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ABSTRACT Diabetic retinopathy (DR) is a disease that forms as a complication of diabetes. It is particularly
dangerous since it often goes unnoticed and can lead to blindness if not detected early. Despite the clear
importance and urgency of such an illness, there is no precise system for the early detection of DR
so far. Fortunately, such system could be achieved using deep learning including convolutional neural
networks (CNNs), which gained momentum in the field of medical imaging due to its capability of being
effectively integrated into various systems in a manner that significantly improves the performance. This
paper proposes a computer aided diagnostic (CAD) system for the early detection of non-proliferative
DR (NPDR) using CNNs. The proposed system is developed for the optical coherence tomography (OCT)
imaging modality. Throughout this paper, all aspects of deployment of the proposed system are studied
starting from the preprocessing stage required to extract input retina patches to train the CNN without
resizing the image, to the use of transfer learning principals and how to effectively combine features in
order to optimize performance. This is done through investigating several scenarios for the system setup
and then selecting the best one, which from the results revealed to be a two pre-trained CNNs based system,
in which one of these CNNss is independently fed by nasal retina patches and the other one by temporal retina
patches. The proposed transfer learning based CAD system achieves a promising accuracy of 94%.

INDEX TERMS Convolutional neural network (CNN), diabetic retinopathy (DR), optical coherence

tomography (OCT).

I. INTRODUCTION

Ophthalmologists today are capable of leveraging computer
assisted diagnostic (CAD) systems to inform their opinions,
in contrast to the traditional methods of visual interpretation
and observation. CAD systems are still a new technology in
the field of medicine, and there is a continuous flux of interest
in the development of such systems due to their capability
of improving the medical services provided to the commu-
nity in terms of accuracy and reliability in the diagnosis of
diseases. Meanwhile, machine learning is paving the way
for breakthroughs in the different areas of medical imag-
ing such as in classification [1], segmentation [2], disease
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detection [3], and image registration [4]. The application of
deep learning [5]-[8] a subset of machine learning algo-
rithms, has made tremendous impact in the area of medical
image processing research [9], [10]. Deep learning is the
leading machine learning paradigm in computer vision and
image processing domains, particularly as regards convolu-
tional neural networks (CNNs) [11]. CNN are especially pow-
erful in solving problems that are computationally difficult
or with a high error rate such as medical image recognition
with outstanding performance results [12]. In this context,
we determined to use CNNs for the early detection of one
of the most serious ophthalmological concerns, which is dia-
betic retinopathy (DR).

Blindness resulting from diabetes, which is becoming
an increasingly alarming issue, is a consequence of the
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associated eye disease: DR. Such disease which develops as
a complication of diabetes, particularly type II [13], [14],
occurs specifically from the chronic high levels of sugar in the
blood associated with swelling and damage of the tiny retinal
blood vessels in the eye [15]-[17]. This leads to distortion
of the vision followed by scarring of the retina in advanced
stages, and finally consequent blindness [16]. It is worth
mentioning that DR is one of the leading causes of blindness
in adults [18], [19]. This problem is further exacerbated by the
fact that 75% of the diabetic patients are not aware of the eye
complications that they may be experiencing [13]. To prevent
such a ramification, it is paramount to diagnose DR as soon
as possible. Early detection and intervention can slow down
the process and halt it completely [20], [21], which in turn
protects the vision of the patient [22]. However, despite the
significance of this matter and the notable rise in prevalence
of diabetes, a precise procedure to detect early retinal changes
for DR prevention is absent [17], [21].

DR can be broadly classified as proliferative (PDR) or
non-proliferative (NPDR) [10]. NPDR is characterized by the
presence of damaged blood vessels in the retina in addition
to fluid leakage, which results in the retina swelling and
wetness. In the case of PDR, multiple regions of the retina are
affected by the appearance of new abnormal blood vessels,
which makes it a severe and advanced DR stage. The work
presented in this paper is limited only to NPDR.

One of the ophthalmic imaging modalities used for early
DR detection is funduscopy [23], [24]. This modality is an
area of active research for the development of CAD systems,
because while funduscopy is well understood in terms of its
imaging principles, interpretation requires a highly trained
ophthalmologist; hence it is expensive [25]. Related work on
fundus imaging for early detection of DR includes a train-
able system for automated micro-aneurysm detection [26],
performing with 65% sensitivity and averaging 27 false
positives per image by supposition testing. Another system
presented in [27] is able to detect hard and soft exudates
based on combining fine and coarse segmentation, however
it sometimes does not discriminate between exudates and
non-exudate regions if their features are similar. On the
other hand, in [28], Pachiyappan et al. use a combination
of filtering, morphological processing, and thresholding for
DR macular abnormalities detection, while in [29], auto-
matic extraction of retinal vasculature was performed in order
to obtain the blood vessels network. Similar feature-based
algorithms for fundus image interpretation have also been
reviewed in [30]. Recently, CNNs have also been used
for exudate detection in fundus images from diabetic
patients [31]. For the optical coherence tomography angiog-
raphy (OCTA), Eladawi et al. [32] proposed a CAD system
for the early detection of DR based on vascular segmenta-
tion of various layers of the retina using spatial statistical
modeling.

Nonetheless, another medical imaging modality that may
be employed in the early detection of DR is optical coherence
tomography (OCT) [33], which is useful because it facilitates
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retinal morphology evaluation to microscopic resolution [34].
In turn, various retinal abnormalities including glaucoma,
macular degeneration, and diabetic macular edema may be
diagnosed in a non-invasive manner. Compared to fundus
imaging, OCT is more favorable because it supports quanti-
tative evaluations as it capable of capturing depth, in addi-
tion to its lower cost, and its ability to allow human bias
free monitoring of changes [35]. However, OCT is relatively
unexplored in comparison to fundus images in terms of early
detection of DR. Related to this, Roychowdhury ez al. [36]
presented an OCT automatic system for localizing cysts with
diabetic macular edema (DME) using 6 layers of the retina.
Correia et al. [37] used Monte Carlo simulation to find the
changes in the OCT images of DME patients from the cellular
perspective. Trabelsi et al. [38] presented a technique to
detect cystoids macular edema from OCT images.

This paper investigates the early detection of DR in
OCT images, which is principally performed using CNNs.
The proposed system has an optimal CNN architecture
for early detection of DR through the exploration of
various CNN configurations and parameters. In contrast
to conventional feature extraction methods, using CNNs
effectively classifies normal and DR images without the
need for features that are extracted manually. The system
starts with roughly segmenting the 12 layers of the retina
and localizing the fovea using unsupervised learning [39].
Patches are then extracted from both the nasal and temporal
sides of the fovea. These patches which are extracted from
different subjects are aligned in both x and y directions,
where the x-direction alignment is dependent on the location
of the fovea, while the y-direction alignment is performed
based on the position of a certain retina layer. Different retina
layers have been investigated to be used for the y-direction
alignment. The aligned nasal patches and the aligned tem-
poral patches are then used for training CNNSs, from which
features are extracted and then fused using support vector
machine (SVM) that is responsible for giving the final clas-
sification (DR vs normal). Throughout the work, different
scenarios for training the CNNs have been tested, among
which transfer learning is used. The following items are
studied: 1) the effect of transfer learning on improving the
performance of the proposed CAD system, given the scarcity
of the data; 2) the effect of fusing CNNs retrained with differ-
ent datasets on the overall system performance; 3) the depth
of CNN layers required to extract features to train the final
classifier used for data fusion; and 4) the OCT layer required
to be segmented in order to be used for the y-coordinate axis
alignment of the extracted patches for optimum results. The
rest of this paper is organized in three sections as follows: a
section that presents the materials and methods, followed by
a section that discusses the experimental results, and finally
the conclusion is given in the last section.

Il. MATERIALS AND METHODS
A simplified block diagram of the proposed CAD system
for early detection of DR in OCT images using CNNs is
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FIGURE 1. Simplified block diagram of the proposed CAD system for early detection of DR in OCT images using CNNs.

shown in Fig. 1. The proposed system is composed of (1)
a preprocessing stage which includes rough segmentation
of retina layers, and fovea detection, in addition to patch
extraction and alignment; (2) a CNN-based feature extraction
stage; and (3) a classification stage. The details of these stages
as well as the used dataset and the used validation technique
are given below.

A. OCT DATASET

Patients with and without DR were enrolled at the Ken-
tucky Lions Eye Center at University of Louisville between
June 2015 and December 2015 (University of Louisville IRB
protocol 18.0010). Informed consent (or assent) was pro-
vided by each participant. Exclusion criteria included history
of retinal pathology, including diabetes-related, and severe
myopia, defined as refractive error < —6.0 diopters. In all,
52 subjects were enrolled, 26 of whom had DR, ranging in
age from 40 to 79 years.

Data used for training and testing of the CAD system
were obtained using a clinical OCT scanner, Cirrus HD-OCT
5000 (Carl Zeiss Meditec, Dublin, California). B-scans were
obtained over a 21-line raster across the macula of both eyes.
For each eye, a single B-scan, passing through the fovea, was
selected for analysis. Images were 1024 x 1024 pixels, 8 bit
grayscale, capturing an optical slice 2 mm deep and 9 mm
from side to side (nasal-temporal).

B. PREPROCESSING

The preprocessing stage is illustrated in Fig. 2, where we
extract the input patches to be fed to the CNN as appropriate.
This starts with rough segmentation of the retina proper from
the rest of the image, and identification of the fovea. The
results of the prior two processes are then used for the posi-
tioning and extraction of the appropriate patches as per the
schema of the proposed system. The segmentation of the orig-
inal OCT scan into twelve different layers is performed by
the application of an unsupervised parametric mixture model
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and Markov Gibbs Random Fields [39]. This is inspired from
the appearance of the retina in an OCT B-scan, which reveals
approximately 12 bands of greater or lesser reflectivity as
shown in Fig. 3. Histological studies have correlated these
bands with the layers of the retina, proceeding from the
vitreous body to the choroid: 1. nerve fiber layer (NFL),
2. ganglion cell layer (GCL), 3. inner plexiform layer (IPL),
4. inner nuclear layer (INL), 5. outer plexiform layer (OPL),
6. outer nuclear layer (ONL), 7. external limiting membrane
(ELM), 8. myoid zone (MZ), 9. ellipsoid zone (EZ), 10. outer
segments of the photoreceptors (OPR), 11. interdigitation
zone (IZ), and 12. the retinal pigment epithelium (RPE).

As shown in the OCT image in Fig. 3, the retina has
12 layers, with the fovea in the middle of the image. The
thickness of these 12 layers are not constant all over the
image. So we can find that at the fovea, the vitreous body is
nearly adjacent to the ONL (layer 6), while layers 1-5 almost
vanish. Also, layers 1-5 are thickest in the foveal rim, which
is surrounding the fovea. This structure is common among
retinas of different subjects, so it could be used to roughly
detect the fovea location and guide the patch extraction proce-
dure for consistent representation of the retina across different
OCT images. Patches were extracted from both sides of the
fovea (the temporal and nasal sides) and oriented to align
with the retinal layers. Consequently, the amount of extracted
background (vitreous or choroid) is minimized, and feature
extraction should be independent of any peculiarities (e.g.
slight tilt or off-center) of a given OCT scan.

The fovea coordinate localization starts off with applying
a median filter in order to remove any impulsive noise. This
is then followed by the ““a trous” algorithm [40] that decom-
poses each scan into scale-space components of coarser and
finer detail by undecimated wavelet transform as per the
aforementioned details. Edge detection in scale space allows
for easy identification of high contrast boundaries in the OCT
image: vitreous-NFL, MZ-EZ, and RPE-choroid. Contours
are first detected as local gradient maxima in the appro-
priate wavelet component, then smoothed using adaptive
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FIGURE 2. Preprocessing stage of the proposed CAD system.
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spline smoothing. Considerations of typical retina structure,
above, lead to identification of the fovea with the point on
the vitreous-NFL boundary at minimum distance from the
MZ-EZ boundary. When computing these distances, it is
important to correct for the non-square pixel aspect ratio of
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typical OCT scanners. The preprocessing algorithm is based
on the work presented in [39].

Upon the detection of the fovea, the required patches’
locations along the x-coordinate axis are computed appro-
priately, i.e. with the origin at the fovea. These calculated
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FIGURE 4. Patch extraction framework.

points are used for extracting the corresponding vertical slice
from the segmentation mask of the layer that we would be
centering the patch extraction at for the y-coordinate axis.
The sum of the values of the pixels of these extracted slices
along the x-axis is then considered to take into account any
orientation or skewness display of the OCT scan. It acts as
an efficient measure where if it is greater than zero then the
corresponding row contains a significant part of the layer.
The resultant of the final algorithm of the preprocessing
stage as shown in Fig. 4 is a representative patch for each of
the temporal and nasal sides, i.e. extracted image from the
original OCT, that is in a matching size to the input layer
of the CNN. Similar to the nasal and temporal patch extrac-
tion procedure discussed above, the preporcessing module
could be tuned to generate center patches with the fovea in
the middle as well as nasal and temporal patches that are
distal from the fovea. These patches will be used in addi-
tion to the nasal and temporal patches to investigate several
scenarios for the system setup, in order to select the best
one.

The preprocessing stages inherently compensates for the
mismatch between the dimensional size of the original OCT
scans that are the input image data and that of the input layer
of pre-trained CNNs, which will be used for feature extraction
as discussed below. The preprocessing stage also eliminates
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unimportant information; hence, improving the speed and
efficiency of the system.

C. FEATURE EXTRACTION AND CLASSIFICATION

Generally, the patches provided at the output of the prepro-
cessing stage are fed into a CNN/CNNs from which features
are extracted from certain layers. The involved CNN could be
pre-trained i.e. based on transfer learning or not. Throughout
the work, the AlexNet CNN shown in Fig. 5 is used with an
input patch of size 227 x 227 x 3. The CNNs with no transfer
learning are randomly initialized.

In order to find out the optimum parameters for the pro-
posed system, various scenarios were investigated throughout
this work to determine: 1) whether the application of transfer
learning improves the accuracy of the algorithm rather than
just training the network from scratch, taking into consider-
ation the fact that the dataset size is relatively small; 2) the
patches to be used for best performance (distal nasal patches,
nasal patches, central patches, temporal patches and/or dis-
tal temporal patches); 3) the OCT layer to be used for the
y-direction alignment; and 4) The CNN layer to be used
for feature extraction. A generic framework that illustrates
various scenarios is given in Fig. 6. The figure has 7 CNNs,
where the features extracted from each CNNi is stored in a
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FIGURE 5. AlexNet CNN model architecture.
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FIGURE 6. Feature extraction and classification generic framework used to investigate several scenarios. Patches provided by the preprocessing
stage are fed into Convolutional Neural Networks (CNNs), from which features are extracted and then fed into a Support Vector Machine (SVM) to
perform classification. The investigated CNNs are 1) CNN1: Distal Nasal patch pre-trained CNN, 2) CNN2: Nasal patch pre-trained CNN, 3) CNN3:
Nasal patch CNN (no transfer learning), 4) CNN4: Central patch pre-trained CNN, 5) CNN5: Temporal patch pre-trained CNN, 6) CNN6: Temporal
patch CNN (no transfer learning) and 7) CNN7: Distal Temporal patch pre-trained CNN. fv1, fv2, fv3, fv4, fv5, fvé and fv7 are the extracted feature
vectors. Within a specific scenario, the 7 CNN branches shown in the figure are not used altogether, but 1 or more branches are selected, however
all branches are included in the figure for illustration purpose only.

corresponding feature vector fvi. Each scenario will investi- SVM, a machine learning architecture used in classification

gate the use of 1 or more CNNs out of these 7 CNNs but all the
branches shown in the figure will not be used at the same time.
They are included in a single figure for illustration purpose
only. The extracted feature vector(s) is/are fed into a linear
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problems [41], with a fast stochastic gradient descent solver
for the final classification. If more than 1 CNN is involved
in the scenario, the corresponding feature vectors are fused
at the beginning of the SVM module. This is carried out by
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concatenating the features that are extracted by default from
the bottleneck stages of the CNNs. The CNNs involved in
various scenarios are 1) CNN1: Distal Nasal patch pre-trained
CNN, 2) CNN2: Nasal patch pre-trained CNN, 3) CNN3:
Nasal patch CNN (no transfer learning), 4) CNN4: Central
patch pre-trained CNN, 5) CNNS5: Temporal patch pre-trained
CNN, 6) CNN6: Temporal patch CNN (no transfer learning)
and 7) CNNT7: Distal Temporal patch pre-trained CNN.

Scenario 1 and Scenario 2 are concerned only with the
nasal patches and are used to investigate whether transfer
learning enhances the performance or not. In Scenario 1,
CNN?2 is used alone, while in Scenario 2, CNN3 is used
alone. The training of CNN2 and CNN3 is done using the the
normal/DR dataset described above after being preprocessed.
The pre-training of the CNN to be used for transfer learn-
ing was performed on a subset of the large-scale ImageNet
database [42], containing 1.2 million real-life images and
1000 object categories.

The pre-training is used only as far as layer pool5 (Fig. 5)
for the activations of the hidden layers, while subsequent lay-
ers of the AlexNet are treated identically for the comparison
between the use and non-use of transfer learning. Similarly,
in Scenario 3 and Scenario 4, patches that are extracted
from the temporal side of the fovea are likewise input to
two AlexNet CNNs, one of which was pre-trained (CNNS5 in
Scenario 3), and the other was not (CNNG6 in Scenario 4), for
the purpose of carrying out the same comparison. Note that
each grayscale patch is input to all three different channels
of the AlexNet, which was designed to operate on color
images. Scenario 5 investigates using only the pre-trained
CNN4 which is fed by central patches with the fovea in the
center.

It was also tested whether improved accuracy would result
from fusion of various input data, as in Scenario 6 and Sce-
nario 7, where fusion of features extracted from pre-trained
CNN s is involved. It is worth mentioning that our experiment
is hypothesized to show that transfer learning does improve
the results particularly with small datasets. In Scenario 6,
both nasal and temporal patches are used with the pre-trained
CNN2 and CNNS respectively. Scenario 5 and Scenario
6 incorporate information from both the nasal and temporal
sides of the fovea. However, information from both sides
are used independently in Scenario 6 as patches from each
side is fed into an independent CNN, while in Scenario 5,
the information from both sides are used with a single CNN
(CNN4). Scenario 7 investigates using 4 type of patches to
train 4 pre-trained CNNs independently and then feed the
corresponding extracted features into the SVM module to
perform classification. The patches are distal nasal patches,
nasal patches, temporal patches and distal nasal patches that
correspond to CNN1, CNN2, CNN5 and CNN7 respectively.
The distal nasal and temporal patches are extracted farther
away from the fovea compared to the nasal and temporal
patches respectively.

For the scenario with the best performance, an investiga-
tion is carried out in order to find out the optimum parameters
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Layer 7 (ELM)
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FIGURE 7. DR sample patches centered with different OCT layers. (a):
Original OCT scan from a subject with DR. (b): OCT scan corresponding
joint layers mask for segmentation. (c) and (d): Patches extracted to the
temporal and nasal side of the foveal pit respectively from a subject with
DR centered across the y-coordinate axis with different OCT layers.

for the best performance regarding the layer at which we
carry out transfer learning. This is done by varying the CNN
layer used for extracting the features. The following layers are
used for comparison of the performance results: (i) one layer
above the bottleneck features which is relu6 layer, {fc6}; (ii)
the layer with the bottleneck features which is pool5 layer,
{P5}; (iii) one layer before the bottleneck features which is
relu5 layer, {C5}; and (iv) two layers before the bottleneck
features which is relu4 layer, {C4}. In this investigation,
both the results in terms of accuracy and the computation
expense for an overall performance evaluation are taken into
consideration.

Furthermore, for each of the previous scenarios, the default
preprocessing pipeline for each of the OCT scans includes
fovea detection. This is required to extract patches at stan-
dardized locations relative to the center of the fovea. This
preprocessing step uses the ONL for y-direction alignment.
However, it is noteworthy to mention that different exper-
iments were carried out for the scenario with the best
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performance, where all other parameters are fixed except for
OCT layer used for the y-direction alignment, in order to find
the layer that achieves the optimum results and hence further
improves the algorithm. The layers that were considered in
this sub-experiment are: (i) layer 5 or the OPL; (ii) layer
6 or the ONL,; (iii) layer 7 or the ELM; (iv) layer 8 or the
MZ; and (v) layer 9 or the EZ. Samples of such extracted
patches are shown in Fig. 7. Scenario 8 (not included in Fig. 7)
explores using resized whole retina images to directly train a
pre-trained CNN, as opposed to using only patches from the
retina in Scenarios 1 through 7.

D. VALIDATION

Five-fold cross validation is used for the evaluation of each of
the investigations of the CNN CAD system for early detection
of DR. This is a particular case of k-fold cross validation,
where k = 5 training runs are performed, each time leaving
out a fraction % of the data for subsequent testing. In this way
every available observation (OCT scan) is used for both train-
ing and (exactly once) for testing. This is in contrast to the
traditional hold-out method where a fixed proportion of the
data are set aside from the beginning of the experiment to be
used only for validation. Cross validation has the advantage
of making the most of a limited amount of data, but is known
to produce biased estimates of system performance.

The performance metrics used are accuracy («), error rate
(B), specificity (x), precision (PPV), and recall (TPR). If TP
is the number of correctly classified DR cases in a particular
run of cross validation, TN is the number of correctly classi-
fied normal cases, and P = TP + FP and N = TN + FN are
the total number of DR and normal cases in the test data, then
these metrics are defined as:

TP + TN

= 1
T PiN M
B=1-a 2

TN
= — 3)
FP + TN
TP
PPV = — 4
TP + FP
TP
TPR = — 3)
TP + FN

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

Shown in Table 1 are the comparative results of the investi-
gations carried out for various scenarios. In addition to the
aforementioned performance metrics, the respective standard
deviations across the folds are noted. The standard deviation
of the error metric corresponds to that of the accuracy as they
are complementary measures. First, we investigate the effect
of transfer learning application on the proposed system by
comparing Scenario 1 with Scenario 2 and Scenario 3 with
Scenario 4. The input to the CNNs in the case of Scenario
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1 and Scenario 2 is patches extracted only from the nasal side
of the fovea. The CNN used in Scenario 1 was pre-trained
while that used in Scenario 2 was not. Moreover, the input to
the CNNs in the case of Scenario 3 and Scenario 4 is patches
extracted only from the temporal side of the fovea. The
CNN used in Scenario 3 was pre-trained while that used in
Scenario 4 was not. Both comparisons show a clear increase
in performance across all of the measures when using transfer
learning. Second, we compared the performance results in the
case of training the proposed system with a single patch with
the fovea centered (Scenario 5) versus training the system
with independent nasal and temporal patches (Scenario 6 and
Scenario 7). Scenario 6 uses two independent patch types
for training, which are nasal patches and temporal patches,
while Scenario 7 uses two additional independent patch types,
which are distal nasal patches and temporal nasal patches.
It was found that using independent patch training to combine
two or four patches results in the highest performance metrics
across the board. However, it can also be observed that the
training time taken for the four patches scenario is almost four
times that of the two patches scenario, with no improvement
in any of the metrics. As such, only the two-patch approach is
accounted for in the next investigation of finding the optimum
CNN layer to extract the features from. It can be derived from
the summary in the table that the bottleneck features represent
the best choice in terms of balance between the run time
required, i.e. computational complexity, and the accuracy.
Finally, in choosing the OCT layer to align the extraction of
the input patches at, we find that layer 6 is the best given
that it reaches the highest performance metrics. Although
other layers achieve similar levels of accuracy, error rate,
specificity, precision, and recall, they all require more time
to train. As such, the final design choices for the proposed
system is the CNN retrained with two patches, one on each
side of the fovea, with the ONL centered vertically within
each patch. The features are extracted from pool5 CNN layer
and transfer learning is applied in the deployment of the
proposed system.

Additional testing was carried out in order to confirm that
the CNN architecture is not biased due to color space, for
the ImageNet dataset is RGB while our dataset is intrin-
sically grayscale. Hence, we retrained the network with
200 grayscale images and reapplied our investigation. The
result was conclusive that the network is independent of the
color space as the results obtained exactly matched that of
directly using the ImageNet pre-trained CNN.

Significant degradation of performance resulted upon
downsampling, as shown in Table 1 (Scenario 8). After train-
ing with downsampled images, accuracy was at most 78%
(71% specificity, 78% precision, and 100% recall). Every
metric, except for the recall, was lower comapred to that of
the CNN trained at full resolution. Based on this, resampling
of input should be avoided, and extraction of patches as per
the proposed methodology is recommended.

Moreover, the confusion matrix of the chosen CNN for the
proposed early DR detection CAD system is shown in Fig. 8.
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TABLE 1. Summary of proposed system findings.

Accuracy AccSl;:'lacy Error Rate | Specificity Spegzilmty Precision Presc:(sllon Recall R;::;“ %ﬁte“zf)
Scenario I: Nasal Alone (Transfer learning) 92.00% | 0.08370 8.00% 89.33% | 009830 | 93.78% | 005700 | 97.78% | 005640 | 0.15
(pool5 - layer6) - 32 batches
Scenario 2: Nasal Alone (No transfer learning) | 54 goqr | 005480 |  46.00% 4286% | 004120 | 66.67% | 020410 | 8429% | 020450 | 048
(pool5 - layer6) - 32 batches
Scenario 3: Temporal Alone (Transfer learning) | ccn0qr | 008040 |  34.00% 6672% | 0.18840 | 73.00% | 0.16430 | 91.00% | 0.12450 | 0.15
(pool5 - layer6) - 32 batches
Scenario 4: Temporal Alone (No transfer Tearning) | <0 00 | 0,00000 50.00% 30.00% 0.00000 | 76.79% | 022520 | 66.79% | 020660 | 0.47
(pool5 - layer6) - 32 batches
Scenario 5: Center (Transfer learning) 80.00% | 0.10950 20.00% 80.29% 0.13470 87.33% | 008330 | 91.28% | 0.15350 | 043
(poolS5 - layer6) - 32 batches
Scenario 6: Tiwo Patches (Transfer learning) 94.00% | 0.05480 6.00% 88.00% | 010950 | 90.00% | 0.09130 | 100.00% | 0.00000 | 0.42
(poolS5 - layer6) - 32 batches
Scenario 7 Four Paiches (Transfer learning) 94.00% | 0.05480 6.00% 88.00% 0.10950 90.00% | 0.09130 | 100.00% | 0.00000 | 0.42
(pool5 - layer6) - 32 batches
Scenario 6: Tiwo Patches (Transfer leamning) 8400% | 0.05480 16.00% 7200% | 017890 | 79.52% | 0.12250 | 96.00% | 0.08040 | 0.42
(relu6 - layer6) - 32 batches
Scenario 6: Two Patches (Transfer leamning) 9400% | 0.05480 6.00% 88.00% | 0.10950 | 90.00% | 009130 | 100.00% | 0.00000 | 0.42
(relu5 - layer6) - 32 batches
Scenario 6: Two Patches (Transfer learning) 9200% | 0.04470 8.00% 84.00% | 008940 | 86.67% | 007450 | 100.00% | 0.00000 | 0.40
(relu4 - layer6) - 32 batches
Scenario 6: Two Patches (Transfer learning) 88.00% | 004470 | 12.00% 88.00% | 0.10950 | 90.00% | 0.09130 | 88.00% | 0.17890 | 043
(pool5 - layer5) - 32 batches
Scenario 6: Tiwo Patches (Transfer learning) 94.00% | 0.05480 6.00% 88.00% 0.10950 90.00% | 0.09130 | 100.00% | 0.00000 | 0.42
(pool5 - layer7) - 32 batches
Scenario 6: Tiwo Patches (Transfer learning) 92.00% | 0.04470 8.00% 84.00% 0.08940 86.67% | 0.07450 | 100.00% | 0.00000 | 0.40
(pool5 - layer8) - 32 batches
Scenario 6: Tiwo Patches (Transfer learning) 94.00% | 0.05480 6.00% 88.00% 0.10950 90.00% | 0.09130 | 100.00% | 0.00000 | 0.42
(poolS5 - layer9) - 32 batches
Scenario 8: Resized Image (Transfer learning) 78.00% | 0.13040 22.00% 71.23% 0.12400 78.00% | 0.13040 | 100.00% | 0.00000 | 0.40
(poolS5) - 32 batches

Diabetic Retinopathy

True Positive (TP)
= (26) 100%

False Positive (FP)
=(3) 12%

Diabetic Retinopathy

Precision
=90%

False Negative (FN)

= (0) 0% 100%
True Negative (TN) Specificity

= (23) 88% =88%
Accuracy

=94%

FIGURE 8. Confusion matrix for proposed computer aided design system for early DR detection with CNNs.

TABLE 2. Comparison of our proposed system with four other machine
learning classifiers.

Classifier Accuracy | Recall | Specificity
CNN+SVM (proposed) 94% 100% 88%
K-Star(*) 89% 89% 89%
K-Nearest Neighbor (kNN) 84% 84% 83%
Random Forest 82% 82% 82%
Random Tree 81% 81% 81%

Finally, a comparison of our proposed technique against other
machine learning techniques shows its superiority as can be
observed in Table 2. It is worth mentioning that we used the
same methodology described in [35] to implement the com-
parison framework using Matlab-ready K-Star, K-Nearest
Neighbor (kNN), Random Forest, and Random tree
classifiers.

IV. CONCLUSION

Early intervention is essential to delay or prevent compli-
cations of DR, including blindness. As such, in this paper,
a novel CAD system for early detection of DR-related
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changes in OCT images using CNNs was presented. The sys-
tem was developed for use with patients with almost clinically
normal retina appearances.

Upon investigation of the various scenarios for the pro-
posed CAD system, the optimal conditions for its deployment
were found. Foremost, transfer learning should be used to
achieve high accuracy given the scarcity of the data. Second,
best results are seen when combining the output features
of two independently trained CNNs, which operate on both
sides of the fovea. Features extracted at the pool5 layers of
these CNN provided for the highest accuracy with the least
computational complexity. Finally, in order to reach highest
accuracy, which our results found to be 94 %, the patches
extracted for training and testing should be aligned along the
y-axis using the patch extraction algorithm presented with
the segmented OCT layer number 6, or the ONL. This paper
recommends that further research is directed towards this
relatively uncharted topic, especially with OCT images, for
the results were observed to be high even given the scarcity
of the data and the relative complexity of the problem.
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