous
intervals of radial/cross-range are

umax = min
{
α,

1
M

}
c

21f
,

vmax =
λd0
d
. (28)

In radial-range, umax is determined by the frequency inter-
val 1f , as for the terms in the brackets, the first one is
for ISI avoidance [30], whereas the second one is due to
I-OFDM transmission, which is a topic need to be further
solved. In this paper, we set M relatively small to meet the
application requirements. In cross-range, vmax is decided by
λ, element spacing d and d0. In our settings, umax = 75m,
vmax = 185.47m. Therefore, in Fig. 5(b) - Fig. 5(f), u is
searched from−37.5m to 37.5m,whereas v from−23.184m
to 23.184m, with L̃ = 256, Q̃ = 128 being the grid numbers.
Therefore, the imaging unit sizes are u1 = 0.2930m and
v1 = 0.3622m.

In Fig. 5(b), we apply 2D-OMP for each OFDM symbol
and integrate K estimation results incoherently. Comparing
Fig. 5(b) with Fig. 5(a), the mainlobe width and sidelobe level
decrease drastically. However, on one hand, the estimation
process is time-consuming for 2D-OMPofK symbols. On the
other hand, the closely spaced scatterers cannot be resolved
in the spectrum and the reconstruction error is high, as is
depicted in the red square.

In Fig. 5(c), the radial-range image is obtained via
1024-point zero-padded FFT, hencethe radial-range bing
width is also u1 = 0.2930m; whereas the cross-range
image is achieved calculating the 1D ES-MUSIC spectrum
with v1. The mainlobe width and sidelobe level in cross-range
decreases compared with Fig. 5(c). However, as shown in the
red square, the high radial-range sidelobe becomes a fake
peak whereas the correct scatterer’s coordinates cannot be
reconstructed.

Fig. 5(d) - Fig. 5(f) show the result spectrum of the
2D MUSIC algorithms. The 2D ES-MUSIC algorithm
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FIGURE 5. Imaging results under SNR = −5 dB,, with the contour lines and the red circles denoting the estimated spectrum and
the reconstructed scatterers, respectively.

in Fig. 5(d) takes more time than in Fig. 5(c) because of
the 2D searching, but has higher radial-range resolution with
smaller reconstruction deviation (shown in the red square).
2D BS-UMUSIC algorithm in Fig. 5(e) consumes less time
compared to Fig. 5(c) and Fig. 5(d), with better estimation
accuracy. However, the sidelobe level is still high because of
the noise. In Fig. 5(f), set the threshold adjustment parameter
ε = 0.2, and R̃ = 51 beams are selected for estimation.
Taking advantage of the beamforming gain, the proposed
method is robust to low SNR with narrow mainlobes and
low sidelobes. Meanwhile the computational cost decreases
significantly compared to all the other methods.

Scatterers reconstruction results and comparison under
SNR = −5dB

Then we analyze the reconstruction accuracy of proposed
method with respect to SNR and the algorithm parameters.

In this test, definition of SNR is the same as (26). We conduct
200 independent Monte Carlo trials to compute the Root-
Mean-Square Errors (RMSEs), in order to measure the recon-
struction precision, defined as

RMSEu =
1
I

I∑
i=1

√√√√ 1
200

200∑
h=1

(
ûi,h − ui

)2
, (29)

RMSEv =
1
I

I∑
i=1

√√√√ 1
200

200∑
h=1

(
v̂i,h − vi

)2
, (30)

where
{
ûi,h, v̂i,h

}
are the auto-paired coordinates of the peaks

in 2D RD-BS-UMUSIC spectrum. The RMSE curves corre-
sponding to SNR are depicted in Fig. 6, with SNR varying
from −15 dB to 15 dB. Set the searching steps (1u,1v) =
(u1, v1) as in Fig. 5(f), Fig. 6(a) and Fig. 6(b) compare
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FIGURE 6. RMSE curves of two dimensions versus SNR.

RMSEu and RMSEv with different ε for beam selection.
Contrarily, with ε = 0.2, Fig. 6(c) and Fig. 6(d) investigate
RMSE relative to different searching steps.
Clearly as depicted in the four subfigures, in low SNR

condition (SNR ≤ −3 dB), noise has a great influence on
the estimation accuracy, i.e., RMSE decreases fast with the
increase of SNR. When SNR varies from −3 dB to 15 dB,
the reconstruction precision is more related to searching step
and off-grid error, showing little relevance with noise.

In Fig. 6(a) and Fig. 6(b), RMSEu and RMSEv both show
a slight reduction with the decrease of ε in low SNR cir-
cumstances (SNR ≤ −3 dB), but are not very sensitive to ε
with higher SNRs. Since those "weak" target beams may be
covered by noise beams in the high-noisy environment. Con-
sequently, the threshold should be set lower with smaller ε to
avoid the omission of some target beams. Whereas with high
SNR, the noise coverage effect in Fourier beamspace has little
influence on the target beam selection. However, the selected
beam number R̃may increase with lower threshold (small ε),
then the followingMUSIC spectrum estimation will consume
more time (consulting Table 1). Therefore, higher threshold
with larger ε is preferred considering the algorithm perfor-
mance and complexity in high SNR circumstances.
As is seen in Fig. 6(c) and Fig. 6(d), the final stable value

of RMSEu decreases with the searching step 1u, similar as
RMSEv. On the other hand, algorithm complexity increases
linearly with the decrease of1u and1v as shown in Table 1.
Hence, trade-off needs to be made between the estimation

precision and computational complexity for the selection of
searching steps.

B. RESULTS WITH A COMPLEX TARGET
In this section, we employ the electromagnetic synthetic echo
data of a complex target ( a Boeing 737-800 plane) to verify
the algorithm performance. Consider both the resolution and
unambiguous interval, one Tx antenna is employed transmit-
ting a full-subcarrier OFDM waveform, with initial carrier
frequency f0 = 10GHz, bandwidth is Bw = 256MHz of
P = 128 subcarriers, and the receive antenna number is
Q = 32. Since the text results in this section are shown for
theoretical proving rather than a realistic application, we just
set the observation angle step as 0.009◦ instead of an exact
cross-range calibration. SNR = 5 dB is computed follow-
ing (26). As mentioned in Section III, amplitude for each grid
in theMUSIC spectrum is incongruence with the correspond-
ing scattering intensity. Hence all the spectrum estimation
results shown in this section are normalized. Optical image of
Boeing 737-800 plane

Fig. 7 shows the comparison between 2D-FFT and the
proposed algorithm with different searching steps. As can
be seen in Fig. 7(a), 2D-FFT spectrum of P × Q-grids has
the poorest resolution of both dimensions. In Fig. 7(b)-7(d),
the searching grid numbers are P1 = 128, P2 = 256,
P3 = 512 for radial-range, Q1 = 32, Q2 = 128, Q3 = 256
for cross-range, respectively, and set the threshold adjustment
parameter ε = 0.2 as a constant. The proposed method
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FIGURE 7. 2D imaging results under SNR = 5 dB.

FIGURE 8. Comparison of different bandwidth and subcarrier number.

can attain images with better resolution by increasing the
searching grid number.With the same grid sizes, the proposed
spectrum is apparently better resolved than 2D-FFT compar-
ing Fig. 7(a) and Fig. 7(b), due to the narrower mainlobes
and lower sidelobes. Different components of the plane could

be better focused and distinguished in Fig. 7(c) and Fig. 7(d)
with finer resolutions.

Fig. 8 exhibits the images generated by the proposed
algorithm with different bandwidth Bw and subcarrier num-
ber P. The searching grid numbers are P3 and Q3 in the
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FIGURE 9. 2D imaging results under SNR = 5 dB.

subfigures. Contrasting Fig. 8(a)-8(b) and Fig. 8(c)-8(d),
it could be found that with the increase of the total bandwidth,
the radial-range resolution improves. However, via analyzing
Fig. 8(b) and Fig. 8(c), images generatedwith the same band-
width but different subcarrier numbers, we discover that the
resolution and image quality is not influenced by the subcar-
rier number. This conclusion is similar with that in (27).

Similarly, Fig. 9 compares the images generated with dif-
ferent array aperture and element number. As can be clearly
seen, the cross-range resolution improves with the increase of
array aperture, but has little relation to the element number,
which is also analogous with (27).

V. CONCLUSION
In this paper, we have formulated the imaging model of
OFDM-MIMO radar and derived super-resolution imaging
method based on 2D RD-BS-UMUSIC. Different from tradi-
tional pulse compression and range unit selection, a prepro-
cessing technique has been proposed based on FFT, and the
result data matrix suits the 2D-MUSIC form except for the
coupling of radial/cross-range term in the transmit antenna
array due to the frequency diversity in I-OFDM structure.
2D ES-MUSIC is modified for simultaneous 2D spectrum
estimation, but the algorithm has high computational com-
plexity and the spectrum has wide mainlobes with high side-
lobes. We have defined a centro-symmetrized DFT matrix
for real-valued Fourier beamforming and proposed a target
beams selection technique for matrix dimension reduction.
The simulation results have demonstrated that the proposed

method can lead to narrower mainlobes with lower sidelobes
compared with conventional DAS, OMP, ES-MUSIC meth-
ods, and separate the closely-spaced scatterers effectively.
The operation time also decreases significantly compared to
OMP and ES-MUSIC. In the future work, we will consider
how to deal with the reduction of maximum unambiguous
interval in radial-range.
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