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ABSTRACT This paper studies the trajectory tracking control of a class of multi-agent systems, in which,
each agent is expressed by a nonlinear discrete-time unknown dynamics and can interact with its neighbors
via the history outputs of its neighbors. In order to tackle each unknown dynamics, based on its neighbors’ and
its own history I/O data and neural network, an approximate model is established by the direct data-driven
method. Using the neighbors’ history information and the reference trajectory, the decentralized adaptive
indirect data-driven control is designed; then, the feedback gain matrix online is designed and adjusted
by measured output data and previous estimates. For each agent, this is an adaptive control process of
prediction, estimation, and adjustment, which needs to solve some nonlinear optimization problems online,
can surmount the negative effects of the modeling errors caused by neural networks, and is the key to making
each agent output asymptotically track the given reference trajectory. The convergence analysis shows that
the applied method is effective and feasible.

INDEX TERMS Multi-agent system, tracking control, indirect data-driven method, adaptive control,
nonlinear discrete-time system.

I. INTRODUCTION
In recent years, the tracking control for multi-agent sys-
tems (MASs) has attracted significant research attentions
in the control community [1]–[4], due to its wide applica-
tion background in engineering and scientific fields, such as
spacecraft formation flying [5], cooperative control in robotic
systems [6], unmanned systems [7], target tracking in sensor
networks [8], and so on. Thus, a great of progress has been
made on the tracking control of MASs [9]–[12], to name
a few.

However, due to various kinds of uncertainties in the real
world, for the multi-agent system (MAS), each agent is often
difficult and almost impossible to get precise model although
it is producing, measuring, transmitting, and storing huge
amount of valuable data. As well known, for systems with
uncertainties, system identification is basic and crucial. To
identify parameter, many estimation algorithms have been
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emerged such as the least-squares algorithm, the projection
algorithm, the backstepping approach and so on [13]–[15].
For identifying model structure uncertainty, fuzzy logic algo-
rithm, neural networks (NNs) and wavelet are applied in
[16]–[19]. Thus, facing to uncertainties, in the tracking con-
trol community, the adaptive control of the MASs with
model parameters and model structure uncertainties have
been investigated in [20]–[22].

In fact, most results on adaptive control are still concen-
trating on dealing with various uncertainties in single-agent
systems [23]–[27]. Compared with single-agent systems,
the effects of uncertainties of MASs on the overall perfor-
mances are closely related to the pattern of information inter-
action. Hence, the decentralized adaptive control of MASs
with uncertainties has been paid much attention to by the
systems and control community. Although due to the interac-
tions among agents and complexity of performance indices,
studying the decentralized adaptive tracking control of MASs
with uncertainties brings intrinsic difficulties and challenges,
there is still a lot of literature dedicated to discussing the the
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decentralized adaptive tracking control of MASs [28]–[31].
For example, the work in [28] investigated the distributed
adaptive consensus tracking control without such require-
ments for nonlinear high-order multi-agent systems sub-
jected to mismatched unknown parameters and uncertain
external disturbances. The distributed consensus tracking of
unknown nonlinear chaotic delayed fractional-order multi-
agent systems with external disturbances was studied in [29].
The cooperative preview tracking problem of discrete-time
linear multi-agent systems under the fixed directed acyclic
communication topology was analysed in [30]. And in [31],
the adaptive dynamic programming algorithm of iteration in
policy evaluation and policy improvement was developed to
solve the optimal tracking control problem of discrete-time
multi-agent systems.

Most of the above literature assume that each agent is either
linear or continuous dynamics. Due to the approaches in the
linear and continuous systems may not work or even fail in
designing discrete-time nonlinear adaptive systems, which is
caused by the inherent limitations of the feedbackmechanism
in the discrete-time nonlinear adaptive systems control. This
phenomenon brings great difficulties, which yield relatively
limited research work, in discrete-time nonlinear adaptive
systems. Little results have been obtained to study the decen-
tralized adaptive tracking control of discrete-time and non-
linear multi-agent systems. The paper [32] investigated the
decentralized adaptive tracking control for a class of discrete-
time nonlinear hidden leader follower multi-agent systems.
Among all the agents, there exists a hidden leader that knows
the desired reference trajectory, while the followers do not
know the desired reference signal or are not aware of which
agent is a leader. And then the work in [33] discussed the
decentralized adaptive tracking control for a class of coupled
hidden leader-follower multi-agent systems with unknown
internal parameters and unknown high-frequency gains.

Given the above discussion of [32] and [33], in the
two papers, the decentralized adaptive tracking control of
discrete-time nonlinear hidden leader follower multi-agent
systems was studied. Furthermore reading them, the common
natures are that each dynamics contains the unknown param-
eter and the projection algorithm is taken to identify parame-
ters. Inspired by them, combined with [27], the decentralized
adaptive tracking control of discrete-time nonlinear in model
structure uncertainty is tackled in this paper, and based on the
its neighbors’ and its own history I/O data and neural network
(NN), an approximate model is established by the direct data-
driven method.

The data-driven control of the MASs has been investigated
in [34]–[36]. For instance, in [34], data-driven consensus
control for networked agents was discussed an iterative learn-
ing control approach to achieve accurate coordination per-
formances of the output data sequences for multiple plants.
And the optimal consensus control problem for discrete-time
multi-agent systems with completely unknown dynamics by
utilizing a data-driven reinforcement learning method was
investigated in [35]. The work in [36] studied the output

consensus problem for a class of nonlinear networked multi-
agent systems with switching topology and time-varying
delays and the distributed data-driven consensus protocols
were proposed to synchronise the outputs of the agents.

Based on the above analysis, in this paper, the decentral-
ized tracking control of discrete-time coupled MASs with
unknown nonlinear structure dynamics is addressed. And
each agent can only obtain its own and its neighborhood
history information, and link may propagate over the whole
network along with the information exchange among agents,
in addition, the uncertainties of each dynamics and the
interactions among agents and complexity of performance
indices for MAS, thus the difficulty in this paper arises from
the fully decentralized protocol design with the unknown
discrete-time dynamics for the tracking control consider-
ing coupling among agents. The main contributions of this
paper are listed as follows. (1) Under the mild conditions,
based on Lagrange’s mean value theorem, for each agent,
the given reference trajectory, there exists a unique control
input such that the dynamics is satisfied. This is an lineariza-
tion technique which is applicable to nonlinear discrete-time
systems. (2) The indirect data-driven method is adopted to
predict and estimate some relative model structure matrices,
and then, design and adjust the feedback gains such that
outputs of each agent tracks the given reference trajectory.
In this process, the approximate models are established to
estimate the unknown functions using the recursive NN. (3)
And then it is shown that the system output asympotically
converges to the reference trajectory, especially, the given
same reference signal to all agents, the whole system even-
tually achieves synchronization in the presence of strong
couplings.

The rest of this paper is organized as follows. The problem
formulation and basic assumptions in Section II. Section III
designs indirect data-driven output decentralized trajectory
tracking control law. Section IV analyses effectiveness and
feasibility of the algorithm convergence. Finally, some con-
cluding remarks are given in Section V by highlighting cer-
tain unsolved problems. And here we give the nomenclature
in the following Table 1.

TABLE 1. Nomenclature.
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II. PROBLEM FORMULATION AND BASIC
ASSUMPTIONS
A. ALGEBRAIC GRAPH THEORY
Under an MAS study, each agent may be coupled to other
agents through its neighbors’ available information. If each
agent is taken as a node, let the communicated topology be
represented by a directed graph from algebraic graph theory.
A directed graph G = (V, ε,A) with a set of N agents V =
{1, 2, · · · ,N }, and ε = V × V is a set of M ordered edges
of the form (i, j), representing that agent j has access to the
information of agent j and calling agent j is a neighbor of
agent i. The set of all neighbors of agent i is expressed by
Ni = {j ∈ V|(i, j) ∈ ε}. Matrix A(aij = 0, 1) ∈ RN×N is an
adjacency matrix, whose entries{

aij = 1, if j is i′s neighbor
aij = 0, otherwise .

The indegree matrix is defined as a diagonal matrix D =

diag[d1, d2, · · · , dN ] with di =
N∑
j=1

aij, i = 1, · · · ,N . Obvi-

ously, di is the number of agent i’s neighbors.
Definition 1 [33]: The whole MAS is globally reachable

if each node/agent is globally reachable.
Definition 2 [32]: An adjacency matrix A(aij = 0, 1) is

a strongly connected matrix if there exists a path that follows
the direction of the edges of the directed graph such that any
two agents i and j are connected.

B. SYSTEM REPRESENTATION AND ASSUMPTIONS
Let us consider themulti-agent system consisting ofN agents.
The dynamic of agent i is described by

yi(k+1)= fi(yi(k), φi(k), ui(k)), k ≥ 0, i = 1, 2, · · · ,N ,

(1)

where

ui(k) = [ui1(k), ui2(k), · · · , uim(k)]T ∈ Du ⊆ Rm

and

yi(k) = [yi1(k), yi2(k), · · · , yin(k)]T ∈ Dy ⊆ Rn(m ≤ n)

are the input and the output of agent i at the time k , respec-
tively. The two bounded convex sets Du and Dy contain
u = 0 and y = 0, respectively. The neighbor measured out-
puts φi(k) = [y(1)Ti (k), y(2)Ti (k), · · · , y(mi)Ti (k)]T ∈ Rn×mi ,
in which mi is the number of neighbors of agent i and
y(j)i (k)(1 ≤ j ≤ mi) denotes measured output of the jth neigh-
bor. The explicit mathematical function fi(yi(k), φi(k), ui(k))
is unknown. fi(·) = [fi1(·), fi2(·), · · · , fin(·)]T ∈ Rn and
fi(0, 0, 0) = 0. Suppose that the values of yi(k) and ui(k) can
be measured and recorded, and yi(0) and φi(0) are set.
Assumption A1:The function fi(yi(k), φi(k), ui(k)) has con-

tinuous partial derivatives with respect to yi(k), φi(k) and
ui(k), respectively.
Assumption A2: Rank[ ∂fi(yi(k),φi(k),ui(k))

∂ui(k)
] = m for

ui(k) ∈ Du.

Assumption A3: The directed graph of the MAS is strongly
connected.
Remark 1: Assumption A3 indicates that any agent of

MAS has either directly or indirectly access to the informa-
tion of other agents.

For any yi(k), ȳi(k), φi(k), φ̄i(k), ui(k), ūi(k), in which,
(yi(k), φi(k), ui(k)) and (ȳi(k), φ̄i(k), ūi(k)) satisfy (1),
respectively. On the basis of Assumption A1 and Lagrange’s
mean value theorem we obtain that

yi(k + 1)− ȳi(k + 1) = fi(yi(k), φi(k), ui(k))− fi(ȳi(k),

φ̄i(k), ūi(k))

= F̄i(k, αi(k))[xi(k)− x̄i(k)]. (2)

In (2), we denote
xi(k) = [yTi (k), φ

T
i (k), u

T
i (k)]

T

x̄i(k) = [ȳTi (k), φ̄
T
i (k), ū

T
i (k)]

T

F̄i(k, αi(k)) = [F̄i,yi (k, αi(k)), F̄i,φi (k, αi(k)),
F̄i,ui (k, αi(k))],

(3)

where

F̄i,yi (k, αi(k)) = [
∂f Ti1
∂yi

zi1(k), · · · ,
∂f Tin
∂yi

zin(k)]T

∂fij
∂yi

(zij(k)) = [
∂fij(zij(k))
∂yi1

, · · · ,
∂fij(zij(k))
∂yin

]

F̄i,φi (k, αi(k)) = [
∂f Ti1
∂φi

zi1(k), · · · ,
∂f Tin
∂φi

zin(k)]T

∂fij
∂φi

(zij(k)) = [
∂fij(zij(k))
∂φi1

, · · · ,
∂fij(zij(k))
∂φimi

]

F̄i,ui (k, αi(k)) = [
∂f Ti1
∂ui

zi1(k), · · · ,
∂f Tin
∂ui

zin(k)]T

∂fij
∂ui

(zij(k)) = [
∂fij(zij(k))
∂ui1

, · · · ,
∂fij(zij(k))
∂uim

]

zij(k) , x̄i(k)+ αij(k)[xi(k)− x̄i(k)]
0 < αij(k) < 1, 1 ≤ j ≤ n, k ≥ 0
αi(k) = [αi1(k), αi2(k), · · · , αin(k)].

(4)

It is easy to see that, the derivatives F̄i,yi (k, αi(k)) ∈
Rn×n, F̄i,φi (k, αi(k)) ∈ Rn×mi , F̄i,ui (k, αi(k)) ∈ Rn×m and
F̄i(k, αi(k)) ∈ Rn×(n+mi+m). The coefficient αi(k) is defined
by Lagrange’s mean value theorem, which varies with the
time k . By (2) and (3), one has

yi(k + 1)− ȳi(k + 1)= F̄i,yi (k, αi(k))[yi(k)− ȳi(k)]

+ F̄i,φi (k, αi(k))[φi(k)− φ̄i(k)]

+ F̄i,ui (k, αi(k))[ui(k)−ūi(k)]. (5)

Theorem 1: If system (1) satisfies Assumptions A1 and
A2, then for given yi(k) ∈ Dy, k = 1, 2, · · · , i =
1, 2, · · · ,N , there exists a unique control input ui(k) ∈ Du
such that yi(k), φi(k) and ui(k) satisfy (1).
Proof 1: First, the existence of ui(k) is to be proven.

According to Assumption A1, (1), (5) and fi(0, 0, 0) = 0,
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it is not difficult to get that

yi(k + 1)− 0

= fi(yi(k), φi(k), ui(k))− fi(0, 0, 0)

= F̄i,yi (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0yi(k)

+ F̄i,φi (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0φi(k)

+ F̄i,ui (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0ui(k). (6)

By the basis of Assumption A2, it is easy to see that matrix

F̄i,ui (k, αi(k))|ȳi(k) = 0, φ̄i(k) = 0, ūi(k) = 0

is invertible. Thus, the solution of (6) is obtained, that is

ui(k) = [F̄Ti,ui (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0
× F̄i,ui (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0]

−1

× F̄Ti,ui (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0
× [yi(k + 1)− F̄i,yi (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0
yi(k)− F̄i,φi (k, αi(k))|ȳi(k)=0,φ̄i(k)=0,ūi(k)=0φi(k)].

(7)

Remark 2: (7) shows that for given yi(k) ∈ Dy, k = 1,
2, · · · , i = 1, 2, · · · ,N , there exists a control input ui(k) ∈
Du such that yi(k), φi(k) and ui(k) satisfy (1).
Next, the uniqueness of the ui(k) is to be proven using

the proof by contradiction. For given yi(k) ∈ Dy, k = 1,
2, · · · , i = 1, 2, · · · ,N , assume that there exist two different
control inputs ui,a(k) ∈ Du and ui,b(k) ∈ Du, that is, for
given yi(k + 1), there are ui,a(k), ui,b(k)(ui,a(k) 6= ui,b(k))
such that yi(k + 1) = fi(yi(k), φi(k), ui(k)). In other words,
the vectors (yi(k), φi(k), ui,a(k)) and (yi(k), φi(k), ui,b(k)) sat-
isfy (1). In (5), using yi(k), φi(k), ui,a(k), ui,b(k) in place of
ȳi(k), φ̄i(k), ui(k), ūi(k), respectively, we have

F̃Ti,ui (k, αi(k))F̃i,ui (k, αi(k))[ui(k)− ūi(k)] = 0, (8)

where F̃i,ui (k, αi(k)) is F̄i,ui (k, αi(k)) with ȳi(k) = yi(k),
φ̄i(k) = φi(k), ui(k) = ui,a(k), and ūi(k) = ui,b(k). That
is to say that (8) can be written as

F̃Ti,ui,a (k, αi(k))F̃i,ui,a (k, αi(k))[ui,a(k)− ui,b(k)] = 0.

According to Assumption A2, it is easy to know that
F̃Ti,ui (k, αi(k))F̃i,ui (k, αi(k)) is invertible. Thus, one has

ui,a(k)− ui,b(k) = 0,

that is

ui,a(k) = ui,b(k), (9)

which indicates that this result is contrary to the assumption
that two control inputs ui,a(k) 6= ui,b(k). Based on the proof
by contradiction, we can get that for given yi(k) ∈ Dy, k = 1,
2, · · · , i = 1, 2, · · · ,N , if there exists a control input ui(k) ∈
Du such that yi(k), φi(k) and ui(k) satisfy (1), then this control
input is unique.
Let the signal y∗i (k) ∈ Dy is the reference trajectory of

system (1). For the whole system, each agent has its own

reference trajectory. Then, each vector φi(k) has the corre-
sponding vector φ∗i (k). Assume that each

∥∥y∗i (k)∥∥ < ∞.
Obviously,

∥∥φ∗i (k)∥∥ < ∞. Then there exists a control input
sequence {u∗i (k)} such that

∥∥u∗i (k)∥∥ <∞ and

y∗i (k + 1) = fi(y∗i (k), φ
∗
i (k), u

∗
i (k)). (10)

Remark 3: From Theorem 1, it is easy to see that for given
yi(k), i = 1, 2, · · · ,N , there exists a unique ui(k). In fact,
Assumption A2 is the sufficient condition for the uniqueness.
If this condition cannot be satisfied, a proper control input
cannot be obtained to make the output of each agent to track
the reference trajectory.
Remark 4: From (10) and Theorem 1, it is easy to see

that for the reference trajectory y∗i (k), i = 1, 2, · · · ,N , there
exists a unique control input u∗i (k) such that y∗i (k + 1) =
fi(y∗i (k), φ

∗
i (k), u

∗
i (k)).

By (1), (5) and (10), it yields that

yi(k + 1)− y∗i (k + 1)

= fi(yi(k), φi(k), ui(k))− fi(y∗i (k),

φ∗i (k), u
∗
i (k))

= Fi,yi (k, αi(k))[yi(k)− y
∗
i (k)]

+Fi,φi (k, αi(k))[φi(k)− φ
∗
i (k)]

+Fi,ui (k, αi(k))[ui(k)− u
∗
i (k)], (11)

where Fi,yi (k, αi(k)),Fi,φi (k, αi(k)) and Fi,ui (k, αi(k)) are
equal to F̄i,yi (k, αi(k)), F̄i,φi (k, αi(k)) and F̄i,ui (k, αi(k))
in (4), respectively, with ȳi(k) = y∗i (k), φ̄i(k) = φ∗i (k) and
ūi(k) = u∗i (k).
However, according to the function fi(yi(k), φi(k), ui(k))

is unknown, we cannot obtain the control input sequence
{u∗i (k)}. We will discuss how to solve this problem in the next
section.

III. INDIRECT DATA-DRIVEN OUTPUT DECENTRALIZED
TRAJECTORY TRACKING CONTROL
In this section, our task is to control each output yi(k) to track
the given reference trajectory y∗i (k) at any time k , the control
law of agent i is designed as follows:

ui(k) = u∗i (k)+ Im×n[hi(k)− h
∗
i (k)]+ Ci(k)

× [yi(k)− y∗i (k)], k ≥ 0, (12)

where Ci(k) ∈ Rm×n is the feedback gain, and

hi(k) =
1
di

∑
l∈Ni

yl(k), (13)

h∗i (k) =
1
di

∑
l∈Ni

y∗l (k), (14)

where di and Ni are the number and set of the neighbors of
agent i at the time k , respectively.
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Denote

Y (k) =


y1(k)
y2(k)
...

yN (k)

 , Y ∗(k) =


y∗1(k)
y∗2(k)
...

y∗N (k)

 (15)

and

U (k) =


u1(k)
u2(k)
...

uN (k)

 , U∗(k) =


u∗1(k)
u∗2(k)
...

u∗N (k)

 . (16)

Thus, from (12) and Assumption A3, one has

U (k) = U∗(k)+[3A⊗ Im×n+C(k)][Y (k)−Y ∗(k)], (17)

where

3 =



1
d1

0 · · · 0

0
1
d2

· · · 0

...
...

. . .
...

0 0 · · ·
1
dN


, (18)

A =


0 a12 · · · a1N
a21 0 · · · a2N
...

...
. . .

...

aN1 aN2 · · · 0

 (19)

and

C(k) =


C1(k) 0 · · · 0
0 C2(k) · · · 0
...

...
. . .

...

0 0 · · · CN (k)


= diag

[
C1(k) C2(k) · · · CN (k)

]
, (20)

in which, di is the number of neighbors, aij is the element
defined the adjacency matrix, and Ci(k) the feedback gain.
According to (11), we have the following equation

Y (k + 1)− Y ∗(k + 1)

= FY (k, α(k))[Y (k)− Y ∗(k)]

+F ′Y (k, α(k))[Y (k)− Y
∗(k)]

+FU (k, α(k))[U (k)− U∗(k)]. (21)

In (21), we denote

FY (k, α(k)) =


F1,y1 (k, α1(k)) 0 · · ·

0 F2,y2 (k, α2(k)) · · ·

...
...

. . .

0 0 · · ·

0
0
...

FN ,yN (k, αN (k))



= diag
[
F1,y1 (k, α1(k)) F2,y2 (k, α2(k))

· · · FN ,yN (k, αN (k))
]

(22)

F ′Y (k, α(k)) =


F1,Y (k, α1(k))
F2,Y (k, α2(k))

...

FN ,Y (k, αN (k))

 , (23)

in which, Fi,Y (k, αi(k)) is dragged in and denoted by

Fi,Y (k, αi(k)) =
∂fi
∂Y T

zi(k), (24)

here, Fi,Y (k, αi(k)) is equal to F̄i,Y (k, αi(k)) with ȳi(k) =
y∗i (k), ūi(k) = u∗i (k), if yl ∈ Ni, taking ȳl(k) = y∗l (k);
otherwise, taking ȳl(k) = 0. And

FU (k, α(k)) =


F1,u1 (k, α1(k)) 0 · · ·

0 F2,u2 (k, α2(k)) · · ·

...
...

. . .

0 0 · · ·

0
0
...

FN ,uN (k, αN (k))


= diag

[
F1,u1 (k, α1(k)) F2,u2 (k, α2(k))

· · · FN ,uN (k, αN (k))
]
. (25)

By (17) and (21), one has

Y (k + 1)− Y ∗(k + 1) = {FY (k, α(k))+ F ′Y (k, α(k))

+FU (k, α(k))[3A⊗ Im×n
+C(k)]}[Yi(k)− Y ∗i (k)]. (26)

Denote

ei(k) = yi(k)− y∗i (k), (27)

G(k) = FY (k, α(k))+ F ′Y (k, α(k))+ FU (k, α(k))

× [3A⊗ Im×n + C(k)] (28)

and

E(k) =
[
e1(k) e2(k) · · · eN (k)

]T
. (29)

Thus, putting (29) into (26), one has

E(k + 1) = G(k)E(k). (30)

How to control the output of each agent to track the cor-
responding reference trajectory is transformed into how to
design and adjust C(k) to such that ‖G(k)‖ < 1. Like this,
each ‖ei(k)‖ will keep on decreasing until it is less than the
maximum tolerable tracking error εi. The design of Ci(k)
is the important to deal with the control problem, and is
necessary to be end before the time k . Otherwise, the system
cannot be controlled on time.
For each agent, its neighbors are fixed. Thus,3A is known

in advance. According to (28), if we wish for C(k), be pre-
pared for G(k),FY (k, α(k)),F ′Y (k, α(k)) and FU (k, α(k)).
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However, they cannot be analytically calculated owning to the
model structure uncertainties in the multi-agent system (1).
To solve this problem, a data-driven method is adopted to
predict and estimate these matrices. In this paper, we assume
that there is nomeasurement noise (if anymeasurement noise,
it has been filtered) contained in the measured output data.

A. ESTABLISH APPROXIMATE MODELS
AND ESTIMATES
Let ȳi(0) = 0, i = 1, 2, · · · ,N , obviously know φ̄i(0), select
appropriate sets of inputs ūi(k) ∈ Du, i = 1, 2, · · · ,N , k ≥ 0
and record their values. Let the whole system run under the
input control U (k) or ui(k), i = 1, 2, · · · ,N , k ≥ 0 for quite
a time. The outputs Y (k) or yi(k), k ≥ 1 are measured and
recorded. Then we estimate the unknown functions fi, i =
1, 2, · · · ,N using a recursive NN based on recording input-
output data. For the system (1), an approximate model is
established. The approximate model is expressed by

ȳi(k+1)= f̂i(ȳi(k), φ̄i(k), ūi(k)), (k<0), i=1, 2, · · · ,N ,

(31)

wheref̂i(·) is an approximate model of fi(·), which f̂i(·) also
satisfies Assumptions A1, A2 and f̂i(0, 0, 0) = 0.
By the f̂i(·) and the given reference trajectory y∗i (k), obvi-

ously, φ∗i (k) is given. The nonlinear optimization problem is
solved.

J (û∗i (k))= min
ui(k)∈Du

∥∥∥y∗i (k+1)− f̂i(y∗i (k), φ∗i (k), ui(k))∥∥∥. (32)

Then, we can get û∗i (k), which is the estimate of u∗i (k). So far,
many approaches for solving the nonlinear optimization prob-
lems have been studied [8], [9]. The details will not be dealt
with in this paper due to the limited space.

It is clear that f̂i(·) 6= fi(·) and û∗i (k) 6= u∗i (k). Thus, we have
to design and adjust Ci(k) for every k ≥ 0, even though û∗i (k)
is close to u∗i (k).

B. SET AND ESTIMATE THE INITIAL VALUES
After establishing the approximate model (31), we start
to control system (1). For each agent, in the initial stage,
the actual measured and recorded I/O data are not sufficient
to design Ci(0) and Ci(1); thus, we have to artificially set
the values of them. Besides, presetting the initial values of
Ci(k) is also necessary to control the system when the proper
controller has not been obtained yet. On this account, the first
two feedback gain matrices are designed and recorded as
follows

Ci(0) = Ci(1) =


c1 0 · · · 0 0 · · · 0
0 c2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · cm 0 · · · 0

 ,
where cj(0 <

∣∣cj∣∣ < 1, 1 ≤ j ≤ m) satisfy

Rank[Ci(1)] = Rank[Ci(0)] = m.

Then, for agent i, yi(0) ∈ Dy and the maximum tolerable
tracking error 0 < εi <∞ are set. In (12), substituting û∗i (0)
for u∗i (0), we have

ui(0)= û∗i (0)+Im×n[hi(0)− h
∗
i (0)]+Ci(0)[yi(0)−y

∗
i (0)],

(33)

where û∗i (0) is obtained from (32).
Because that the y∗i (k) is given, and from (12), it is clear

that the value of yi(k) is necessary to design ui(k) for each
subsystem. But, except the preset yi(0), after the time k ≥ 1,
every yi(k) can only be measured and recorded. To deal with
this contradiction, we will make a slight modification in (12)
using the prediction of yi(k) in place of yi(k). According to
the approximate model (31), we can get the ŷi(k) as follows

ŷi(k) = f̂i(yi(k − 1), φi(k − 1), ui(k − 1)), (k ≥ 1),

i = 1, 2, · · · ,N , (34)

where the values of yi(k − 1), φi(k − 1) and ui(k − 1) are
actually measured and recorded before the time k . That is, for
the whole system, the prediction of each subsystem output
at the time k is obtained. Thus, the real control input for
subsystem i at the time k = 1, ui(1) is designed as follows

ui(1) = û∗i (1)+ Im×n[ĥi(1)−h
∗
i (1)]+Ci(1)[ŷi(1)−y

∗
i (1)],

(35)

where

ĥi(1) =
1
di

∑
l∈Ni

ŷl(1). (36)

Obviously, û∗i (1) and ŷi(1) are obtained from (32) and (34),
respectively. Then, the real value of each subsystem output
yi(1) can be measured and recorded.

To achieve control objectives for the whole system and
each subsystem, the estimate values of Fi,yi (k, αi(k)),Fi,φi
(k, αi(k)) and Fi,ui (k, αi(k)) at the time k = 0, 1 are written
as follows:

F̂i,yi (k, α̂i(k)) = [
∂ f̂ Ti1
∂yi

ẑi1(k), · · · ,
∂ f̂ Tin
∂yi

ẑin(k)]T

∂ f̂ij
∂yi

(ẑij(k)) = [
∂ f̂ij(ẑij(k))
∂yi1

, · · · ,
∂ f̂ij(ẑij(k))
∂yin

]

F̂i,φi (k, α̂i(k)) = [
∂ f̂ Ti1
∂φi

ẑi1(k), · · · ,
∂ f̂ Tin
∂φi

ẑin(k)]T

∂ f̂ij
∂φi

(ẑij(k)) = [
∂ f̂ij(ẑij(k))
∂φi1

, · · · ,
∂ f̂ij(ẑij(k))
∂φimi

]

F̂i,ui (k, α̂i(k)) = [
∂ f̂ Ti1
∂ui

ẑi1(k), · · · ,
∂ f̂ Tin
∂ui

ẑin(k)]T

∂ f̂ij
∂ui

(ẑij(k)) = [
∂ f̂ij(ẑij(k))
∂ui1

, · · · ,
∂ f̂ij(ẑij(k))
∂uim

]

ẑij(k) , x̂∗i (k)+ α̂ij(k)[xi(k)− x̂
∗
i (k)]

xi(k) = [yTi (k), φ
T
i (k), u

T
i (k)]

T

x̂∗i (k) = [y∗Ti (k), φ∗Ti (k), û∗Ti (k)]T

0 < α̂ij(k) < 1, 1 ≤ j ≤ n, k ≥ 0
α̂i(k) = [α̂i1(k), α̂i2(k), · · · , α̂in(k)],

(37)
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where

f̂i = f̂i(yi(k), φi(k), ui(k)) (38)

and α̂i(k) is the estimate of αi(k). And according to (26) and
AssumptionA3, α̂(k), k = 0, 1 are obtained by the following
equations

J (α̂(0)) = min
α(0)

∥∥∥Y (1)− Y ∗(1)− [F̂Y (0, α(0))+

F̂ ′Y (0, α(0))+ F̂U (0, α(0))(3A⊗ Im×n
+C(0))]E(0)‖

0 < αi(0) < 1, 1 ≤ i ≤ N
α̂(0) = [α̂1(0), α̂2(0), · · · , α̂N (0)]

(39)

and

J (α̂(1)) = min
α(1)

∥∥∥Ŷ (2)− Y ∗(2)− [F̂Y (1, α(1))+

F̂ ′Y (1, α(1))+ F̂U (1, α(1))(3A⊗ Im×n+
C(1))]E(1)‖

0 < αi(1) < 1, 1 ≤ i ≤ N
α̂(1) = [α̂1(1), α̂2(1), · · · , α̂N (1)],

(40)

where the predicition Ŷ (2) can be obtained from (34); and at
the time k = 0, 1, we denote

F̂Y (k, α(k)) = diag
[
F̂1,y1 (k, α1(k)) F̂2,y2 (k, α2(k))

· · · F̂N ,yN (k, αN (k))
]
,

F̂ ′Y (k, α(k)) =


F̂1,Y (k, α1(k))
F̂2,Y (k, α2(k))

...

F̂N ,Y (k, αN (k))


and

F̂U (k, α(k)) = diag
[
F̂1,u1 (k, α1(k)) F̂2,u2 (k, α2(k))

· · · F̂N ,uN (k, αN (k))
]
.

From (28) and (37), G(0) and G(1) are to be estimated by

Ĝ(k) = F̂Y (k, α̂(k))+ F̂ ′Y (k, α̂(k))

+ F̂U (k, α̂(k))B(k), k = 0, 1, (41)

where

F̂Y (k, α̂(k)) = diag
[
F̂1,y1 (k, α̂1(k)) F̂2,y2 (k, α̂2(k)) ,

· · · F̂N ,yN (k, α̂N (k))
]
,

F̂ ′Y (k, α̂(k)) =


F̂1,Y (k, α̂1(k))
F̂2,Y (k, α̂2(k))

...

F̂N ,Y (k, α̂N (k))

 ,
F̂U (k, α̂(k)) = diag

[
F̂1,u1 (k, α̂1(k)) F̂2,u2 (k, α̂2(k))

· · · F̂N ,uN (k, α̂N (k))
]

and

B(k) = 3A⊗ Im×n + C(k).

C. DESIGN AND ADJUST THE FEEDBACK
MATRIX GAINS
Based on the above theoretical analyses, it is easy to see
that F̂Y (k, α̂(k)), F̂ ′Y (k, α̂(k)), F̂U (k, α̂(k)) and Ĝ(k) are all
obtained after the time k . However, C(k) need be designed
before the time k . This contradiction is solved by predict-
ing F̂Y (k, α̂(k)), F̂ ′Y (k, α̂(k)), F̂U (k, α̂(k)) and presetting the
desired value ofG(k) before the time k . We preset the desired
value of G(k) in the form of the following equation

Ǧ(k) =
2Ĝ(k − 1)− Ĝ(k − 2)

(1+ β + ‖E(k − 1)‖)
∥∥∥2Ĝ(k − 1)− Ĝ(k − 2)

∥∥∥ ,
k ≥ 2, (42)

where 0 < β < +∞ can be adjusted to improve the
convergence rate. From (41), it is clear to get Ĝ(0) and Ĝ(1).
The real value of Y (1) is measured and recorded. And the
reference signal Y ∗(1) is given in advance. Thus, Ǧ(2) is
preset. Obviously, the presetting desired value Ǧ(k) satisfies
the expectation

∥∥∥Ǧ(k)∥∥∥ < 1.

The values Û∗(k) and Ŷ (k) are calculated by (32) and (34),
respectively. Let B(k − 1)E(k − 1) + [B(k − 1)E(k − 1) −
B(k − 2)E(k − 2)] be the prediction of B(k)[Y (k)−Y ∗(k)] or
B(k)E(k), in which, the real values of Y (k − 2),Y (k − 1) are
measured and recorded at the time k − 2, k − 1, respectively;
The reference signals Y ∗(k − 2) and Y ∗(k − 1) are given in
advance. From (17) and AssumptionA3, the prediction value
of U (k) can be written as

Û (k)= Û∗(k)+2B(k−1)E(k−1)−B(k−2)E(k−2). (43)

Then the predictions of F̂Y (k, α̂(k)), F̂ ′Y (k, α̂(k)), F̂U
(k, α̂(k)) can be expressed as

F̌i,yi (k) = [
∂ f̂ Ti1
∂yi

ži1(k), · · · ,
∂ f̂ Tin
∂yi

žin(k)]T

∂ f̂ij
∂yi

(žij(k)) = [
∂ f̂ij(žij(k))
∂yi1

, · · · ,
∂ f̂ij(žij(k))
∂yin

]

F̌i,Y (k) =
∂ f̂ Ti
∂Y

ži(k)

F̌i,φi (k) = [
∂ f̂ Ti1
∂φi

ži1(k), · · · ,
∂ f̂ Tin
∂φi

žin(k)]T

∂ f̂ij
∂φi

(žij(k)) = [
∂ f̂ij(žij(k))
∂φi1

, · · · ,
∂ f̂ij(žij(k))
∂φimi

]

F̌i,ui (k) = [
∂ f̂ Ti1
∂ui

ži1(k), · · · ,
∂ f̂ Tin
∂ui

žin(k)]T

∂ f̂ij
∂ui

(žij(k)) = [
∂ f̂ij(žij(k))
∂ui1

, · · · ,
∂ f̂ij(žij(k))
∂uim

]

žij(k) , x̂∗i (k)+
1
2
[xi(k)− x̂∗i (k)]

xi(k) = [yTi (k), φ
T
i (k), u

T
i (k)]

T

x̂∗i (k) = [y∗Ti (k), φ∗Ti (k), û∗Ti (k)]T

1 ≤ j ≤ n, k ≥ 0,

(44)

where

f̂i = f̂i(yi(k), φi(k), ui(k)).
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Under these predictions and the following assumption,
the feedback matrix gain B(k) for k ≥ 2.
Assumption A4: ∀k ≥ 2,Rank[F̌i,ui (k)] = m, where

F̌i,ui (k) is defined in (44).
This assumption is reasonable due to the learning

capability of NNs for nonlinear time-invariant systems.
F̌i,yi (k), F̌i,ui (k) should also satisfy Assumptions A1 and A2,
respectively. And [F̌Ti,ui (k)F̌i,ui (k)]

−1 exists. Then we can
design the gain B(k) under (44) and AssumptionsA3 andA4.
Let

Ǧ(k) = F̌Y (k)+ F̌ ′Y (k)+ F̌U (k)B(k), k ≥ 2, (45)

where

F̌ ′Y (k) =


F̌1,Y (k)
F̌2,Y (k)
...

F̌N ,Y (k)

 . (46)

From (47), one has

B(k)= [F̌TU (k)F̌U (k)]
−1F̌TU (k)[Ǧ(k)−F̌Y (k)−F̌

′
Y (k)]. (47)

The real control input at the time is designed as

U (k) = Û∗(k)+ B(k)[Ŷ (k)− Y ∗(k)], k ≥ 2, (48)

where the values Û∗(k) and Ŷ (k) are calculated by (32)
and (34), respectively. Using B(k − 1) in place of B(k),
the real value of Y (k) can be measured and recorded. By (37),
F̂i,yi (k, αi(k)), F̂i,φi (k, αi(k)) and F̂i,ui (k, αi(k)) are obtained
under the real values of U (k) and Y (K ). Thus, we can obtain
the estimate α̂(k) = [α̂1(k), α̂2(k), · · · , α̂N (k)] from{
J (α̂(k)) = min ‖Y (k + 1)−Y ∗(k + 1)−Ĝ(k)E(k)‖
0 < αi(k) < 1, 1 ≤ i ≤ N ,

(49)

where the prediction Ŷ (k+1) is obtained from (34). The same
to (41), we can get that

Ĝ(k) = F̂Y (k, α̂(k))+ F̂ ′Y (k, α̂(k))+ F̂U (k, α̂(k))B(k),

k ≥ 2, (50)

where

F̂Y (k, α̂(k)) = diag
[
F̂1,y1 (k, α̂1(k)) F̂2,y2 (k, α̂2(k))

· · · F̂N ,yN (k, α̂N (k))
]
,

F̂ ′Y (k, α̂(k)) =


F̂1,Y (k, α̂1(k))

F̂2,Y (k, α̂2(k))

...

F̂N ,Y (k, α̂N (k))


and

F̂U (k, α̂(k)) = diag
[
F̂1,u1 (k, α̂1(k)) F̂2,u2 (k, α̂2(k))

· · · F̂N ,uN (k, α̂N (k))
]
.

Store the values B(k) and Ĝ(k) for presetting Ǧ(k + 1)
and designing and B(k + 1) during the next time interval
(k, (k + 1)).

D. CHECK THE TRAJECTORY TRACKING ERROR
For any the time k ≥ 2, we need check each ‖ei(k)‖. If
‖ei(k)‖ < εi, where εi is the maximum tolerable tracking
error for agent i, then, from this moment, feedback gain
matrix is to be continued to use B(k); otherwise, the feedback
gain matrix is obtained from Step 3, until ‖ei(k)‖ < εi.

IV. ALGORITHM CONVERGENCE ANALYSIS
In the section, the convergence condition of the indirect data-
driven output trajectory tracking control (IDDOTTC) algo-
rithm is studied.
Theorem 2: For the multi-agent system, under Assump-

tions A1-A4, if for any k ≥ 2

sup
Dy×Du

[∥∥∥G(k)− Ĝ(k)∥∥∥] = δc ≤ ∞,
sup

Dy×Du

[∥∥∥Ĝ(k)− Ǧ(k)∥∥∥] = δp ≤ ∞,
max

{
δc, δp

}
<

β

2(1+ β)
, (51)

where 0 < β < ∞ is emerged in (42). Then the sys-
tem outputs Y (k) converge to the reference trajectory Y ∗(k).
In other words, for each subsystem, the output yi(k) tracks the
reference trajectory y∗i (k).
Proof 2: For the multi-agent system, when (51) is satis-

fied, thus for any k ≥ 2, one has

‖G(k)‖ =
∥∥∥G(k)− Ĝ(k)+ Ĝ(k)− Ǧ+ Ǧ∥∥∥

≤

∥∥∥G(k)− Ĝ(k)∥∥∥+ ∥∥∥Ĝ(k)− Ǧ∥∥∥+ ∥∥∥Ǧ∥∥∥
≤ δc + δp +

1
1+ β + ‖E(k − 1)‖

<
β

2(1+ β)
+

β

2(1+ β)
+

1
1+ β

= 1. (52)

Thus, ∀k ≥ 2, ‖E(k + 1)‖ ≤ ‖G(k)‖ ‖E(k)‖ < ‖E(k)‖.
It is easy to know that the system output Y (k) asymptoti-
cally converges to the reference trajectory Y ∗(k) after the
time k = 2.
Remark 5: In (51), δc reflects the nonlinear approxi-

mation capability of NN and δp reflects the approxima-
tion precision. A sufficient condition for the convergence
of the indirect data-driven output trajectory tracking con-
trol algorithm by Theorem 2, which is to guarantee that
‖G(k)‖ < 1.
This theorem also shows that the NN has to perform well

in establishing approximate model due to the strong learn-
ing capability of NNs. It is noted that with the NN alone,
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the modeling errors are inevitable and hence it cannot make
yi(k) → y∗i (k) as k → ∞. The IDDOTTC algorithm not
only uses the NN to establish the approximate model, but also
compensates the modeling errors online. output trajectory
tracking In this sense, this algorithm integrates the merits of
both the data-driven decoupling control (DDDC) algorithm
and indirect data-driven control (IDDC) algorithm.

V. CONCLUSION
In this study, the trajectory tracking control of a class of
nonlinear discrete-time multi-agent systems with unknown
dynamics. Based on Lagrange’s mean value theorem, for each
agent, the given reference trajectory, there exists a unique
control input such that the dynamics is satisfied. Meanwhile,
based on the its neighbors’ and its own history I/O data
and neural network, the approximate models are established
to estimate the unknown functions, the indirect data-driven
method is adopted to predict and estimate some relative
model structure matrices, and then, design and adjust the
feedback gains such that outputs of each agent tracks the
given reference trajectory. In the future work, we will be
to investigate the trajectory tracking control of a class of
nonlinear discrete-time multi-agent systems with stochastic
noise.
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