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ABSTRACT Visible and near-infrared reflectance (Vis-NIR) spectroscopy can provide low-cost and
high-density data for mapping various soil properties. However, a weak correlation between the spectra
and measurements of soil heavy metals makes spectroscopy difficult to use in predicting incipient risk areas.
In this study, we introduce a new spectral index (SI) based on Vis-NIR spectra and use it as a covariate in
ordinary cokriging (OCK) to improve the mapping of soil heavy metals. The SI was defined from the highest
covariance between spectra and heavy metal content in the partial least squares regression (PLSR) model.
The proposed mapping approach was compared with an ordinary kriging (OK) predictor that uses only soil
heavy metal data and an OCK predictor that uses soil organic matter (SOM) and Fe as covariates. To this
end, a total of 100 topsoil (0-20 cm) samples were collected in an agricultural area near Longkou City, and
the contents of As, Pb and Zn in the soil were determined. The results showed that OCKwith the SI provided
better results in terms of unbiasedness and accuracy compared to other comparative methods. Additionally,
we explored the SI through simple strategies based on spectral analysis and correlation statistics and found
that the SI synthesized most of the soil properties affected by heavy metals and was not limited to Fe and
SOM. In summary, the SI method is cost-effective for improving soil heavy metal mapping and can be
applied to other areas.

INDEX TERMS Soil heavy metals, digital soil mapping, Vis-NIR spectroscopy, geostatistics.

I. INTRODUCTION
Heavy metals are well known for their toxicity and persis-
tence and their ability to directly affect agricultural ecology
and food safety in cultivated soils [1]–[3]. The accumula-
tion of heavy metals threatens human health because metals
can enter the body through the food chain [4]. Generally,
excessive heavy metals in farmlands mainly originate from
anthropogenic activities, such as industrial activities, sewage
irrigation and pesticide and fertilizer overuse [5]. The high
density of human activities leads to a sharp increase in soil
heavy metals at the local scale, which is directly mani-
fested by the complex spatial variability in soil heavy metals.
Therefore, obtaining efficient and accurate spatial variation
information about soil heavy metals has become increasingly
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important because such information is crucial to soil contam-
ination remediation [6], [7].

Geostatistical methods with variography and spatial inter-
polation techniques have been widely used to predict the spa-
tial distribution of soil heavy metals by providing unbiased
estimates at unsampled sites [8], [9]. The spatial distribution
of heavy metals in soils usually presents complex spatial
variations due to the combination of various surface envi-
ronmental factors and sources. Numerous studies have shown
that the accuracy of spatial estimation is limited by univariate
geostatistical techniques (e.g., inverse distance weighting,
spline smoothing and ordinary kriging), which discern the
total variation in one variable [8], [10]–[12]. Ordinary cok-
riging (OCK), which is based on the theory of collaborative
regionalization variables, seems to be particularly attractive
for interpreting complex spatial variations. OCK, using the
correlation between multiple regionalization variables, has
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been applied to soil science, environmental science, ecology
and geochemistry [13]–[16].

Many environmental factors, including climate, topo-
graphic, vegetative and geologic conditions, have been
applied as auxiliary variables in OCK to estimate soil proper-
ties [13], [14]. Environmental variables also play an impor-
tant role in soil heavy metal prediction because they are
easily measurable and indirectly affect the distribution of
heavy metals [17], [18]. However, these geographical envi-
ronments often exhibit high spatial similarity and do not
reflect the complex spatial variation in soil heavy metals
at small regional scales. Heavy metals inhibit the activities
of biological plants and soil microorganisms [1]. In surface
soils, heavy metals bind to organic matter and accelerate
degradation; in addition, oxide metals and clay also decrease
based on complex chemical reactions with soil [19]–[21].
Therefore, the physical and chemical properties of surface
soils have a relationship with soil heavy metals. In particular,
soil organic matter (SOM), Fe oxides, and clay provide effec-
tive auxiliary information and have been used to improve the
prediction accuracy of heavy metals in soil [22]. However,
the acquisition of physical and chemical properties in soils is
time consuming and expensive and is unsuitable for mapping
wide variability at the landscape scale.

In view of the inefficiency and low performance of environ-
mental and soil property variables, we tried to find a substitute
indicator. Hyperspectral remote sensing data have signifi-
cant associations with soil properties but only in a cleared
area of bare soil without vegetation [23]–[25]. Laboratory
hyperspectral data, in which the region of the spectrum is
in the visible (350-780 nm) and near-infrared (780-2500 nm)
regions of the spectrum, provide high-spectral-resolution data
that can capture the minor variability in soil properties. This
efficient spectral information has also been directly used to
evaluate heavy metals in soil through inversion models (e.g.,
partial least squares, artificial neural networks, and support
vector machines [26]–[28]) but is mostly used in mining or
industrial areas with high soil heavy metal contamination.
Heavy metals in soil at low levels are deemed spectrally fea-
tureless, and most of them are difficult to directly detect with
visible and near-infrared reflectance (Vis-NIR) reflectance
spectroscopy [22]. In recent studies, the weak correlation
between the spectra and measurements of soil properties
was extracted as auxiliary information and integrated into
a geostatistical analysis to make mapping easier and more
accurate [29]–[31]. Although a few studies have applied
Vis-NIR spectroscopy to assist the digital mapping of soil
heavy metals, only sensitive wavelengths have been consid-
ered [32], [50]. Comprehensive Vis-NIR spectral information
andmultivariate geostatistics are expected to be efficient tools
for predicting soil heavy metals.

Longkou is a typical industrial and mining area in coastal
eastern China. Suburban agriculture provides most of the
food and vegetables for Longkou City. However, long-term
sewage irrigation and surrounding complex heavy metal
emission sources have led to heavy metal accumulation in

agricultural soils [33]. In this study, we took the subur-
ban agricultural area of Longkou as a typical experimental
area. A spectral index (SI) based on laboratory Vis-NIR
spectroscopy was integrated into multivariate geostatistics to
improve the mapping of soil heavy metals. The main objec-
tives were to 1) develop a SI based on Vis-NIR spectroscopy
that synthesizes the most informative spectral variations,
2) use the SI as an auxiliary variable to better predict soil
heavy metals in a geostatistical framework, and 3) propose
a strategy for exploring the spectral index when applied to
other areas.

II. MATERIALS AND METHODS
A. STUDY AREA
The study area is located in the northern plain of Longkou
City in eastern China. This area has a temperate monsoon cli-
mate with an average annual temperature of 12 ◦C. The aver-
age annual rainfall in Longkou City is 586.3 mm, and 70%
of the rain falls between May and September. The per capita
water resources amount is 370 m3, which accounts for 14.8%
of the national per capita amount of water in China. The
average amount of groundwater in the area is 7545 m3/hm2,
which indicates a severe shortage of water in the region [34].
Industrial wastewater and domestic sewage have become the
main supplementary water sources in Longkou. The area
characterized by mineral resource exploitation, including
coal, gold mine and lead zinc mining, and the abundant natu-
ral resources have promoted the development of preliminary
industrial enterprises, such as iron-making plants, paper mills
and electroplating factories. With the rapid development of
industrial and mining enterprises in Longkou, the irrigated
area was converted to a sewage irrigation area in 1984. Indus-
trial and domestic raw wastewater and treated wastewater are
discharged into the Huangshui River and the Yongwen River
to irrigate farmland [33].

B. SAMPLE COLLECTION AND CHEMICAL ANALYSIS
A total of 100 surface soil samples (0-20 cm) were collected
from the study area, as shown in Fig. 1. Grid sampling was
performed, in which sample sites were selected according
to a sampling density of less than 2 km. Each soil sample
consisted of a mixture of five subsamples collected from five
points in an area of approximately 30 m2. All subsamples
were collected at a depth of 0-20 cm using a stainless-steel
shovel. One kilogram of the soil samples was transported
to a laboratory. After natural air drying and debris removal,
the soil samples were sieved to 0.84 mm. Each soil sample
was split into two portions as follows: one part for spectral
measurements and the other part for soil property analysis.

In the laboratory, the soil samples were ground to a
fine powder with a particle size of less than 0.149 mm.
HSO4-HNO3-HFwas used to digest the soil for analyzing the
As, Pb and Zn contents, which were then measured by induc-
tively coupled plasma-atomic emission spectrometry [35].
Low-power X-ray fluorescence spectrometry was used to
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FIGURE 1. Study area and locations of the sampling sites.

determine the total Fe content [36]. The SOM content was
determined through wet oxidation at 180 ◦C with a mixture
of potassium dichromate and sulfuric acid [37]. The recovery
rate and standard reference material were examined under
strict monitoring, and the chemical analysis process followed
the standard for the geochemical evaluation of land quality
(DZ/T0295—2016) in China.

C. SPECTRAL MEASUREMENTS AND PRETREATMENTS
The soil was sieved and then placed into round aluminum
boxes, which were then placed in a dark room. Soil spectra
weremeasured using an ASDFieldSpec HandHeld 3 portable
spectroradiometer (Analytical Spectra Devices, Inc., USA),
which covers a wavelength range of 350-2500 nm. The
detector is a low-noise, 512 pixel photodiode array with
a spectral resolution of 3 nm (350-1000 nm) and 10 nm
(1000-2500 nm) and sampling intervals of 1.4 nm
(350-1000 nm) and 2 nm (1000-2500). We preheated the
spectrometer for 20-30minutes and calibrated it with a white-
board before spectrum measurement. The stable light source
was a 50 W halogen lamp. All of the measuring instruments
were pointed vertically downward and maintained within at
least ±10◦ of the normal line of the horizontal plane and
approximately 30 cm away from the soil sample. To eliminate
measurement instability, 10 spectral curves were collected for
each soil sample [25].

Savitzky-Golay (SG) filtering was used to smooth the
curve to eliminate the ‘‘burr’’ noise on the spectral curve,
as shown in Fig. 2. The following SG parameters were
selected: 0 order and 9 framelen. These parameters obtained
the best results based on a trial and error experiment, as shown

FIGURE 2. SG spectra of the soil samples (n = 100).

in Table 7. The reflectance data were transformed into first
and second derivatives to reduce multicollinearity, as shown
in Fig. 7(a) and Fig. 7(b). Baseline drift and multiple scat-
tering effects were eliminated from the laboratory spectra
through standard normal variate (SNV) correction and multi-
plicative scatter correction (MSC), as shown in Fig. 7(c) and
Fig. 7(d).

D. Vis-NIR SPECTRAL INDEX DEFINITION
Each laboratory spectral set had thousands of spectral vari-
ables that needed to be compressed into an independent
variable for spatial prediction. Partial least squares regres-
sion (PLSR), which can eliminate possible collinearity, has
been widely used to estimate chemical content from spectral
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information [27], [28] and [38]. In addition, PLSR can be
used not only for regression prediction but also for the extrac-
tion of one or a few potential factor variables of the spectra
that synthesize most of the covariance in the dependent and
independent variables [29]. For this reason, those factor vari-
ables were defined as the SI using the partial least squares
method for characterizing soil heavy metal variation. The
leave-one-out cross-validation method was used to determine
the optimal factor number that retained the minimum value
of the root mean square error (RMSE) in the model [39].
The variable importance in the projection (VIP) was com-
puted to evaluate the most relevant predictors for response
variable prediction [40]. If the VIP value is larger than 1 and
the b-coefficient value is larger than the standard deviation,
the corresponding wavelength is considered important. PLSR
was performed using SAS/STAT version 9.3 (SAS Inc. USA).

E. GEOSTATISTICAL METHODS
1) ORDINARY KRIGING AND ORDINARY COKRIGING
The spatial variability in heavy metals was described using
both univariate (OK) and multivariate (OCK) geostatistics.
Variograms are the basis of kriging interpolation and are
used to represent the spatial variation structure of regional
variables based on regionalized variable theory and inherent
assumptions. For a data set for variable Z (xi) at n locations,
the variogram γ (h) is expressed as (1).

γ (h) =
1

2N (h)

N (h)∑
i=1

[Z (xi)− Z (xi+h)]2 (1)

where h is the vector between the two sample points; Z (xi)
and Z (xi+h) are the observed values of Z (x) in space x
and x + h, respectively [i = 1, 2 . . .N (h)]; and N (h) is the
number of sample pairs.

Given multiple data sets for the primary variable Zi (xi′)
and the auxiliary variable Zj (xi′), cross-variograms are cal-
culated by (2).

γ (h) =
1

2N (h)

N (h)∑
i=1

[Zi (xi′)− Z (xi′ +h)]

∗
[
Zj (xi′)− Z (xi′ +h)

]
(2)

If the variogram indicates that the variable is spatially
dependent, then the unbiased optimal estimation of region-
alized variables in a limited region is carried out for the OK
prediction based on an analysis of the variogram structure.
The OK can be expressed as (3).

ỹ (x0) =
n∑
i=1

λiZ (xi) (3)

where ỹ is the predicted value at the x0 location, Z (xi) is the
corresponding measurement, λi is the weight per measure-
ment point, and i = 1, 2 . . .N .

The cokriging interpolation method is an unbiased opti-
mal estimation based on a cross-variogram and is expressed

by (4).

ỹ (x0) =
m∑
i=1

λ1i Z1 (xi)+
m∑
i=1

λ2i Z2
(
xj
)

(4)

where Z1 (xi) is the measurement of the primary variable
xi and Z2

(
xj
)
is the measurement of the auxiliary variable

xj. λ1i and λ2i are the weights of Z1 and Z2, respectively.
i = 1, 2 . . .M , and j = 1, 2 . . .Q.
In this study, soil heavy metals were spatially predicted

using OK and OCK with the covariates SI, SOM and Fe in
the agricultural study area. To investigate the SI for the spatial
evaluation of soil heavy metals, the SI was first used as the
primary variable for OK to compare the spatial patterns of soil
heavymetals. Second, the SI was used as an auxiliary variable
for OCK to determine whether the SI could be considered an
effective surrogate for the soil properties expected to improve
the accuracies of soil heavy metal maps.

Kriging interpolation requires that the variable be close to
a normal distribution for higher efficiency and lower system
error. Therefore, statistical analyses, including data transfor-
mations (log and Gaussian) and the Kolmogorov-Smirnov
(K-S) test, with P values less than 0.05, were performed in
MATLAB (2015) (MathWorks Inc., USA). The variograms
and parameters were executed in GS+ 7.0 (Gamma Design
Software LLC, USA). OK and OCK were implemented with
the ArcGIS geostatistics tool (ESRI Inc., USA).

2) CROSS-VALIDATION
Cross-validation statistics were used to evaluate and compare
the prediction results of OK and OCK with the different vari-
ables. Performance indicators, including the mean standard
error (MSE), RMSE and root mean square standardized error
(RMSDE), are expressed by (5), (6) and (7), respectively.

MSE =
1
n

n∑
i=1

ei
σi

(5)

RMSE =

(
1
n

n∑
i=1

e2i

) 1
2

(6)

RMSDE =

(
1
n

n∑
i=1

e2i
σ 2
i

) 1
2

(7)

where ei = Yi−
_

Y i is the difference between the observed
response value, Yi, removed at the ith iteration and the pre-
dicted value,

_

Y i obtained by fitting themodel to the remaining
n-1 points and σi is the mean squared prediction error of

_

Y i.
The MSE was used to assess the unbiasedness of the pre-

dictor, and the optimal value of the MSE should be approx-
imately zero [29], [42]. The RMSE was used to check the
goodness of fit of the prediction, and models with smaller
RMSE values are preferred because a low RMSE means
that the fitted values are close to the observed values [43].
The RMSDE was used to assess the accuracy of the root

VOLUME 8, 2020 42587



J. Cao et al.: Improved Mapping of Soil Heavy Metals Using a Vis-NIR Spectroscopy Index in an Agricultural Area of Eastern China

TABLE 1. Statistical description of the soil properties (n = 100).

TABLE 2. The covariances in the SIs of As, Pb, and Zn under different spectral pretreatments (%).

mean square standardized prediction error and should be
approximately 1.

F. Vis-NIR SI EVALUATION
We attempted to evaluate the SI by analyzing the relationship
between soil heavy metals and active soil properties (e.g.,
SOM and Fe). A strategy that involves Spearman’s correla-
tion and partial correlation analyses was proposed. Spearman
correlation coefficients were used to evaluate the relationship
between paired variables [36]. Partial correlation analysis
was used to test conditional independence, i.e., whether the
relationship between two variables is controlled by potential
influencing factors [41]. Therefore, Spearman’s correlation
and partial correlation analyses could fully reveal the rela-
tionship between heavy metals and the auxiliary variables.

III. RESULTS
A. DESCRIPTIVE STATISTICS
Table 1 summarizes the descriptive statistics for As, Pb, Zn,
SOM, Fe and pH. The mean soil pH value was 7.43, suggest-
ing that the soils were neutral in the study area. Themean con-
tents of SOM and Fe were 1.53 and 2.42 g kg−1, respectively,
corresponding to coefficients of variation (CVs) of 33.33%
and 25.62%, respectively. The mean contents of As, Pb and
Zn were 8.06, 36.48, and 62.59 g kg−1, respectively. Over-
all, the average heavy metal contents in all samples were
below level II of the Environmental Quality Standard for
Soils (EQSS) of China [44] but exceeded the corresponding

background values [45] by 1.28, 1.44 and 1.12 times, respec-
tively. These results indicated that As, Pb and Znwere slightly
enriched in the study area. The CVs of As, Pb and Zn were
39.03%, 67.65% and 40.47%, respectively. The heavy metal
contents coupled with the high CV values suggest that their
primary source may be human activities. In addition, these
heavymetals are strongly positively skewed in the descending
order of Pb (5.16)> Zn(3.46)> As(2.78), indicatingthat the
heavy metal content level presents spatial variation with few
very high values, especially for Pb and Zn.

B. SPECTRAL INDICES OF SOIL HEAVY METALS
In this study, seven factors were determined by the leave-one-
out cross-validation method. The first factor accounted for
most of the variation in predictors and was the only retained
factor used as a new variable – the SI - for investigating heavy
metals in soils. The covariances in the SIs of As, Pb and Zn
under different spectral pretreatments are shown in Table 2.
The SIs obtained from the first- and second-derivative spec-
tral data contain less variance in the predictor variables (spec-
tral information), and the SIs obtained from the SNV and
MSC data almost ignore the response variable data (heavy
metal content). The SIs showed satisfactory results when
the PLSR analysis was performed on the SG spectral data
(Fig. 2), which explained more variation in the predictors (As
(72%), Pb (89%) and Zn (89%).

The important wavelengths of SOM, Fe and the
three heavy metals mostly overlapped with those of the
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FIGURE 3. Plot of important wavelengths based on VIP using PLSR.

TABLE 3. Optimal variogram models of the log-transformed contents of
As, Pb and Zn.

SG pretreatment method. In more detail, values higher
than 1 were in the wavelength ranges of 350-1100 nm and
1900-2500 nm.

C. SPATIAL PREDICTION OF SOIL HEAVY METALS
The variograms were modeled, and the structural variabilities
in heavy metals are shown in Table 3. The Gaussian theoreti-
cal models were the optimal variogrammodels for As and Pb,
with R2 values of 0.72 and 0.66, respectively. The spherical
theoretical model was the optimal variogram model for Zn,
with an R2 value of 0.78. The spatial structures of As, Pb and
Zn had values of 11.8, 4.48 and 5.54 km, respectively, and had
C0/(C0 + C) values of 0.69, 0.24 and 0.56, respectively. The
higher C0/(C0 + C) value and the larger effective variation
range (Table 3) indicated that As and Zn had low levels
of spatial dependence and association. The effective spatial
autocorrelation scale of Pb was small, and the C0/(C0+C)
value was less than 0.25, indicating that the spatial variation
structure of Pb showed locally high spatial dependence and
association. However, the high variance in descriptive statis-
tics suggests that Pb had some extreme values.

The predicted maps of heavy metals were obtained using
different interpolation methods, including OK and OCK with
covariates (SI, SOM and Fe), as shown in Fig. 4, Fig. 5 and
Fig. 6. As expected, under visual inspection, the kriged maps
of heavy metals and cokriged maps with covariates showed
similar spatial patterns. In contrast, the kriged maps of SIs
(As, Pb and Zn) were quite different from the correspond-
ing spatial pattern, indicating that SIs cannot be directly
used to evaluate heavy metals in the studied agricultural
area. Furthermore, the results of the cross-validation statistics
(Table 4) showed that all of the ASE values were close
to 0, the RMSE values were small, and the RMSDE values
were close to 1, suggesting that the performances of these
approaches satisfied the spatial prediction of heavy metals.

FIGURE 4. Predicted maps of As using OK and OCK with covariates Fe,
SOM and SI.

FIGURE 5. Predicted maps of Pb using OK and OCK with covariates Fe,
SOM and SI.

In Fig. 4, the kriged map of As exhibited a gradual
increase from west to east, and extreme values occurred
in the northeast region. The cokriged maps of As with
covariates of SOM, Fe, and SI exhibited more detail.
Cross-validation of the predictions for As had ASE val-
ues ranging from −0.0421 to −0.0011, RMSE values rang-
ing from 1.6127 to 1.8392, and RMSDE values ranging
from 1.0264 to 1.1691 (Table 4). For both the unbiasedness
(ASE) and accuracy (RMSE), the descending order of accu-
racy was OCK-SI>OCK-SOM>OCK-Fe>OK-As. For the
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TABLE 4. Cross-validation test of the prediction of heavy metal contents using OK and OCK with Fe, SOM and SI as covariates.

accuracy (RMSDE), OCK-SI and OCK-Fe performed better
than OK-As. Therefore, the predicted map using Fe or SI as
a covariate was more accurate than that using As or SOM as
a covariate.

In Fig. 5, the kriged map of Pb has two high-value areas
in the west and northeast and was quite consistent with the
OCK results with different covariates. Cross-validation of the
prediction of Pb had ASE values ranging from −0.0039 to
0.0065, RMSE values ranging from 27.2786 to 27.9936, and
RMSDE values ranging from 1.1476 to 1.1683 (Table 4).
For both the unbiasedness (ASE) and accuracy (RMSE),
the descending order of accuracy was OCK-SI>OCK-
Fe>OK-Pb>OCK-SOM. However, OK-Pb performed better
than other predictions in terms of accuracy (RMSDE). These
results indicated that the covariates of Fe, SOM and SI did
not aid in the evaluation of Pb and even led to a slight decline
in the prediction accuracy.

In Fig. 6, the high-value areas for Zn were in the central
and northeast regions of the study area. Cross-validation
of the prediction of Zn had ASE values ranging from -
0.0103 to -0.0182, RMSE values ranging from 12.0023 to
12.3129, and RMSDE values ranging from 1.0001 to 1.1453
(Table 4). For both the unbiasedness (ASE) and accuracy
(RMSE and RMSDE), the descending order of accuracy was
OCK-SI>OCK-SOM>OCK-Fe>OK-Zn. Therefore, using
Fe, SOM or SI as covariates could improve the prediction
accuracy for Zn, especially when using the SI, which had the
best performance.

D. DCORRELATION ANALYSIS AND PARTIAL
CORRELATION ANALYSIS
The correlation coefficients (r) of the Spearman corre-
lation and partial correlation with a significance level
of 0.01 between the heavy metals and covariables (Fe, SOM
and SI) are shown in Table 5. As and Zn had a significant
correlation with these covariables, and the absolute values
of the correlations ranged from 0.220 to 0.338. Pb showed

FIGURE 6. Predicted maps of Zn using OK and OCK with covariates Fe,
SOM and SI.

a low significant correlation with the SI but no significant
correlation with Fe or SOM. When the Fe content was con-
trolled, As, Pb and Zn were no longer significantly correlated
with the SI, while the correlation with SOM was slightly
reduced. Additionally, the correlations of Pb and Zn with
the SI were not significant when the SOM contents were
controlled. In addition, no significant correlations were found
between all heavy metals and the corresponding SI when
the SOM and Fe contents were controlled simultaneously.
Overall, the results for the Spearman correlation and partial
correlation indicated that SOM and Fe cannot be ignored in
investigations of the relationships between heavy metals and
the Vis-NIR SI.
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TABLE 5. Spearman correlation coefficients (r) between the heavy metals and covariables and the partial correlation coefficients with controlled SOM
and/or Fe (n = 100).

IV. DISCUSSION
A. Vis-NIR SPECTRAL INDEX PERFORMANCES IN
ASSESSING SOIL HEAVY METALS
Many previous studies have investigated the potential of Vis-
NIR spectra for the simultaneous estimation of the contents
of various soil heavy metals [27], [38], [28], [46], [47]. In this
study, we employed the PLSR model to define the Vis-NIR
SIs using multivariate geostatistics to evaluate heavy metals
in an agricultural area. The SIs contained the covariances of
spectral variables and heavy metal variables. The optimal SIs
for As, Pb and Zn, with the most covariance information,
were obtained using PLSR based on the SG preprocessing
method (Table 2), which could be because the SGmethod can
effectively reduce the burr noise in the spectral measurement
while preserving significant spectral information [48]. The
unsatisfactory SIs based on the FD and SD spectramay be due
to the enhancement ofmeaningful information and noise [49].
MSC and SNV can be used to reduce the estimation error
caused by spectral baseline drift [26], and the unexceptional
results for the SIs based on the SNC and MSC spectra may
be due to the negligible change in the baseline.

An overlaying analysis of the kriged map indicated that the
SIs defined in this paper were not sufficient to independently
evaluate the spatial distribution of heavy metals, which may
also be related to the low contents of the heavy metals.
However, this issue will not be substantially discussed in this
paper.

The performance indicators based on the cross-validation
(Table 4) showed that the mapping of As and Zn using mul-
tivariate geostatistics with all covariables (Fe, SOM and SIs)
was more unbiased and more accurate than the results heavy
metals from the univariate geostatistics with only heavymetal
datasets. This result indicated that Fe and SOM, as aux-
iliary information, can improve the prediction accuracy of
soil heavy metals in low-content areas, which has also been

suggested in previous studies [28]. In particular, SIs were
the most effective covariates compared with the SOM and
Fe. It is also worth noting that Pb was insensitive to covari-
ables. Considering the strong spatial autocorrelation and a
few extreme values of Pb in the study area, we hypothesize
that a sampling density of less than 2 km can fully express the
spatial variability in Pb [50]. This may explain why the auxil-
iary variables did not improve the spatial prediction accuracy,
although it is impossible to conclude that the SI of Pb is
useless. Moreover, the correlation analysis between heavy
metals and auxiliary variables is direct evidence that can be
used to explain the performances of auxiliary variables in
evaluating spatial distributions [6], [51]. All covariables were
significantly correlated with heavy metals, and the higher
significant associations (Table 5) also suggested that the SIs
have the potential to be a substitute for soil properties, such
as Fe and SOM, to improve the prediction accuracy of soil
heavy metals.

B. EVALUATING THE SPECTRAL INDICES OF SOIL HEAVY
METALS
Generally, an increase in heavy metal cations results in an
increase in Fe oxides on the surfaces of clay and oxide miner-
als [25], [52]. Moreover, the decomposition of organic matter
can greatly affect the enrichment of heavy metals in soil due
to metal complexation [53], [54]. Spectrally featureless soil
heavy metals can be estimated using the reflectance spectra
of SOM and Fe oxides and clay [22], [52], [55]. Therefore,
we infer that the SIs performed well because they contain
comprehensive reflectance spectral information about soil
properties such as SOM and Fe. Spearman correlation anal-
ysis and partial correlation analysis could be used to reveal
the role of spectrally active soil properties (e.g., SOM and
Fe) when evaluating the heavymetal content from reflectance
spectra [27], [38]. Similarly, we use this strategy to explore
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FIGURE 7. Preprocessed reflectance spectra of soil samples. (a) The 1st derivative spectra. (b) The 2nd derivative spectra. (c) SNV
spectra. (d) MSCspectra.

TABLE 6. The covariance in the spectral indices of As, Pb and Zn with different SG parameters (%).

the mechanism of SIs. The results of the correlation and par-
tial correlation analysis indicated that the contents of Fe and
SOM were two important factors influencing SIs. Moreover,
the important spectral analyses were to analyze the correla-
tion of heavy metals with SOM and Fe from the perspective
of spectral response. The VIP results (Fig. 3) showed that
the important wavelengths of Fe, SOM and the three heavy
metals mostly overlapped. This indicates that the SIs were
closely related to Fe and SOM; in other words, the SIs contain
spectral information that responds to Fe and SOM contents.
Previous studies have demonstrated that the Vis-NIR can
be used to indirectly evaluate soil heavy metals through the
spectral responses of Fe and SOM [22], [27], [38], [46], [28]
and [56]. Therefore, we confirm that the proposed SI is
scientific and has the potential to be applied to other
areas.

Based on the above discussion, we conclude that the auxil-
iary variable SIs contain comprehensive spectral information
about soil properties (SOM and Fe) that can be used to
characterize soil heavy metals. Due to limitations related to
data collection, we only described the relationships of the SIs
with SOM and Fe. In fact, the mineral particle size, soil parent
material and other information can also be obtained from the
reflectance spectrum [46].

V. CONCLUSION
In this study, a SI based on Vis-NIR spectroscopy was inte-
grated with multivariate geostatistics to improve the mapping
of soil heavy metals in an agricultural area of eastern China.
The results indicated that the mean contents of As, Pb and
Zn were slightly higher than the background values of the
study area, and high values occurred at some sites. Through
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SG spectral pretreatment, optimal SIs were obtained for As,
Pb and Zn, which showed more covariance between spectra
and heavy metal contents. The mapping approach based on
SIs was unbiased and accurate compared with the OK pre-
dictors and OCK predictors using laboratory soil analyses
(SOM and Fe). This demonstrated that our proposed SIs
made a valuable contribution to the efficient prediction of
heavy metals in low-concentration soils. Moreover, the SIs
synthesizedmost information about soil properties (including
SOM and Fe) that are used to characterize soil heavy metals.
This result suggested that the proposed SI could be applied to
other areas.

Future studies should continue to explore the proposed SI
at different scales because the spectral response of soil heavy
metals needs to take into account the intrinsic variations in
soil properties.

APPENDIX
See Figure 7 and Table 6.
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