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ABSTRACT To properly function in real-world environments, a humanoid robot must be able to adapt its
walking gait to new situations. In this paper, an adaptive bipedal walking control method that uses sensory
feedback to modulate dynamic movement primitive (DMP) parameters is presented. This work addresses
the challenge of adaptive locomotion by implementing DMPs in the workspace of a humanoid robot. This
workspace formulation allows new movements to be created such that the DMP parameters, including the
stride, height of the hip joint, foot clearance and forward velocity, are directly related to the walking pattern.
One set of DMPs is applied to generate the foot trajectory, and a second set is used to generate the CoM (centre
of mass) trajectory in an online fashion. Sensory feedback information is utilized to modify the generated
CoM and foot trajectories to improve the walking quality. Furthermore, a staged evolutionary algorithm
(EA) is designed to optimize the parameters of the control system to enhance the walking performance.
The presented control strategy is demonstrated through simulations and real experiments that focus on the
adaptation of the robot’s walking pattern over sloped terrain.

INDEX TERMS Humanoid robot, adaptive walking, dynamic movement primitives (DMPs), workspace
trajectory generation.

I. INTRODUCTION
Biped locomotion is complex to analyze in general. Most
of the models in the literature for biped locomotion utilize
hybrid dynamics and various control strategies have been
proposed [1]–[8]. ZMP (zero moment point) -based walking
control methods are usually applied on bipedal robots [5]–[8].
The ZMP criterion was proposed by Vukobratovic et al. [9]
and Vukobratovic and Borovac [10]. The main idea of the
ZMP criterion is that if the ZMP of a bipedal robot lies
within the support polygon formed between the foot and
the ground, then stability is guaranteed. Currently, strate-
gies based on trajectory planning are suitable for allowing
a robot to walk stably by tracking pre-designed trajectories.
However, such fixed pre-designed trajectories may cause the
walking process to fail when the walking conditions vary.
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A bipedal robot walking under different conditions must be
able to adapt to terrain variations by adjusting its gait trajecto-
ries. Park et al. [11] proposed a walking trajectory generation
strategy based on combining sinusoidal functions and 3rd-
order polynomial functions to achieve free biped walking
gait. Seven et al. [12] employed a gait synthesis technique
based on the ZMP in which the body pitch reference for the
foot sole plane was modified online to adapt to different slope
environments by using a fuzzy logic system. Omnidirectional
walking on sloped terrain was studied by Yu et al. [13].
The foot trajectories were determined by the stride length,
walking speed and direction, and the robot’s CoM trajectories
in both the coronal and sagittal planes were calculated using
a linear inverted pendulum model (LIPM).

DMPs are widely applied on fault diagnosis and fault
tolerant control [14]–[16], and the attribute of DMPs is
attractive for designing smooth kinematic control algorithms
that can robustly imitate demonstrated movements [17]–[19].
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The fundamental theory of DMPs is based on the utiliza-
tion of an analytical dynamic system that is well understood
and has convenient stability properties; this system is reg-
ulated by varying the nonlinear part to achieve a certain
ideal limit cycle or point attractor. By using the learnable
forcing function, the simple attractor can be transformed,
as originally presented by Ijspeert et al. [20], [21]. Since
the original proposal, many mathematical variants have been
presented for the realization of periodic and discrete move-
ments. DMPs provide a simple and adaptable method for
motor skill generation and used in various tasks, like drum-
ming [22]–[25]. Schaal [22] described the implementation
of a system of DMPs on a complex anthropomorphic robot.
Umlauft et al. [25] proposed a control strategy for synchro-
nization and cooperative manipulation based on coopera-
tive DMPs. Many studies involving DMPs have studied
methods for generalizing and adjusting learned behaviours
to adapt to novel situations. For example, given a learned
grasping behaviour, obstacle avoidance [26], [27] can be
realized by adding a forcing term that induces movement
away from obstacles. Frequency adaptive modulation has
been investigated as a form of temporal coupling to realize
desirable drumming behaviours [28]. Reinforcement learn-
ing for DMPs has been used to guide policy searches and
enhance learned behaviours [29]–[31]. Beyond the modelling
of motion in Cartesian space, Ude et al. proposed a task-
specific generation method for discrete and periodic DMPs
to incorporate end-effector orientation [32].

DMPs are a useful tool for designing trajectories based on
presented examples. This method is currently regarded as a
representative example of a compact strategy that is suitable
for robot learning. DMPs are typically learned in the joint
space of robots, as reported by Nakanishi et al. [33] and
Morimoto et al. [34]. We call this approach the ‘‘joint-space
DMP-based method’’. However, investigating the adapta-
tion and generalization of learned primitives through control
parameter modulation becomes challengingwhen the demon-
strated trajectories are available only in the joint space.

A bipedal robot walking under variable walking condi-
tions, e.g., in the presence of obstacles, must adapt to its
walking terrain by means of adjustable workspace trajecto-
ries. Unlike in the abovementioned works, the DMPs used
for this purpose must be learned in the task space; we call this
approach the ‘‘workspace DMP-based method’’. This idea of
using DMPs in the task space, which can be easily related to
the task parameters, was first presented by Pastor et al. [35]
and Rosado et al. [36] in the context of robot manipula-
tion and bipedal walking. Subsequently, various task-space
methods have been studied to improve the robustness and
stability of bipedal motion by achieving objectives such as
push recovery and disturbance resistance. Luo et al. pre-
sented bio-inspired push recovery strategies based on DMPs
[37]. Using DMPs, Bockmann et al. realized adaptive kick
motions for the NAO robot [38]. In these strategies, DMPs
are utilized as trajectory representations learned in the task
space from a single demonstration. Once the DMPs have been

learned, newmovements are produced by directly revising the
DMP parameters. The DMP parameters resulting from the
related formulas are directly associated with task variables
such as the stride length, foot clearance and forward velocity.
For instance, the frequency parameter is utilized to slow
down or speed up locomotion, and the amplitude parameters
related to the y and z directions are employed to regulate the
stride length and hip height of the supporting leg (or swing
leg), respectively.

Our work considers how to incorporate sensory informa-
tion to improve the adaptability of workspace DMP-based
bipedal walking. In this paper, DMPs are used to plan the
workspace and CoM trajectories of a humanoid robot. Two
sets of DMP units are used to create a trajectory generator
that can be modulated online by training the example tra-
jectory. The robot’s own attitude information is measured by
sensors, and these measurements form the feedback input to
the trajectory generator. The CoM and foot trajectories can be
adjusted in real time. Notably, changes in the walking pattern
are realized by simply modifying a few parameters of the
trajectory generator based on the sensory information. These
adjustments do not require prior information concerning the
walking conditions, nor do they rely on range sensors for
surface topography measurements. Both simulations and real
experiments are designed to verify the effectiveness of the
presented control system.

The other sections of the paper are arranged as follows:
Section II presents the structure and properties of the pro-
posed control framework. The design methods for the tra-
jectory generators and the feedback path are introduced in
detail, followed by the evolution of the control parameters.
Section III presents computational simulations conducted
to evaluate the NAO robot’s adaptive walking behaviour.
In Section IV, this paper is concluded, and future research
directions are discussed.

II. THE PROPOSED WORKSPACE DMP-BASED CONTROL
SYSTEM
This section demonstrates the structure and implementation
of the presented adaptive bipedal walking control method.
The control system architecture as shown in Fig.1, consists of
a CoM trajectory generator, a workspace trajectory generator
and a motion engine.

The CoM generator is trained using a DMP model by
studying a demonstrated trajectory of a humanoid robot.
Similar to the training of the CoM trajectory generator, two
DMPs in the same canonical system are trained and employed
as foot trajectory generators in the x and z directions; their
final one-step positions correspond to the length of the step
and the height of the leg lift, respectively. Thus, the gait of
the humanoid robot can be adjusted by modulating the DMP
parameters. The regulation of the swing foot trajectory should
be combined with that of the CoM trajectory to best enhance
the adaptability and stability of the walking motion. The
trajectory generation methods are presented in the following
sections.
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FIGURE 1. The global control architecture.

A. DMP-BASED TRAJECTORY FORMULATION
1) DMP MODEL
The dynamical system is described by a linear 2nd-order
differential equation, in which convergence to the goal g is
achieved by adding a nonlinear forcing term f that represents
the actual shape of the encoded trajectory. In our work,
DMPs are employed to represent bipedal walking move-
ments. DMPs are formulated for each x, y and z coordinate
of the two feet in the workspace: the origin of the reference
coordinate system is located at the hip section of the robot.
This approach yields a total of four DMPs, whose outputs are
converted into the desired joint trajectories through an inverse
kinematics algorithm and are utilized as the reference input to
the low-level feedback controller. The differential equations
utilized to describe each single DMP are presented as follows.

The transformation system is defined by two 1st-order
differential equations:

τ υ̇ = αυ (βυ (g− y+ feed)− υ)+ f (1)

τ ẏ = υ (2)

The canonical system describes the phase of the move-
ment:

τ u̇ = −αuu (3)

The forcing term f is as follows:

f (t) =

∑N
i=1 ψi(t)ωi∑N
i=1 ψi(t)

u (g− y0) (4)

ψi(u) = exp

(
−

1

2σ 2
i

(u− ci)2
)

(5)

where αυ , βυ and αu are time constants; y, v and v̇ denote
the position, velocity, and acceleration, respectively; τ is a
temporal scaling constant; y0 is the initial state; g is a known
goal; and feed is the feedback term that receives the feedback
information. Here, f is a nonlinear forcing function that acts
as the forcing term to represent the nonlinearity of the model.
When f = 0, this equation acts as a global stabilization
system in which the target point g serves as an attractor. The
system can be critically damped by choosing appropriate val-
ues for αυ and βυ (αυ = βυ/4) such that ywill monotonically
converge towards g. The transfer system and the canonical

system have the same time constant τ . The phase variable
u acts to normalize the system’s convergence time over the
range from 1 to 0. To avoid any time dependence of the entire
nonlinear term, i.e., to ensure that the system is invariant with
respect to time, the entire movement time depends only on τ .
Theωi represent adjustable weights, theψi(u) are exponential
basis functions, and the σi and ci are constants that determine
the widths and centres, respectively, of the basis functions.

A demonstration trajectory ydemo(t) should be provided
when using DMPs for trajectory learning. In this work,
the demonstration trajectories ydemo(t) for the movement
primitive mode are generated by a real humanoid robot.
To encode an ideal demonstration trajectory ydemo(t) as a
DMP, the weight vector must be learned by using statisti-
cal learning techniques in which locally weighted regres-
sion (LWR) is adopted. Therefore, local models are used to
attempt to fit the data only in the region around the position
of the query by utilizing distance-weighted regression rather
than using an individual global model to fit all the training
data. The motivation for investigating locally weighted tech-
niques originates from their suitability for online robot learn-
ing by virtue of their fast incremental learning properties.
LWR is used to perform training and obtain the parameters
of the Gaussian kernel functions ψi(u) and the parameters ωi.
For different training requirements, only the kernel function
bandwidth is adjusted. When the trajectory to be learned is
relatively complex, the number of kernel functions can be
increased. After training is complete, the trajectory genera-
tion process depends on the DMPs.

2) PARAMETERS MODULATION
The DMP model contains certain parameters that can influ-
ence the output behaviour in accordance with different con-
trol demands. This section discusses how movements are
adjusted to adapt to new situations by changing the DMP
parameters. The final goal position and duration of a move-
ment are revised by scaling parameters g and τ .

Fig. 2 presents the results of modulating the DMP parame-
ters. All feedback information is set to 0. The black solid line
represents the demonstration trajectory, which has a duration
of 1.5 s and a final goal position of 0. The black dashed line,
which represents the learned trajectory with no modulation,
nearly coincides with the demonstration trajectory. The red
solid line displays the result of changing the duration to 1 s
by modulating the parameter τ , and the blue dashed line
represents the result of changing the final goal position to
1 m by modulating the parameter g. The main observation
is that modulating the parameters results in smooth trajectory
variations that enable adaptation to different control demands.

3) CoM TRAJECTORY GENERATOR
This section describes the training of a CoM trajectory gener-
ator using a DMP model based on a demonstration trajectory
of a humanoid robot. The CoMz trajectory can be mapped
to the vertical-direction trajectory of the swing foot. Thus,
two DMPs are trained to serve as the CoMx and CoMy
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FIGURE 2. The parameters modulation of the DMP model.

FIGURE 3. CoMx and CoMy trajectories for four steps.

trajectory generators. These twoDMPs share the same canon-
ical system but each have their own transformation systems to
maintain suitable synchronization. Fig. 3 shows the results of
the trained CoM trajectory generator and presents the CoM
trajectories for four steps by the robot. The blue solid lines
represent the demonstration trajectory, and the red dashed
lines represent the output of the CoM trajectory generator.

4) FOOT TRAJECTORY GENERATOR
The robot’s walking speed, leg lift height and step span must
be flexibly adjustable to ensure adaptive walking. When the
robot is walking, the trajectory of the swing foot is set to be
constant in the y direction; thus, DMPs for the trajectories in
only two dimensions are trained. Two DMPs with the same
canonical system are trained as foot trajectory generators
in the x and z directions. The gait of the humanoid robot
can be easily adjusted by modulating the DMP parameters.
Fig. 4 shows the results of the trained foot trajectory generator
and presents the foot trajectories for four steps of the robot.
The blue solid lines represent the demonstration trajectory,
and the red dashed lines represent the output of the foot
trajectory generator.

Fig. 5 shows foot trajectories with different step lengths,
lift heights and slopes: the blue solid lines represent the
demonstration trajectory, and the dashed lines show different
outputs of the foot trajectory generator.

B. ADAPTABILITY IMPROVEMENTS
A person walking on a slope adjusts his or her gait pattern
and body attitude to maintain balance during walking. In this
study, the vestibulospinal reflex mechanism is imitated and
incorporated into the proposed method to generate adaptive

FIGURE 4. Foot trajectories for four steps.

FIGURE 5. Foot trajectories after modulation of the parameters.

FIGURE 6. Body attitude adjustment during walking on different types of
terrain.

walkingmotions for sloped terrain. As shown in Fig. 6, during
walking up a slope, the feedback loop is designed to drive
the CoM to move ahead along the slope and to reduce the
gait length to maintain dynamic stability. Conversely, during
walking down a slope, the CoM will be moved backward
along the slope, and the gait length will be increased to
prevent loss of balance.

Hence, it is necessary to collect sensory information corre-
sponding to the surface conditions. It was experimentally ver-
ified by that body attitude sensing is effective for detecting the
ground environment during walking. Hence, as Fig. 7 shows,
body attitude information is used in this work as feedback to
adjust the generated foot and CoM trajectories in an online
manner to improve the walking quality. The body attitude
angle θpitch can be determined using the robot’s acceleration
sensor.

C. INVERSE KINEMATICS
The motion engine is designed as shown in the dotted line in
the Fig.8, where T ref and T real represent the reference trajec-
tory and the actual trajectory, and J represents the Jacobian
matrix, θ real is the actual joint angle.
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FIGURE 7. Structure of the feedback loop.

FIGURE 8. Motion engine for the biped walking.

The relationship between the workspace and the joint space
can be described as follows:

L = f (α) (6)

where L = [L1, · · · ,LM ]T represents the position and pose
at the end of a movement and each αi in α = [α1, · · · , αN ]T

represents the displacement or angle of link i with respect to
link i− 1.
The RMRC (Resolved motion rate control) method [39]

is used to control the angular velocities of the joints. The
differential kinematics and inverse differential kinematics of
the robot can be described as follows:

L̇ = Q (α) · α̇ (7)

α̇ = Q−1(α) · L̇ (8)

where Q (α) is the Jacobian matrix and Q−1(α) is its inverse
matrix.

When N>M, the robotic system is redundant. TheQ−1(α)
does not exist whenQ (α) is not full; instead, it is replaced by
the pseudo-inverse matrix [40]:

Q#
= QT (QQT )−1 (9)

To avoid singularity problems, the pseudo-inverse matrix
can be represented by means of the least squares method [41]
as follows:

Q#
=

(
QTQ+ l2I

)−1
QT (10)

TABLE 1. Parameter values of the DMP models.

where l is a damping coefficient introduced to ensure that the
Jacobian matrix is of full rank.

III. SIMULATIONS AND REAL EXPERIMENTS
A. EXPERIMENTAL SETUP
In this section we report the set of experiments using NAO
robot under different conditions in order to verify the perfor-
mance of the proposed control scheme. This work considers
only the 10 DoFs of the robot’s two legs. In this work,
the adaptive characteristics of the trajectories were mapped
by a motion engine between the workspace and the joint
space. The required joint control signals for the proportional
derivative servo actuators in the joints were calculated via
inverse kinematics. The parameter evolution process was first
conducted in the Webots and then transferred to real NAO
robot. Thus, the optimal parameters were obtained on the
simulated NAO robot.

B. WALKING PATTERN EVOLUTION
1) PARAMETERS OF TRAJECTORY LEARNING
Before DMPs can be used to implement learning by demon-
stration and to generate new trajectories, certain parameters
must be determined. When βv = αv/4 is satisfied, the system
is globally stable with an attractor point g. The number of
exponential basis functions, N , affects the trajectory learning
process. A largerN corresponds to aDMPwith a better output
trajectory but a longer learning time; thus, a compromise
between these two factors is required. Once the learning
parameters have been determined, the CoM trajectory gener-
ator and the foot trajectory generator share these parameters.
Table I shows the parameters determined based on simula-
tions.

2) FEEDBACK PARAMETERS
NSGA-II [42] was adopted to optimize the feedback parame-
ters for the proposed system to realize walking on flat terrain.
This simulation was conducted using the Webots simula-
tor. Binary tournament selection, intermediate crossover and
Gaussian mutation methods were applied in this work. Two
objective functions, fitnessatti and fitnessdis, were designated
to evolve the CoM and foot trajectories:

fitnessatti =
∑(∣∣θpitch∣∣+ |θroll |) (11)

fitnessdis = −dis tan cex(robot) (12)
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where fitnessatti reflects the stability of the robot throughout
the entire walking process and fitnessdis represents the dis-
tance the robot moves. In the simulation experiment, the pop-
ulation size and themaximum number of generations were set
to 50 and 100, respectively.

C. INCLINED TERRAIN ADAPTIVE WALKING
1) REGULAR SLOPE TERRAIN ADAPTIVE WALKING
The walking terrain include three stages: flat surface, uphill
and downhill segments, the slope terrain featuring variable
inclination angles with unknown and arbitrary slopes of up
to 12◦. To realize adaptive walking, the body-attitude-based
reflex method was used in this work. The body attitude θ can
be estimated by applying the gyroscope and accelerometer.

While walking uphill, the robot should lean forward to
avoid slippage, whereas while walking downhill, the robot
should lean slightly back to maintain its balance. Thus,
the feedback coupled to the DMP corresponding to the CoMx
trajectory was designed as follows:

feedCoMx = KCoMx × θ (13)

where KCoMx is the feedback gain that is used to modulate the
CoMx trajectory along the sloped terrain to prevent overturn-
ing and slippage.

The feedback formulas coupled to the DMPs correspond-
ing to the x-direction and z-direction foot trajectories, repre-
senting the step length and height, respectively, are expressed
as follows:

feedfootx = −Kfootx × θ (14)

feedfootz = −Kfootz × θ (15)

where Kfootx and Kfootz are the feedback gains in the two
directions.

The foot trajectory does not include information concern-
ing the rotation angle of the robot’s foot. To avoid friction
between the foot and the ground during movement and pro-
duce a human-like gait, the rotation angle of the robot foot
was designed as follows:

ωsupFoot =
[
0, Ksup, 0

]T (16)

ωsωFoot =
[
ωx · l(t), ωy · l(t)+ Ksω · θ, 0

]T (17)

where ωsupFoot and ωsωFoot are the rotation angles of the
robot’s supporting and swing feet, respectively; ωx and ωy
are constants that denote the maximum values around the x
and y directions, respectively; l(t) is a time function ranging
from 0 to 1; and Ksup and Ksω are the feedback gains for the
supporting and swing feet, respectively.

As described above, the feedback information for the CoM
generator, feedCoMx , is intended to adjust CoMx on inclined
terrain to prevent slippage and overturning during walking.
The feedback information for the foot trajectory generator,
feed{footx,footz}, is used to change the length and height of the
step and to imitate a human’s ability to adapt to changes in
ground slope. The feedback information for the foot rotation

FIGURE 9. Pareto front in generation 150.

TABLE 2. Feedback parameter values.

FIGURE 10. θpitch and θroll planes during slope terrain walking.

angle, [ωsupFoot , ωsωFoot ], is used to make the robot’s gait
more human-like and to adapt to changes in ground slope.

At the beginning stage of the evolution process, the NAO
robot fell when it started uphill. After approximately 40 gen-
erations, NAO could achieve stable walking gait. Fig. 9 shows
the evolution results of the 150th generation. Table 2 shows
the parameters for one solution selected from among the best
solutions on the Pareto front. These parameters for the neural
oscillators remained the same in the subsequent experiments,
independent of the terrain.

The experiment lasted for 86 s. Fig. 10 shows the changes
in the body pitch and roll angles during the experiment. The
red solid line represents the body pitch, and the black dotted
line represents the body roll.

Fig. 11 shows the results of introducing the body posture
as feedback; the CoM and foot trajectories can be adjusted
online in real time. During uphill walking, the CoM moves
ahead along the slope in the x direction, whereas it moves
backward during downhill walking. Simultaneously, the foot
trajectory is generated online, and the heights and lengths
of the steps are adjusted in accordance with the slope. Dur-
ing uphill walking, the step height and length decrease in
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FIGURE 11. CoM and foot trajectories generated online.

FIGURE 12. ZMP distribution during walking on sloped terrain.

accordance with the feedback information to prevent sliding,
and during downhill walking, they increase to prevent over-
turning.

The ZMP distribution during the sloped terrain walking
as shown in Fig. 12. The blue line shows the robot’s foot
support area. During the walking process, the ZMP remains
within the robot’s foot support area. Fig. 13 shows the joint
control signals of the right leg, and the snapshots of a suc-
cessful walking pattern on sloped terrain as shown in Fig. 14.
The experimental simulation results indicate that the control
system is effective and achieves stable walking during the
transition from a level plane onto a sloped plane with a grade
of up to 27.8%.

2) ADAPTIVE WALKING ON TERRAIN WITH A CHANGING
SLOPE
In the second experiment, NAO robot was directed to walk
across a inclined terrain with varying slope angles of 4◦, 6◦,
8◦, 10◦ and 12◦. The design of the feedback loop was the

FIGURE 13. Joint control signals for the right leg.

FIGURE 14. Snapshots of the slope terrain walking.

same as that used in the previous experiment. The CoM and
foot generators were modulated online to generate adaptive
trajectories based on the slope changes. Fig. 15 shows screen-
shots of the entire experiment. Fig. 16 shows the changes in
the body attitude angles on the slope.

3) COMPARISON WITH THE JOINT-SPACE DMP METHOD
In current joint-space DMP control methods, DMP models
are generally used to learn and generate angular control
signals that serve as references for joint servo motors. The
whole control architecture is set as shown in Fig. 17; the
main central processing unit module, i.e., the DMP network,
is used for the online generation of joint control signals, and
the components indicated by dashed lines form the feedback
loop that is used to modulate the DMP outputs to dynamically
achieve adaptivewalking on irregular ground.While the robot
is walking, the control of each degree of freedom requires
one DMP unit, and there is a total of ten joints related to the
locomotion of both legs. Thus, the DMP network consists of
ten DMP units, as shown in Fig. 18. This joint-space DMP
method can be used to successfully achieve bipedal walking
on flat ground. One set of the joint control signals for the left
leg is shown in Fig. 19.

For a comparative adaptive walking experiment, consistent
settings were adopted for the experimental environment, and
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FIGURE 15. Snapshots of the walking process on the changing slope.

FIGURE 16. Body attitude in the pitch and roll planes.

FIGURE 17. Joint-space DMP control architecture for bipedal walking.

the feedback loop was designed in a manner similar to that
for the workspace DMP method:

feedDoFi = KDoFi × θ, i = 1, 2, · · · , 10 (18)

where feedDoFi and KDoFi represent the feedback term and
feedback gain coefficients, respectively, for the i-th degree of
freedom in the DMP network.

However, with the joint-space DMP method, the robot
failed to complete the slope-adaptive experiment. After the
NSGA-II evolution was complete, the robot still could not
achieve stable adaptive walking on the slope. In the joint-
space method, the CoM of the robot changes unpredictably,
which may lead to abnormal situations. In addition, the robot

FIGURE 18. Structure of the DMP network.

FIGURE 19. Control signals of the left leg.

will shake more when walking. Thus, compared with the
joint-space DMP method, the proposed workspace DMP
method is more effective. Fewer DMP units and parameters
are required, meaning that less time is needed for evolution,
and the CoM trajectory of the robot is intuitively controlled
to prevent the robot from sliding and overturning. Thus,
adaptive walking is successfully realized.

4) REAL ADAPTIVE WALKING EXPERIMENT
One experiment was designed to test the robot’s performance
with no prior knowledge of the terrain. In this experiment,
the robot was made to walk on an elastically deformable
platform consisting of three stages: two stages of inclined
terrain (inclined surfaces with slopes of approximately 7◦)
with a flat connecting stage. Since the platform was elasti-
cally deformable, with each step of the robot on the platform,
the platform would deform, causing large disturbances to the
robot. With the presented method, as the robot walked across
the inclined terrain, body-attitude-based feedbackwas used to
automatically adjust the generated CoM and foot trajectories.
During uphill walking, the CoM moved ahead along the
slope in the x direction, whereas it moved backward during
downhill walking. Simultaneously, the height and length of
the foot trajectory were adjusted in accordance with the slope.
Side-view snapshots of the experiment are shown in Fig. 20,
illustrating that the robot could adjust its walking steps to
reduce the influence of disturbances and successfully walk
up and down the platform.

By incorporating feedback information, the basic walk-
ing pattern evolved via the EA was automatically adjusted;
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FIGURE 20. Snapshots of an adaptive walking experiment on sloped
terrain.

FIGURE 21. CoM and foot trajectories generated online during the
experiment.

consequently, the robot could autonomously adapt to the ter-
rain conditions. Fig. 21 shows the CoM and foot trajectories
generated online in the real experiment.

Fig. 22 shows the ZMP distribution during walking on
sloped terrain. As observed, the ZMP was distributed within
the supporting polygon of the robot’s foot except during the
phase of switching the supporting and swing legs. The differ-
ences between the Webots simulations and the experiments
were caused by measurement noise, offsets and uncertainties

FIGURE 22. ZMP distribution.

in the robot model, including joint motor wear and slippage
between the feet of the NAO robot and the walking surface.
The NAO robot staggered only slightly during the terrain
transitions. The experimental results show that the generated
trajectories were viable and applicable.

IV. CONCLUSION AND FUTURE WORK
To enable a full-body humanoid robot to realize adap-
tive walking, a DMP-based workspace trajectory generation
method is proposed. In the proposed locomotion control
method, two online trajectory generators based on DMPs
are used that allow bipedal robots to overcome the limita-
tions of traditional bipedal locomotion control methods. The
use of DMPs for planning workspace trajectories simplifies
the complexity of trajectory planning and enables learning
directly from a human walking gait. The proposed control
strategy mimics the vestibular reflexes of human beings and
includes multiple feedback loops to prevent robots from over-
turning and slipping. The proposed control system’s perfor-
mance was verified through both simulations and practical
experiments with the NAO robot.

Future tasks will involve extending the feedback con-
troller design to consider unknown external disturbances
and more varied types of terrain. Moreover, research on the
adaptation of the parameters of the walking controller will
be investigated with the goal of developing mathematical
models that will allow the control system to automatically
compute the optimal parameters in any direction and at any
prescribed velocity without requiring the EA-based opti-
mization procedure to be executed. It will be important to
develop practical strategies for automatically determining the
feedback gains based on environmental sensory information
to address increasingly challenging walking environments
by focusing on adapting the robot’s gait pattern to irregular
ground, compensating for external perturbations and stepping
over obstacles.
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