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ABSTRACT This paper is concerned with distributed fusion (DF) estimation problem for nonlinear
multi-sensor systems with correlated noises. Based on a recursive linear minimum variance estimation
(RLMVE) framework, a novel filter is developed. It is proved that the RLMVE-based filter and the existing
de-correlated filter have the functional equivalence. Then, for multi-sensor cases, cross-covariance matrices
between any two local filters are derived. Based on the RLMVE-based filter and cross-covariance matrices,
a DF filter weighted by matrices is proposed in the sense of linear minimum variance. Finally, based on
the existing de-correlated filter, the algorithm of cross-covariance for de-correlated systems and the DF
algorithm weighted by matrices, a de-correlated DF filtering algorithm is proposed. An example verifies the
effectiveness of the proposed RLMVE-based DF filter.

INDEX TERMS Multi-sensor, nonlinear system, distributed fusion filter, cross-covariance matrix, linear
minimum variance estimation.

I. INTRODUCTION
INFORMATION fusion is one of the important technologies
in intelligent detection and estimation fields, and has been
widely applied in target tracking, navigation, monitoring,
fault-tolerant control, Big Data, and so on [1]–[6]. The fusion
estimation is one of the significant research topics in infor-
mation fusion technologies. In general, fusion estimation
processing can be performed in a centralized or distributed
manner [2], [5]–[7]. In a centralized fusion (CF) framework
[8], [9], measurements of all sensors are sent to fusion center
for estimation and output. The advantage of CF is that its
estimation accuracy is globally optimal when all sensors are
faultless. However, in large sensor networks, the tremendous
computing workload in the fusion center will embarrass the
real-time performance of systems. Even in some situations,
CF is often impossible to be realized, due to limitations
in communication bandwidth, sensor power, and available
communication hardware.

In a distributed fusion (DF) framework, local estimates
are sent to a fusion center for processing according to a
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certain performance criterion. Estimation accuracy of DF
is usually locally optimal and globally suboptimal under
different performance criteria. So, its estimation accuracy
is usually lower than CF′s. But DF has better robustness
and flexibility because of the parallel computing architec-
ture. DF is usually preferable in wireless sensor networks
(WSN), as it allows each sensor node to process locally
measurements and it is much more efficient in communi-
cation compared to CF [2], [10]. Currently, the federated
Kalman filters, fusion algorithms weighted bymatrices, diag-
onal matrices, and scalars [5], [6], [11], covariance intersec-
tion (CI) fusion algorithm [12]–[18], etc. have been used for
the DF framework.

In general, almost all systems are nonlinear. Therefore,
information fusion estimation for nonlinear systems has
attracted more and more attention, and has always been
one of the hot issues in information fusion fields [19]–[25].
Due to the complexity and uncertainty of nonlinear
systems, the information fusion estimation for nonlinear
systems has not been well solved. Linearizing nonlinear
parts and using linear methods are often used for
fusion estimation of nonlinear systems [9]. But the
Taylor series expansion used for linearization often makes
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deviations or even divergence when system states change
drastically.

In practical applications, due to the discretization of
continuous-time systems and the influence of the internal and
external environments, the system noise and measurement
noise are often correlated. Therefore, estimation problems
with correlated noises have receivedmuch attention. The esti-
mators proposed in [26]–[29] and [30]–[37] could be applied
respectively to linear and nonlinear systems with correlated
noises. Based on the RLMVE framework, there are two fun-
damental methods for solving the estimation problem with
correlated noises. One is the de-correlated method, which can
convert correlated noises into uncorrelated noises by substi-
tuting the measurement equation into the state equation [28],
[34], [35]. The other method is a Gaussian approximation
recursive filter framework [32], [33], [36]. When the process
noise and the measurement noise are correlated, it is very
difficult to directly solve the state one-step predictor based
on the RLMVE framework. The literature [36] avoids solving
one-step predictor by using a two-step predictor. The liter-
ature [32] proposes a method for solving the state one-step
predictor by noise estimator. However, these filtering algo-
rithms are only for single sensor systems. So, it is necessary to
study the information fusion filtering problem for nonlinear
multi-sensor systems with correlated noises.

In this paper, a RLMVE-based filter and two DF filters are
proposed for nonlinear multi-sensor systems with correlated
noises. The main original results of this article are listed
below:

1) A novel filtering algorithm for nonlinear systems
with correlated noises is proposed based on the RLMVE
framework. It is proved that the proposed RLMVE-based
filter and the existing de-correlated filter have the functional
equivalence.

2) Based on the RLMVE framework, an algorithm for
calculating cross-covariance matrices is proposed. Based on
the cross-covariance matrices, the RLMVE-based filter and
the DF algorithm weighted by matrices [6], a RLMVE-based
DF filter is proposed. It can effectively fuse local estimates,
and has high accuracy and good flexibility.

3) Based on the existing de-correlated filter, the algorithm
of cross-covariance for de-correlated systems and the DF
algorithm weighted by matrices, a de-correlated DF filtering
algorithm is proposed.

The rest of the paper is organized as follows. A filter based
on RLMVE framework is proposed for nonlinear systems
with correlated noises in Section II. A RLMVE-based DF
filter is proposed in Section III. A de-correlated DF filter is
proposed in Section IV. The simulation analysis is given in
Section V. The conclusions are summarized in Section VI.
Notations:<n denotes the n-dimensional Euclidean space.

In×n is the n-dimensional identity matrix. E denotes the
mathematical expectation. Superscripts T and −1 denote
the transpose and inverse, respectively. δtk is the Kronecker
delta function, i.e., δtt = 1 and δtk = 0(t 6= k).

θ̂
(j)
k|k−γ = E

{
θk |z

(j)
0∼k−γ

}
, (γ = 0, · · · , k; θ = x, z,w) is

the estimator of θ based on the measurements z(j)0∼k−γ ={
z(j)0 , · · · , z

(j)
k−γ

}
. θ̃

(j)
k|k−γ = θk − θ̂

(j)
k|k−γ is the estimation

error.
(
g(ξ )|z(j)0∼k−γ

)
is a function with independent vari-

able ξ which is a random variable conditioned by z(j)0∼k−γ .

P(ij)
θφ,k|k−γ = E

{(
θ̃
(i)
k|k−γ

∣∣∣ z(i)0∼k−γ ) ( φ̃(j)k|k−γ ∣∣∣ z(j)0∼k−γ )T},
(φ = x, z,w) is the estimation error cross- covariance matrix
and P(ij)

xx,k|k−γ will be abbreviated to P(ij)
k|k−γ .

II. RLMVE-BASED FILTER
Consider a nonlinear multi-sensor dynamic system with
correlated noises:

xk+1 = f k (xk )+ wk (1)

z(j)k = h(j)k (xk )+ v
(j)
k , j = 1, 2, · · · ,L (2)

where f k (·) ∈ <n and h(j)k (·) ∈ <mj are the known nonlinear
functions, xk ∈ <n is the state vector at time k , z(j)k ∈ <mj is
the measurement vector of the jth sensor at time k , wk ∈ <n

is the process noise, and v(j)k ∈ <mj is the measurement noise
of the jth sensor. wk and v(j)k are correlated Gaussian noises
with zero-mean and satisfy:

E
{[

wt
v(i)t

] [
wT
k

(
v(j)k
)T ]}

=

[
Qw S(j)(
S(i)
)T

R(ij)

]
δtk (3)

For the jth subsystem, based on measurements z(j)0∼k ,
the RLMVE framework can be presented by the following
Lemma.
Lemma 1 [38]: For system in Equations (1) and (2), based

on measurements z(j)0∼k , the estimator x̂(j)k|k of the state xk
in the sense of linear minimum variance has the RLMVE
framework:

x̂(j)k|k = x̂(j)k|k−1 + K
(j)
k z̃

(j)
k|k−1, j = 1, 2, · · · ,L (4)

where the filtering gain is computed by:

K (j)
k = P(j)

xz,k|k−1

(
P(j)
zz,k|k−1

)−1
(5)

and the filtering error variance is computed by

P(j)
k|k = P(j)

k|k−1 − K
(j)
k P

(j)
zz,k|k−1

(
K (j)
k

)T
(6)

Remark 1: The estimator x̂(j)k|k of the state xk is a

function of z(j)0∼k , with the performance of minimizing

J = E
[
(x̃(j)k|k )

Tx̃(j)k|k
]
. When the probability distributions

of the state xk and the measurements z(j)k are Gaussian,
the linear minimum variance estimate is optimal estima-
tion. For linear systems with Gaussian noises, the well-
known Kalman filter just has the RLMVE framework [38].
For nonlinear systems with Gaussian noises, the Unscented
Kalman Filter (UKF) [39], [40] and the Cubature Kalman
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Filter (CKF) [41]–[43] also have such a recursive form.
In this paper, a filtering framework is proposed based on
RLMVE framework which can deal with the filtering prob-
lem for nonlinear systems with correlated Gaussian noises.

Since the process noisewk is correlated to themeasurement
noise v(j)k ,wk has become one of system states, and estimators
will be biased while the correlation is ignored. Many refer-
ences have treated estimation problemswith correlated noises
via an augmentation method, which increases computational
cost. For system in Equations (1) and (2), as a special state,wk
is zero-mean and additive. Based on the two characteristics,
a novel RLMVE framework is proposed as the following
Theorem.
Theorem 1: For system in Equations (1) and (2), the local

filter x̂(j)k|k has the RLMVE framework as Equations (4)-(6),
where

P(j)
xz,k|k−1 = E

{
xk
(
h(j)k (xk )

)T∣∣∣∣ z(j)0∼k−1}
− x̂(j)k|k−1

(
ẑ(j)k|k−1

)T
(7)

P(j)
zz,k|k−1 = E

{
h(j)k (xk ) (�)

T
∣∣∣ z(j)0∼k−1}

−

(
ẑ(j)k|k−1

)
(�)T + R(j) (8)

where (�) means the same as the previous one.
The prediction error covariance matrix is computed by:

P(j)
k|k−1 = E

{
f k−1(xk−1) (�)

T
∣∣∣ z(j)0∼k−1}

− ˆ̄x
(j)
k|k−1 (�)

T
+ P(j)

ww,k−1|k−1 (9)

The state predictor is computed by:

x̂(j)k|k−1 =
¯̂x
(j)
k|k−1 + ŵ

(j)
k−1|k−1 (10)

where

¯̂x
(j)
k|k−1 = E

{
f k−1(xk−1)

∣∣ z(j)0∼k−1} (11)

The local process noise estimator ŵ(j)
k−1|k−1 has the

RLMVE framework:

ŵ(j)
k−1|k−1 = K (j)

w,k−1z̃
(j)
k−1|k−2 (12)

K (j)
w,k−1 = S(j)k−1

(
P(j)
zz,k−1|k−2

)−1
(13)

P(j)
ww,k−1|k−1 = Qw − K

(j)
w,k−1P

(j)
zz,k−1|k−2

(
K (j)
w,k−1

)T
(14)

Proof: See Appendix A.
Based on the RLMVE framework, a filtering framework

for nonlinear systems with correlated noises is proposed by
Theorem 1. It is just a framework and the conditional mean
needs to be calculated in Equations (7), (8), (9) and (11). The
conditional mean can be written as the integrals:

E

{
xk
(
h(j)k (xk )

)T∣∣∣∣ z(j)0∼k−1}
=

∫
Rn

xk
(
h(j)k (xk )

)T
N
(
x̂(j)k|k−1,P

(j)
k|k−1

)
dxk (15)

E
{
h(j)k (xk ) (�)

T
∣∣∣ z(j)0∼k−1}

=

∫
Rn

h(j)k (xk ) (�)
TN

(
x̂(j)k|k−1,P

(j)
k|k−1

)
dxk (16)

E
{
f k−1(xk−1) (�)

T
∣∣∣ z(j)0∼k−1}

=

∫
Rn

f k−1(xk−1) (�)
TN

(̂
x(j)k−1|k−1,P

(j)
k−1|k−1

)
dxk−1 (17)

E
{
f k−1(xk−1)

∣∣ z(j)0∼k−1}
=

∫
Rn

f k−1(xk−1)N
(
x̂(j)k−1|k−1,P

(j)
k−1|k−1

)
dxk−1 (18)

For linear systems, integrals can be achieved by recursion.
But for nonlinear systems, integrals are not easy to be cal-
culated. The Monte Carlo method [44] is used to deal with
the integrals for non-Gaussian systems. The spherical-radial
rule [41]–[43], UT transformation [39], [40], etc. are often
used for Gaussian systems. Here, we use spherical-radial
cubature rule to realize Theorem 1.

The proposed RLMVE-based filter can deal with
estimation problems for systems with single sensor.
Moreover, the filter is also available for multi-sensor systems
by CF framework.

III. RLMVE-BASED DF FILTER
The proposed RLMVE-based filter is available for systems
with single sensor or multi-sensor CF framework. However,
CF for multi-sensor systems has some disadvantage as
mentioned above. Next, a RLMVE-based DF framework
weighted by matrices in the sense of linear unbiased
minimum variance (LUMV) will be proposed.
Lemma 2 [6]: Assume x̂(j)(j = 1, 2, · · · ,L) is the local

unbiased estimator based on the measurements of the jth
sensor, and its error covariance and cross-covariance matrices
are P(i) and P(ij)(i 6= j). Then, the optimal DF estimator x̂(M )

weighted by matrices in the sense of LUMV is:

x̂(M )
=

L∑
j=1

A(j)x̂(j) (39)

where the weighting matrices A(j), j = 1, 2, · · · ,L are given
by: (

A(1) A(2)
· · · A(L) ) 1

= (eTP−1e)−1eTP−1 (40)

where

P =

 P(1)
· · · P(1L)

...
. . .

...

P(L1)
· · · P(L)


nL×nL

(41)

e =
[
In · · · In

]T
nL×n. P

(ij)
= E

{(
x− x̂(i)

)
(x− x̂(j)

)T}
and P(ij)

= P(j) when i = j. The covariance of the DF filter
weighted by matrices is given as:

P(M )
= (eTP−1e)−1 (42)

and P(M )
≤ P(j), j = 1, 2, · · · ,L.

39550 VOLUME 8, 2020



G. Hao, S. Sun: DF Filter for Nonlinear Multi-Sensor Systems With Correlated Noises

Algorithm 1 The RLMVE-Based Filtering Algorithm for
Nonlinear Systems With Correlated Noises

Initialization (k = 0): x̂(j)0|−1 = E
{
x0
}
, ẑ(j)
−1|−2 = 0, P(j)

−1|−1 = I,
P(j)
zz,−1|−2 = I;

Generating filtering particles:
P(j)
k−1|k−1 = S(j)k−1|k−1 (�)

T (19)
χ
(j)
µ, k−1|k−1 = S(j)k−1|k−1ξ

(j)
µ + x̂

(j)
k−1|k−1, µ = 1, · · · , 2n

(20)

ξ (j)µ =
√
n[1](j)µ (21)

where [1](j)µ is defined by:

[1](j)µ =
[
In×n −In×n

]
(22)

X (j)
µ, k|k−1 = f k−1(xk−1)

∣∣
xk−1=χ

(j)
µ, k−1|k−1

(23)

White noise filter ŵ(j)
k−1|k−1:

K (j)
w,k−1 = S

(j)
k−1

(
P(j)
zz,k−1|k−2

)−1
(24)

ŵ(j)
k−1|k−1 = K

(j)
w,k−1

(
z(j)k−1 − ẑ

(j)
k−1|k−2

)
(25)

P(j)
ww,k−1|k−1 = Qw−K

(j)
w,k−1P

(j)
zz,k−1|k−2

(
K (j)
w,k−1

)T
(26)

State predictor x̂(j)k|k−1:

ˆ̄x
(j)
k|k−1 =

1
2n

2n∑
µ=1

X (j)
µ, k|k−1 (27)

x̂(j)k|k−1 = ˆ̄x
(j)
k|k−1 + ŵ

(j)
k−1|k−1 (28)

P(j)
k|k−1 =

1
2n

2n∑
µ=1

X (j)
µ, k|k−1 (�)

T
− ˆ̄x

(j)
k|k−1 (�)

T

+P(j)
ww,k−1|k−1 (29)

Generating prediction particles:

P(j)
k|k−1 = S(j)k|k−1 (�)

T (30)

χ
(j)
µ, k|k−1 = S(j)k|k−1ξµ + x̂

(j)
k|k−1, µ = 1, · · · , 2n (31)

Z(j)µ, k|k−1 = h(j)k (xk )
∣∣∣
xk=χ

(j)
µ, k|k−1

(32)

Measurement predictor ẑ(j)k|k−1:

ẑ(j)k|k−1 =
1
2n

2n∑
µ=1

Z(j)µ, k|k−1 (33)

State local filter x̂(j)k|k :

P(j)
xz,k|k−1 =

1
2n

2n∑
µ=1

χ
(j)
µ, k|k−1

(
Z(j)µ, k|k−1

)T
− x̂(j)k|k−1

(
ẑ(j)k|k−1

)T
(34)

Algorithm 1 (Continued.) The RLMVE-Based Filtering
Algorithm for Nonlinear Systems With Correlated Noises

P(j)
zz,k|k−1=

1
2n

2n∑
µ=1

Z(j)µ, k|k−1 (�)
T
−

(
ẑ(j)k|k−1

)
(�)T+R(j)

(35)

K (j)
k =P

(j)
xz,k|k−1

(
P(j)
zz,k|k−1

)−1
(36)

x̂(j)k|k = x̂
(j)
k|k−1 + K

(j)
k z̃

(j)
k|k−1 (37)

P(j)
k|k =P

(j)
k|k−1 − K

(j)
k P

(j)
zz,k|k−1

(
K (j)
k

)T
(38)

Remark 2: The DF estimator in Lemma 1 only needs local
estimates, estimation error covariancematricesP(j) and cross-
covariance matrices P(ij), whatever the systems are linear or
nonlinear.

Usually, most estimators can provide the corresponding
estimation error covariance matrices. But for multi-sensor
systems, cross-covariance matrices between local estimators
are hard to obtain or even impossible, particularly for
nonlinear systems [12]–[18], [45], [46]. Unfortunately,
cross-covariance matrices are essential in DF estima-
tor weighted by matrices in Lemma 2. If ignoring
cross-covariance matrices, it will bring accuracy loss to the
estimator.

Next, taking filtering problem as an example, filtering error
cross-covariance matrices P(ij)

k|k between any two local filters
for multi-sensor systems will be given.
Theorem 2: Based on the RLMVE framework, the filtering

error cross-covariance P(ij)
k|k (i 6= j; i, j = 1, · · · ,L) can be

calculated as:

P(ij)
k|k = P(ij)

k|k−1 − P
(ij)
xz,k|k−1

(
K (j)
k

)T
−K (i)

k P
(ij)
zx,k|k−1 + K

(i)
k P

(ij)
zz,k|k−1

(
K (j)
k

)T
(43)

Proof: See Appendix B.
In Equation (43), the filtering gain K (j)

k can be obtained
via local filters, but the prediction error cross-covariance
P(ij)
k|k−1, P

(ij)
zz,k|k−1, P

(ij)
xz,k|k−1 and P(ij)

zx,k|k−1 cannot be got.
We consider that the state xk is a random variable with the
conditional probability density function (PDF) P{xk |z

(j)
0∼k} =

N (x̂(j)k|k ,P
(j)
k|k ), when wk and v(j)k are Gaussian. Then,

the joint conditional PDF of two Gaussian random variables(
xk |z

(j)
0∼k

)
and

(
xk |z

(i)
0∼k

)
is also Gaussian and with the con-

ditional PDFN
([

x̂(i)k|k
x̂(j)k|k

]
,

[
P(i)
k|k P

(ij)
k|k

P(ji)
k|k P

(j)
k|k

] )
. Based on them,

we will give these prediction error cross-covariance matrices,
respectively.
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Theorem 3: Based on RLMVE framework, the prediction
error cross-covariance P(ij)

k|k−1 in (43) can be calculated as:

P(ij)
k|k−1

= E

{(
f k−1(xk−1)

∣∣ z(i)0∼k−1) ( f k−1(xk−1)∣∣ z(j)0∼k−1)T}
− ˆ̄x

(i)
k|k−1

(
ˆ̄x
(j)
k|k−1

)T
+ P(ij)

ww,k−1|k−1 (44)

where P(ij)
ww,k−1|k−1 is computed by:

P(ij)
ww,k−1|k−1

= Qw − S
(j)
k−1

(
K (j)
w,k−1

)T
−K (i)

w,k−1

(
S(i)k−1

)T
+ K (i)

w,k−1P
(ij)
zz,k−1|k−2

(
K (j)
w,k−1

)T
(45)

Proof: See Appendix C.
Theorem 4:Based onRLMVE framework, themeasurement

prediction error covariance P(ij)
zz,k|k−1 in (43) can be calculated

as:

P(ij)
zz,k|k−1 = E

{(
h(i)k (xk )

∣∣∣ z(i)0∼k−1) (h(j)k (xk )
∣∣∣ z(j)0∼k−1)T}

−

(
ẑ(i)k|k−1

) (
ẑ(j)k|k−1

)T
+ R(ij) (46)

Proof: See Appendix D.
Theorem 5: Based on RLMVE framework, the state and

measurement prediction error cross-covariance P(ij)
xz,k|k−1 in

(43) can be calculated as:

P(ij)
xz,k|k−1 = E

{(
xk
∣∣ z(i)0∼k−1) (h(j)(xk , k)∣∣∣ z(j)0∼k−1)T}

− x̂(i)k|k−1
(
ẑ(j)k|k−1

)T
(47)

Similar to P(ij)
xz,k|k−1, P

(ij)
zx,k|k−1 can be calculated as:

P(ij)
zx,k|k−1 = E

{(
h(i)(xk , k)

∣∣∣ z(i)0∼k−1) (xk ∣∣ z(j)0∼k−1)T}
− ẑ(i)k|k−1

(
x̂(j)k|k−1

)T
(48)

Proof: See Appendix E.
The conditional mean in Equations(44), (46) and (47) can

be written as the integrals:

E

{(
f k−1(xk−1)

∣∣ z(i)0∼k−1) ( f k−1(xk−1)∣∣ z(j)0∼k−1)T}
=

∫
R2n

(
f k−1(xk−1)

∣∣ z(i)0∼k−1) ( f k−1(xk−1)∣∣ z(j)0∼k−1)T

×N
([

x̂(i)k−1|k−1
x̂(j)k−1|k−1

]
,

[
P(i)
k−1|k−1 P(ij)

k−1|k−1

P(ji)
k−1|k−1 P(j)

k−1|k−1

] )
× dXk−1|k−1 (49)

where Xk−1|k−1 =

 xk−1 ∣∣∣z(i)0∼k−1
xk−1

∣∣∣z(j)0∼k−1
.

E

{(
h(i)k (xk )

∣∣∣ z(i)0∼k−1) (h(j)k (xk )
∣∣∣ z(j)0∼k−1)T}

=

∫
R2n

(
h(i)k (xk )

∣∣∣ z(i)0∼k−1) (h(j)k (xk )
∣∣∣ z(j)0∼k−1)T

×N
([

x̂(i)k|k−1
x̂(j)k|k−1

]
,

[
P(i)
k|k−1 P(ij)

k|k−1

P(ji)
k|k−1 P(j)

k|k−1

] )
dXk|k−1 (50)

where Xk|k−1 =

 xk ∣∣∣z(i)0∼k−1
xk
∣∣∣z(j)0∼k−1

.
E

{(
xk
∣∣ z(i)0∼k−1) (h(j)(xk , k)∣∣∣ z(j)0∼k−1)T}

=

∫
R2n

(
xk
∣∣ z(i)0∼k−1) (h(j)(xk , k)∣∣∣ z(j)0∼k−1)T

N
([

x̂(i)k|k−1
x̂(j)k|k−1

]
,

[
P(i)
k|k−1 P(ij)

k|k−1

P(ji)
k|k−1 P(j)

k|k−1

] )
dXk|k−1 (51)

Up to now, a computing formula of the filtering error
cross-covariance P(ij)

k|k (i 6= j; i, j = 1, · · · ,L) has been
proposed based on RLMVE framework. It is just a frame-
work that can be implemented by unscented transformation,
spherical-radial cubature rule or Monte Carlo method. Here
we only give an implementation method of spherical-radial
cubature rule.
Combining Algorithm 1 with Algorithm 2, a DF filter

can be obtained for nonlinear multi-sensor systems with
correlated noises by applying Lemma 2.
A distributed fusion filtering algorithm has been presented

in Algorithm 1 to Algorithm 3, which can fuse estimates
from local subsystems. Because DF framework allows each
sensor node to process local measurements and only transmit
local estimates, it is much more efficient in communication
compared to CF which must transmit all measurements [2].
Moreover, DF has better robustness and flexibility, because
of the parallel computing architecture.

IV. DE-CORRELATED DF FILTER
In this section, a existing de-correlation filter for nonlinear
systems with correlated noises is introduced [28], [34], [35].
The de-correlated method can make the noises uncorrelated,
and effectively deal with estimation problems with correlated
noises by reconstructing the state equation.
Lemma 3 [28], [34], [35]: For system in Equations (1) and

(2), the de-correlated system can be written as:

xk+1 = f (j),dck (xk )+ w
(j),dc
k , j = 1, · · · ,L (66)

z(j)k = h(j)k (xk )+ v
(j)
k (67)

where

f (j),dck (xk ) = f k (xk )−M
(j)h(j)k (xk )+M

(j)z(j)k (68)
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Algorithm 2RLMVE-BasedAlgorithm of the Filtering Error
Cross-Covariance P(ij)

k|k

Initialization (k = 0): P(ij)
0|0 = I , P(ij)

1|0 = I;

Generating joint filtering particles:[
P(i)
k−1|k−1 P(ij)

k−1|k−1
P(ji)
k−1|k−1 P(j)

k−1|k−1

]
= Sk−1|k−1 (�)

T (52)

χµ, k−1|k−1 = Sk−1|k−1ξµ +
[
x̂(i)k−1|k−1
x̂(j)k−1|k−1

]
,

µ = 1, · · · , 4n (53)

ξµ =
√
2n[1]µ (54)

where [1]µ is defined by:
[1]µ =

[
I2n×2n −I2n×2n

]
(55)

X (1)
µ, k|k−1= f (xk−1, k − 1)

∣∣
xk−1=

(
χµ, k−1|k−1

)
1∼2n

X (2)
µ, k|k−1= f (xk−1, k−1)

∣∣
xk−1=

(
χµ, k−1|k−1

)
2n+1∼4n

(56)

where
(
χµ, k−1|k−1

)
1∼2n

means the first 2n elements of

χµ, k−1|k−1 and
(
χµ, k−1|k−1

)
2n+1∼4n

means the last n
elements of χµ, k−1|k−1;

Prediction error cross-covariance P(ij)
k|k−1:

P(ij)
k|k−1 =

1
4n

4n∑
µ=1

X (1)
µ, k|k−1

(
X (2)
µ, k|k−1

)T
− ˆ̄x

(i)
k|k−1

(
ˆ̄x
(j)
k|k−1

)T
+ P(ij)

ww,k−1|k−1 (57)

Generating joint prediction particles:[
P(i)
k|k−1 P(ij)

k|k−1

P(ji)
k|k−1 P(j)

k|k−1

]
= Sk|k−1S

T
k|k−1 (58)

χµ, k|k−1 = Sk|k−1ξµ +

[
x̂(i)k|k−1
x̂(j)k|k−1

]
,

µ = 1, · · · , 4n (59)

Z(1)µ, k|k−1 = h(xk , k − 1)
∣∣
xk−1=

(
χµ, k|k−1

)
1∼2n

Z(2)µ, k|k−1 = h(xk , k − 1)
∣∣
xk−1=

(
χµ, k|k−1

)
2n+1∼4n

(60)

M (j)
= S(j)

(
R(j)

)−1
(69)

w(j),dc
k = wk −M

(j)v(j)k (70)

and the statistical property of the process noise w(i),dc(k) is
given as:

E
{
w(j),dc(k)

}
= 0 (71)

Q(j),dc
= E

{
w(j),dc(k) (�)T

}
= Qw − S

(j)
(
R(j)

)−1 (
S(j)
)T

(72)

Algorithm 2 (Continued.) RLMVE-Based Algorithm of the
Filtering Error Cross-Covariance P(ij)

k|k

The calculation of the filtering error cross-covariance P(ij)
k|k :

P(ij)
zz,k|k−1 =

1
4n

4n∑
µ=1

Z(1)µ, k|k−1
(
Z(2)µ, k|k−1

)T
−

(
ẑ(i)k|k−1

) (
ẑ(j)k|k−1

)T
+ R(ij) (61)

P(ij)
xz,k|k−1 =

1
4n

4n∑
µ=1

(
χµ, k|k−1

)
1∼n

(
Z(2)µ, k|k−1

)T
− x̂(i)k|k−1

(
ẑ(j)k|k−1

)T
(62)

P(ij)
k|k = P(ij)

k|k−1 − P
(ij)
xz,k|k−1

(
K (j)
k

)T
−K (i)

k P
(ij)
zx,k|k−1+K

(i)
k P

(ij)
zz,k|k−1

(
K (j)
k

)T
(63)

Algorithm 3 RLMVE-Based DF Filtering Algorithm for
Nonlinear Multi-Sensor Systems With Correlated Noises
Initialization (k = 0);

Local filter x̂(j)k|k , j = 1, 2, · · · ,L (Algorithm 1);

The calculation of the filtering error cross-covariance
matrices P(ij)

k|k (Algorithm 2);

Fusion and output:(
A(1) A(2)

· · · A(L) ) 1
= (eTP−1k|ke)

−1eTP−1k|k
(64)

x̂(M )
k|k =

L∑
j=1

A(j)x̂(j)k|k (65)

Lemma 4 [28], [34]–[35]: For de-correlated system in
Equations (66) and (67), the de-correlated filter based on
RLMVE framework can be written as:

x̂(j),dck|k = x̂(j),dck|k−1 + K
(j),dc
k z̃(j),dck|k−1 (73)

where

x̂(j),dck|k−1 = E
{
f (j),dck (xk )

∣∣∣ z(j)0∼k−1} (74)

K (j),dc
k = P(j),dc

xz,k|k−1

(
P(j),dc
zz,k|k−1

)−1
(75)

P(j),dc
xz,k|k−1 = E

{
xk
(
h(j)k (xk )

)T∣∣∣∣ z(j)0∼k−1}
− x̂(j),dck|k−1

(
ẑ(j),dck|k−1

)T
(76)

P(j),dc
zz,k|k−1 = E

{
h(j)k (xk ) (�)

T
∣∣∣ z(j)0∼k−1}

−

(
ẑ(j),dck|k−1

)
(�)T + R(j) (77)

ẑ(j),dck|k−1 = E
{
z(j)k
∣∣∣ z(j)0∼k−1} (78)
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The filtering error covariance matrix and the prediction
error covariance matrix are computed by:

P(j),dc
k|k = P(j),dc

k|k−1 − K
(j),dc
k P(j),dc

zz,k|k−1

(
K (j),dc
k

)T
(79)

P(j),dc
k|k−1 = E

{
f (j),dck−1 (xk−1) (�)

T
∣∣∣ z(j)0∼k−1}

− x̂(j),dck|k−1 (�)
T
+ Q(j),dc (80)

Theorem 6: The de-correlated filter and the proposed
RLMVE-based filter in Section II have the functional equiv-
alence.
Proof: See Appendix F.
Remark 3: The de-correlated filter and the proposed

RLMVE-based filter have the same computational
complexity. But the de-correlated filter needs to substitute the
measurement equation into the state equation. That is, the de-
correlated filter is suitable when the measurement models are
not too complicated.

The de-correlated filter is available for systems with single
sensor or CF framework. Next, a de-correlated DF filter is
proposed.
Theorem 7: For de-correlated system in Equations (66)

and (67), the cross-covariance P(ij),dc
k|k based on RLMVE

framework can be calculated as:

P(ij),dc
k|k

= P(ij),dc
k|k−1 − P

(ij),dc
xz,k|k−1

(
K (j),dc
k

)T
−K (i),dc

k P(ij),dc
zx,k|k−1 + K

(i),dc
k P(ij),dc

zz,k|k−1

(
K (j),dc
k

)T
(81)

P(ij),dc
k|k−1

= E

{(
f (i),dck−1 (xk−1)

∣∣∣ z(i)0∼k−1) ( f (j),dck−1 (xk−1)
∣∣∣ z(j)0∼k−1)T}

− x̂(i),dck|k−1

(
x̂(j),dck|k−1

)T
+ Qw −M

(i)
(
S(i)
)T

−S(j)
(
M (j)

)T
+M (i)

(
R(ij)

)−1 (
M (j)

)T
(82)

P(ij),dc
zz,k|k−1

= E

{(
h(i)k (xk )

∣∣∣ z(i)0∼k−1) (h(j)k (xk )
∣∣∣ z(j)0∼k−1)T}

− ẑ(i),dck|k−1

(
ẑ(j),dck|k−1

)T
+ R(ij) (83)

P(ij),dc
xz,k|k−1

= E

{(
xk
∣∣ z(i)0∼k−1) (h(j)(xk , k)∣∣∣ z(j)0∼k−1)T}

− x̂(i),dck|k−1

(
ẑ(j),dck|k−1

)T
(84)

Proof: Similar to Theorem 2-5, Theorem 7 can be proved.
Using Lemma 4, Theorem 7 and spherical-radial cubature

rule, a de-correlated DF filter algorithm for nonlinear multi-
sensor systems with correlated noises is given below.

The particles X (j),dc
µ, k−1|k−1, Z(j),dcµ, k−1|k−1, χ

(j),dc
µ, k−1|k−1,

X (1),dc
µ, k−1|k−1, X

(2),dc
µ, k−1|k−1, Z

(1),dc
µ, k|k−1, Z

(2),dc
µ, k|k−1 and χdcµ, k|k−1

Algorithm 4 De-Correlated DF Filtering Algorithm

Initialization (k = 0): x̂(j)0|−1 = E
{
x0
}
, ẑ(j)
−1|−2 = 0,

P(j)
−1|−1 = I , P(j)

zz,−1|−2 = I( j = 1, 2, · · · ,L);

Local filter:
State predictor x̂(j),dck|k−1:

x̂(j),dck|k−1 =
1
2n

2n∑
µ=1

X (j),dc
µ, k−1|k−1 (85)

P(j),dc
k|k−1 =

1
2n

2n∑
µ=1

X (j),dc
µ, k−1|k−1 (�)

T
− x̂(j),dck|k−1 (�)

T
+ Q(j),dc

(86)

Measurement predictor ẑ(j),dck|k−1:

ẑ(j),dck|k−1 =
1
2n

2n∑
µ=1

Z(j),dcµ, k−1|k−1 (87)

State filter x̂(j),dck|k :

P(j),dc
xz,k|k−1 =

1
2n

2n∑
µ=1

χ
(j),dc
µ, k−1|k−1

(
Z(j),dcµ, k−1|k−1

)T
− x̂(j),dck|k−1

(
ẑ(j),dck|k−1

)T
(88)

P(j),dc
zz,k|k−1 =

1
2n

2n∑
µ=1

Z(j),dcµ, k−1|k−1 (�)
T
−

(
ẑ(j),dck|k−1

)
(�)T+R(j)

(89)

K (j),dc
k = P(j),dc

xz,k|k−1

(
P(j),dc
zz,k|k−1

)−1
(90)

x̂(j),dck|k = x̂(j),dck|k−1 + K
(j),dc
k z̃(j),dck|k−1 (91)

P(j),dc
k|k = P(j),dc

k|k−1 − K
(j),dc
k P(j),dc

zz,k|k−1

(
K (j),dc
k

)T
(92)

involved in Algorithm 4 can be handled by the method similar
to Algorithm 1 and Algorithm 2.

V. SIMULATION
Consider a target tracking process in a horizontal plane:

xk+1 = 8xk + 0wk (99)

where xk =
(
xk ẋk yk ẏk

)T is the state vector, 8 =
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 and 0 =


0.5T 2 0
T 0
0 0.5T 2

0 T

.
Assume that there are four sensors locating at four points

zj(x j, yj), j = 1, · · · , 4. The measurement equations of the
four sensors can be written as:

z(j)k =

[√
(xk−x

j)2 + (yk−y
j)2

arctan
(
(yk−y

j)
/
(xk−x

j)
) ]+ v(j)k (100)
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Algorithm 4 (Continued.) De-Correlated DF Filtering Algo-
rithm

The calculation of cross-covariance matrices P(ij),dc
k|k :

P(ij),dc
k|k−1 =

1
4n

4n∑
µ=1

X (1),dc
µ, k−1|k−1

(
X (2),dc
µ, k−1|k−1

)T
− x̂(i),dck|k−1

(
x̂(j),dck|k−1

)T
+ Qw −M

(i)
(
S(i)
)T

−S(j)
(
M (j)

)T
+M (i)

(
R(ij)

)−1 (
M (j)

)T
(93)

P(ij),dc
zz,k|k−1 =

1
4n

4n∑
µ=1

Z(1),dcµ, k|k−1

(
Z(2),dcµ, k|k−1

)T
−

(
ẑ(i),dck|k−1

) (
ẑ(j),dck|k−1

)T
+ R(ij) (94)

P(ij),dc
xz,k|k−1 =

1
4n

4n∑
µ=1

(
χdcµ, k|k−1

)
1∼n

(
Z(2),dcµ, k|k−1

)T
− x̂(i),dck|k−1

(
ẑ(j),dck|k−1

)T
(95)

P(ij),dc
k|k = P(ij),dc

k|k−1 − P
(ij),dc
xz,k|k−1

(
K (j),dc
k

)T
−K (i),dc

k P(ij),dc
zx,k|k−1+K

(i),dc
k P(ij),dc

zz,k|k−1

(
K (j),dc
k

)T
(96)

Fusion and output:(
A(1) A(2)

· · · A(L) ) 1
= (eTP−1k|ke)

−1eTP−1k|k
(97)

x̂(M ),dc
k|k =

L∑
j=1

A(j)x̂(j)k|k (98)

The process noise wk = αξ k +w
e
k and measurement noise

v(j)k = β(j)ξ k + ve(j)k , where ξ k is the background noise and
ξ k ∼ N (0, σ 2

ξ ), w
e
k ∼ N (0, σ 2

we), v
e(j)
k ∼ N (0, σ 2

vej) , then
we have

S(j)k = ασ
2
ξ

(
β(j)

)T
, R(ij)

= β(i)σ 2
ξ

(
β(j)

)T
(101)

In simulation, we set σ 2
ξ = 0.082W, σ 2

we =[
0.22m2s−2 0

0 0.22m2s−2

]
, σ 2

ve1 =

[
1.52m2 0

0 0.092rad2

]
,

σ 2
ve2 =

[
2m2 0
0 0.072rad2

]
, σ 2

ve3 =

[
1.82m2 0

0 0.082rad2

]
,

σ 2
ve4 =

[
1.42m2 0

0 0.12rad2

]
, α =

[
5 0
0 5

]
, β(1)

=[
0.6 0
0 0.6

]
, β(2)

=

[
0.9 0
0 0.9

]
, β(3)

=

[
0.8 0
0 0.8

]
, and

β(4)
=

[
1 0
0 1

]
. The sampling period is T = 0.2s, the sensors’

positions are located at p1(100m, 100m), p2(−100m, 100m),

FIGURE 1. True track and local estimation curves of RLMVE-based filter.

FIGURE 2. True track and estimation curves of RLMVE-based DF filter and
CF filter.

p3(−100m,−100m), p4(100m,−100m), and the initial state
is x0 =

[
0m 0m 0m 0m

]T.
The performance index of estimation is accumulative mean

square error (AMSE) of position at time k [41], [9]:

AMSE =
k∑
t=0

1
N

N∑
i=1

(
(x it − x̂

i
t|t )

2
+ (yit − ŷ

i
t|t )

2
)

(102)

where (x it , yit ) and (x̂ it|t , ŷit|t ) are the true and estimated
positions of the ith Monte Carlo experiment at time t .
Local estimation curves of the RLMVE-based filter are

shown in Figure 1. It is evident that the tracking effects are
very unsatisfactory, and it means that the filter with single
sensor is not available for such systems. So, we introduce the
CF framework. Estimation curve of RLMVE-based CF filter
is shown in Figure 2. It illustrates that the proposed RLMVE-
based filter is effective.

In consideration of the limitations of CF, DF framework is
introduced. Estimation curve of the RLMVE-based DF filter
is also shown in Figure 2. It is obviously that RLMVE-based
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FIGURE 3. AMSEs of distances between actual position and their
estimates of CF filter ignoring correlation, RLMVE-based DF filter,
RLMVE-based CF filter, De-correlated DF filter and De-correlated CF filter.

DF filter can work well, which illustrates that the proposed
RLMVE-based DF filter is effective.

In order to analyze the effectiveness and superiority of
the proposed filtering algorithms, the classical CKF is intro-
duced, which ignores the correlation, i.e., S(j)k = 0 (j =
1, · · · , 4). The AMSEs of distances between actual position
and their estimates of CF filter ignoring correlation, RLMVE-
based DF filter, RLMVE-based CF filter, de-correlated DF
filter and de-correlated CF filter are shown in Figure 3 with
50 Monte Carlo experiments. From Figure 3, it is evident that
the accuracy of CF filter ignoring correlation is lower than
that of other filters. It illustrates that the performance of the
RLMVE-based filter in Algorithm 1 is better than that of the
classical filter ignoring correlation.

The AMSEs of the RLMVE-based DF filter and
de-correlated DF filter is slightly lower than the ones of
RLMVE-based CF filter and de-correlated CF filter, and it
verifies the effectiveness of the proposed DF filters.

The AMSEs of the RLMVE-based CF filter and de-
correlated CF filter are approximate, which confirms the
correctness of Theorem 6. The slight difference in value is
due to the calculation of the approximate integrals.

VI. CONCLUSION
In this paper, a RLMVE-based filter and two DF filters are
proposed for nonlinear multi-sensor systems with correlated
noises. Firstly, a novel RLMVE-based filter for nonlinear
systems with correlated noise is proposed. It is proved that
the RLMVE-based filter and the existing de-correlated fil-
ter have the functional equivalence. Then, an algorithm for
calculating the cross-covariance is proposed. Based on the
RLMVE-based filter, the algorithm of cross-covariance and
the DF algorithm weighted by matrices, a RLMVE-based DF
filter is proposed. Finally, based on the existing de-correlated
filter, the algorithm of cross-covariance for de-correlated
systems and the DF algorithm weighted by matrices, a de-
correlated DF filtering algorithm is proposed. Both the DF
filtering algorithms can handle the filtering problem for

nonlinear multi-sensor systems with correlated noises. Due to
the different ways of dealing with correlated noises, the de-
correlated DF filter is suitable when the measurement models
are not too complicated.

APPENDIXES
APPENDIX A
From

x̂(j)k|k−1 = E
{
xk
∣∣ z(j)0∼k−1}

= E
{(
f k−1(xk−1)+ wk−1

)∣∣ z(j)0∼k−1}
= E

{
f k−1(xk−1)

∣∣ z(j)0∼k−1}+ E
{
wk−1

∣∣ z(j)0∼k−1}
(103)

Equation (10) can be obtained. The prediction error
covariance matrix P(j)

k|k−1 is derived as follows:

P(j)
k|k−1 = E

{
x̃(j)k|k−1 (�)

T
∣∣∣ z(j)0∼k−1}

= E
{(
f k−1(xk−1)+ wk−1 −

(
ˆ̄x
(j)
k|k−1 + ŵ

(j)
k−1|k−1

))
(�)T

∣∣∣ z(j)0∼k−1}
= E

{
f k−1(xk−1)f

T
k−1(xk−1)

∣∣∣ z(j)0∼k−1}
+E

{
f k−1(xk−1)w̃

T
k−1

∣∣∣ z(j)0∼k−1}
+E

{
w̃k−1f

T
k−1(xk−1)

∣∣∣ z(j)0∼k−1}
−E

{
f k−1(xk−1)

∣∣ z(j)0∼k−1} ( ˆ̄x(j)k|k−1)T
− ˆ̄x

(j)
k|k−1E

{
f Tk−1(xk−1)

∣∣∣ z(j)0∼k−1}
+ ˆ̄x

(j)
k|k−1

(
ˆ̄x
(j)
k|k−1

)T
+ P(j)

ww,k−1|k−1 (104)

and ˆ̄x
(j)
k|k−1 = E

{
f k−1(xk−1)

∣∣ z(j)0∼k−1}. Because f k−1(xk−1)
and w̃k−1 are mutually independent, and ŵ(j)

k−1|k−1 is

unbiased estimation, i.e., E
{
w̃T
k−1

∣∣∣ z(j)0∼k−1} = 0,

E
{
f k−1(xk−1)w̃

T
k−1

∣∣∣ z(j)0∼k−1} = 0, Equation (104) can be
written as Equation (9).
The prediction error cross-covariance matrix P(j)

xz,k|k−1 is
derived as:

P(j)
xz,k|k−1

= E

{
x̃(j)k|k−1

(
z̃(j)k|k−1

)T∣∣∣∣ z(j)0∼k−1}
= E

{(
xk − x̂

(j)
k|k−1

) (
h(j)k (xk )+ v

(j)
k − ẑ

(j)
k|k−1

)T∣∣∣∣ z(j)0∼k−1}
= E

{
xk
(
h(j)k (xk )

)T∣∣∣∣ z(j)0∼k−1}− x̂(j)k|k−1 (ẑ(j)k|k−1)T
− x̂(j)k|k−1E

{(
h(j)k (xk )

)T∣∣∣∣ z(j)0∼k−1}+ x̂(j)k|k−1 (ẑ(j)k|k−1)T
(105)
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Because v(j)k is Gaussian noise and independent of wk−1, (7)
can be obtained.

The measurement prediction error covariance matrix
P(j)
zz,k|k−1 is derived as:

P(j)
zz,k|k−1

= E
{
z̃(j)k|k−1 (�)

T
∣∣∣ z(j)0∼k−1}

= E
{(

h(j)k (xk )+ v
(j)
k − ẑ

(j)
k|k−1

)
(�)T

∣∣∣ z(j)0∼k−1} (106)

Similar to P(j)
xz,k|k−1, Equation (106) can be written as

Equation (8).
Based on RLMVE framework, the estimation ŵ(j)

k−1|k−1 of
wk−1 can be calculated as:

ŵ(j)
k−1|k−1 = ŵ(j)

k−1|k−2 + K
(j)
w,k−1z̃

(j)
k−1|k−2 (107)

Because wk−1 is Gaussian noise and independent of vk−2,

ŵ(j)
k−1|k−2 = E

{
wk−1

∣∣ z(j)0∼k−2} = 0, Equation (12) can be

obtained. From RLMVE framework, the filter gain K (j)
w,k−1 is

derived as:

K (j)
w,k−1

= P(j)
wz,k−1|k−2

(
P(j)
zz,k−1|k−2

)−1
= E

{
w̃(j)
k−1|k−2

(
z̃(j)k−1|k−2

)T∣∣∣∣ z(j)0∼k−2}(P(j)
zz,k−1|k−2

)−1
= E

{
wk−1

(
h(j)k−1(xk−1)+ v

(j)
k−1 − ẑ

(j)
k−1|k−2

)T∣∣∣∣ z(j)0∼k−2}(
P(j)
zz,k−1|k−2

)−1
(108)

Because h(j)k−1(xk−1) and wk−1 are mutually independent,

E

{
wk−1

(
h(j)k−1(xk−1)

)T∣∣∣∣ z(j)0∼k−2} = 0 and

P(j)
wz,k−1|k−2

= E
{
wk−1

(
h(j)k−1(xk−1)+ v

(j)
k−1 −ẑ

(j)
k−1|k−2

)
T
∣∣∣ z(j)0∼k−2}

= S(j)k−1 (109)

Equation (13) can be obtained.
The filtering error covariance matrix P(j)

ww,k−1|k−1 is
derived as:

P(j)
ww,k−1|k−1

= E
{
w̃(j)
k−1|k−1 (�)

T
∣∣∣ z(j)0∼k−1}

= E
{(
wk−1 − K

(j)
w,k−1z̃

(j)
k−1|k−2

)
(�)T | z(j)0∼k−2

}
= E

{
wk−1 (�)

T
∣∣∣ z(j)0∼k−2}− K (j)

w,k−1P
(j)
zz,k−1|k−2(

K (j)
w,k−1

)T
= Qw − K

(j)
w,k−1P

(j)
zz,k−1|k−2

(
K (j)
w,k−1

)T
(110)

The proof is completed.

APPENDIX B
From the definition of the filtering error cross-covariance,
P(ij)
k|k ( i 6= j; i, j = 1, · · · ,L) can be written as:

P(ij)
k|k = E

{(
x̃(i)k|k

∣∣∣ z(i)0∼k) ( x̃(j)k|k ∣∣∣ z(j)0∼k)T} (111)

From Equation (4), Equation (111) can be rewritten as:
P(ij)
k|k

= E
{(

xk −
(
x̂(i)k|k−1 + K

(i)
k z̃

(i)
k|k−1

)∣∣∣ z(i)0∼k−1)(
xk −

(
x̂(j)k|k−1 + K

(j)
k z̃

(j)
k|k−1

)∣∣∣ z(j)0∼k−1)T}
= E

{(
x̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( x̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}
−E

{(
x̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( z̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}(K (j)
k

)T
−K (i)

k E

{(
z̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( x̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}
+K (i)

k E

{(
z̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( z̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}(K (j)
k

)T
(112)

From the definitions of P(ij)
k|k−1, P

(ij)
xz,k|k−1, P

(ij)
zx,k|k−1 and

P(ij)
zz,k|k−1, (43) can be obtained. The proof is completed.

APPENDIX C
The prediction error cross-covarianceP(ij)

k|k−1 in Equation (43)
can be calculated as:

P(ij)
k|k−1

= E

{(
x̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( x̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}
= E

{(
f k−1(xk−1)+ wk−1 − x̂

(i)
k|k−1

∣∣∣ z(i)0∼k−1)(
f k−1(xk−1)+ wk−1 − x̂

(j)
k|k−1

∣∣∣ z(j)0∼k−1)T} (113)

Because wk−1 is assumed to be zero-mean and independent
of the past states, from Equation (10) we have:

P(ij)
k|k−1

=E
{(

f k−1(xk−1)+ wk−1 −
(
ˆ̄x
(i)
k|k−1+ŵ

(i)
k−1|k−1

)∣∣∣ z(i)0∼k−1)(
f k−1(xk−1)+wk−1 −

(
ˆ̄x
(j)
k|k−1+ŵ

(j)
k−1|k−1

)∣∣∣ z(j)0∼k−1)T}
= E

{(
f k−1(xk−1)

∣∣ z(i)0∼k−1) ( f Tk−1(xk−1)∣∣∣ z(j)0∼k−1)}
+E

{(
f k−1(xk−1)

∣∣ z(i)0∼k−1) ( w̃T
k−1

∣∣∣ z(j)0∼k−1)}
+E

{(
w̃T
k−1

∣∣∣ z(j)0∼k−1) ( f Tk−1(xk−1)∣∣∣ z(j)0∼k−1)}
−E

{
f k−1(xk−1)

∣∣ z(i)0∼k−1} ( ˆ̄x(j)k|k−1)T
− ˆ̄x

(i)
k|k−1E

{
f Tk−1(xk−1)

∣∣∣ z(j)0∼k−1}
+ ˆ̄x

(i)
k|k−1

(
ˆ̄x
(i)
k|k−1

)T
+ P(ij)

ww,k−1|k−1 (114)
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Because f k−1(xk−1) is independent of w̃k−1 and ŵ(j)
k|k is

an unbiased estimate, Equation (114) can be rewritten as
Equation (44), where the ˆ̄x

(i)
k|k−1 is as Equation (11).

P(ij)
ww,k−1|k−1 in Equation (44) is computed as:

P(ij)
ww,k−1|k−1

= E

{(
w̃(i)
k−1|k−1

∣∣∣ z(i)0∼k−1) ( w̃(j)
k−1|k−1

∣∣∣ z(j)0∼k−1)T}
= E

{(
wk−1 − K

(i)
w,k−1z̃

(i)
k−1|k−2

∣∣∣ z(i)0∼k−2)(
wk−1 − K

(j)
w,k−1z̃

(j)
k−1|k−2

∣∣∣ z(j)0∼k−2)T}
= Qw − P

(ij)
wz,k−1|k−2

(
K (j)
w,k−1

)T
− K (i)

w,k−1P
(ij)
zw,k−1|k−2

+K (i)
w,k−1P

(ij)
zz,k−1|k−2

(
K (j)
w,k−1

)T
(115)

P(ij)
wz,k−1|k−2 in Equation (115) is given by:

P(ij)
wz,k−1|k−2

= E

{(
w̃(i)
k−1|k−2

∣∣∣ z(i)0∼k−2) ( z̃(j)k−1|k−2∣∣∣ z(j)0∼k−2)T}
= E

{
wk−1

(
h(j)k−1(xk−1)+ v

(j)
k−1 − ẑ

(j)
k−1|k−2

∣∣∣ z(j)0∼k−2)T}
= E

{
wk−1

(
h(j)k−1(xk−1)

∣∣∣ z(j)0∼k−2)T}
+E

{
wk−1

(
v(j)k−1

)T}
− E

{
wk−1

} (
ẑ(j)k−1|k−2

)T
= S(j)k−1 (116)

and similar to Equation (116), P(ij)
zw,k−1|k−2 =

(
S(i)k−1

)T
.

From Equation (116), P(ij)
ww,k−1|k−1 can be rewritten as

Equation (45). The proof is completed.

APPENDIX D
From Equation (2), the measurement prediction error covari-
ance P(ij)

zz,k|k−1 in Equation (43) can be calculated as:

P(ij)
zz,k|k−1 = E

{(
z̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( z̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}
= E

{(
h(i)k (xk )+ v

(i)
k − ẑ

(i)
k|k−1

∣∣∣ z(i)0∼k−1)
×

(
h(j)k (xk )+ v

(j)
k −ẑ

(j)
k|k−1

∣∣∣ z(j)0∼k−1)T} (117)

Because v(j)k is zero-mean and independent of wk−1, Equa-
tion (117) can be written as Equation (46). The proof is
completed.

APPENDIX E
The cross-covariance P(ij)

xz,k|k−1 in Equation (43) can be cal-
culated as:

P(ij)
xz,k|k−1 = E

{(
x̃(i)k|k−1

∣∣∣ z(i)0∼k−1) ( z̃(j)k|k−1∣∣∣ z(j)0∼k−1)T}
= E

{(
xk − x̂

(i)
k|k−1

∣∣∣ z(i)0∼k−1)
×

(
h(j)k (xk )+ v

(j)
k − ẑ

(j)
k|k−1

∣∣∣ z(j)0∼k−1)T} (118)

Because v(j)k and wk are zero-mean and wk is independent of
the past states, Equation (47) can be obtained. The proof is
completed.

APPENDIX F
Structurally, the de-correlated filter and proposed filter in
section II differ only in the predictor x̂(j)k|k−1. If the predictors
have the same structure, Theorem 6 can be proved. From
Equations (68) and (69), the predictor x̂(j),dck|k−1 can be rewritten
as:

x̂(j),dck|k−1 = E
{
f (j),dck−1 (xk )|z

(j)
0∼k−1

}
= E

{
f k−1(xk−1)+ S

(j)
(
R(j)

)−1
×

(
y(j)k−1 − h

(j)
k−1(xk−1)

)∣∣∣ z(j)0∼k−1}
= E

{
f k−1(xk−1)

∣∣ z(j)0∼k−1}
+S(j)

(
R(j)

)−1
E
{
v(j)k−1

∣∣∣ z(j)0∼k−1} (119)

From RLMVE framework, the filter v̂(j),dck−1|k−1 =

E
{
v(j)k−1

∣∣∣ z(j)0∼k−1} of the measurement noise v(j)k−1 can be
written as:

v̂(j),dck−1|k−1 = E
{
v(j)k−1

∣∣∣ z(j)0∼k−1}
= v̂(j),dck−1|k−2+P

(j),dc
vz,k−1|k−2

(
P(j),dc
zz,k−1|k−2

)−1
z̃(j),dck−1|k−2

(120)

where v̂(j),dck−1|k−2 = 0 and P(j),dc
vz,k−1|k−2 is computed by:

P(j),dc
vz,k−1|k−2

= E

{
ṽ(j),dck−1|k−2

(
z̃(j),dck−1|k−2

)T∣∣∣∣ z(j)0∼k−2}
= E

{
v(j)k−1

(
h(j)k−1(xk−1)+ v

(j)
k−1 −ẑ

(j),dc
k−1|k−2

)
T
∣∣∣ z(j)0∼k−2}

= R(j) (121)

So, v̂(j),dck−1|k−1 in Equation (120) is obtained as:

v̂(j),dck−1|k−1 = R(j)
(
P(j),dc
zz,k−1|k−2

)−1
z̃(j),dck−1|k−2 (122)

From Equation (122), Equation (119) can be rewritten as:

x̂(j),dck|k−1 = E
{
f k−1(xk−1)

∣∣ z(j)0∼k−1}
+S(j)

(
P(j),dc
zz,k−1|k−2

)−1
z̃(j),dck−1|k−2 (123)

Compared with Equations (10), (11), (12) and (13), x̂(j),dck|k−1

has the same form as x̂(j)k|k−1 in Algorithm 1. The proof is
completed.
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