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ABSTRACT Sleep disorders are common health problems in industrialized societies and may be caused
by underlying health issues. Current methods to assess the quality of sleep are invasive and not suitable
for continuous monitoring in real world contexts. We have developed a smart sensing solution for non
invasive sleepmonitoring specifically conceived for the early identification of pre-clinical sleep disorders and
insomnia in the general population. Our prototype, named the Smart-Bed, is a low-cost solution that gathers
and processes data on the movement and position of the subject, physiological signals, and environmental
parameters. Our tests on the prototype in controlled lab conditions highlighted that the mattress can
reliably detect subject’s position/motion, heart rate and breathing activity. It performs well compared to
polysomnography and correctly classifies four behavioural conditions (no bed occupancy, wakefulness, non-
REM sleep, and REM sleep), which are the basis for creating an objective sleep quality index.

INDEX TERMS Accelerometers, piezoresistive devices, physiology, signal analysis, psychology, sleep
monitoring, real world data.

I. INTRODUCTION
Sleep disorders including insomnia are among the most com-
mon health problems in industrialized societies [1]. Poor
sleep quality increases the probability of incidents and acci-
dents at work or during daily activities [2]. Furthermore,
insomnia correlates with high rates of absenteeism from
work [2]. Compared to people with good sleep quality, insom-
niacs visit clinical structures more frequently and use drugs
much more. A large amount of data [3]–[7] indicates that
chronic insomnia increases vulnerability to mental disor-
ders (depression, anxiety, alcoholism), metabolic diseases
(diabetes and dyslipidemia), and cardiovascular diseases
(myocardial infarction and hypertension), as well as neuro-
degenerative disorders (i.e. mild cognitive impairment).

Systematic, preventive, personalized and non-invasive
methods for sleep quality assessment are thus of paramount
importance. Polysomnography is currently the gold-standard
for assessing sleep quality [8], [9], since it estimates the
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macrostructure of sleep, i.e. the division of sleep into subse-
quent stereotypical stages [10]. This macrostructure carries
valuable objective information on the quality of sleep, and
in fact is corrupted in sleep disorders [11]. Unfortunately,
polysomnography is highly invasive. The lack of comfort
prevents the subject from sleeping naturally and it does not
provide fully reliable measurements of the quality of sleep in
real life.

To improve on this situation, within the research project
L.A.I.D. (Linking Automation to artificial Intelligence for
revealing sleep Dysfunctions) [12], we developed a smart
sensing solution for non-invasive sleep quality assessment.
In the project, we developed a smart mattress (here-
inafter called Smart-Bed) specifically conceived to assess
the quality of sleep to early identify pre-clinical signs of
sleep disorders and insomnia in the general population. Our
Smart-Bed collects and processes data on the motion and
position of the subject, physiological signals (heart rate
and breathing rate) and environmental parameters (sound
intensity, relative humidity, room temperature and luminos-
ity). The Smart-Bed is based on a single mattress made by
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Materassificio Montalese [13] (the group leader of the
L.A.I.D. project) in which we integrated a pressure mapping
system and a set of tri-axial accelerometers.

Several non-invasive sensor technologies have been devel-
oped for in-bed monitoring of biomedical parameters, such
as sleeping posture/movements and physiological signals [9],
[14]–[24]. However, no previous work has focused on the
assessment of sleep quality by comparing it with the standard
(i.e. polysomnography).

The existing solutions for non invasive sleep monitor-
ing are based on pressure mapping systems that extract
an image of the pressure of the subject lying on the mat-
tress. Contact pressures are measured by multiple pressure
sensors, generally with high spatial resolution, using piezore-
sistive [15], capacitive [18]–[20], optical [21] or piezoelec-
tric [23] technologies. The pressure maps are used to detect
the subject’s presence, sleeping posture or movements or to
identify breathing or cardiac activity. Note that the main
current solutions are monomodal and are not able to simul-
taneously detect the position/movement, breathing and heart
rate. The WhizPAD pressure mapping system developed by
Liu et al. [15] detects user movements and breathing activity.
Chang et al. [19], [20] employed a capacitive matrix for
movement and breathing monitoring. The solution by Korte-
lainen et al. [23] records the ballistocardiographic signal
and breathing activity during sleep. All the other solutions
detect position and movement only. In addition, most current
solutions are for hospital locations [15], [18], [21], [25]–[27].
None of the previous works reported the classification of the
sleep macrostructure.

In this work, we developed a multimodal sensing sys-
tem by combining textile-based pressure mapping and tri-
axial accelerometers to detect position/movement, breathing
activity and heart rate in a non-obtrusive way. As previously
noted, the main current solutions are monomodal and, to the
best of our knowledge, our Smart-Bed is the only prototype
that can simultaneously detect position/movement, breathing
and heart rate. In addition, our Smart-Bed is specifically
designed as a consumer product for the general population.
In fact, we have designed a low cost solution that is still
able to detect key clinical parameters. More importantly, our
machine learning analysis identifies four behavioural condi-
tions, and differentiates between non-REM and REM phases.
We have thus demonstrated the possibility of identifying the
main sleep macrostructures. To the best of our knowledge,
our mattress is the first of its kind.

We developed the pressure mapping system by using
piezoresistive textile technology inspired by [28], with
modifications to reduce the cross-talk between pressure
sensors. We tested the prototype in controlled lab set-
tings on several groups of subjects. The results demon-
strated that the Smart-Bed gives a reliable detection of
the subject’s position and movements as well as heart
rate and breathing activity. In addition, the preliminary
assessment performed very promisingly in comparison to
polysomnography. In fact, the mattress signals enabled us to

FIGURE 1. Hardware of functional blocks of the Smart-Bed prototype.
Docking station (DS) is in the red frame, Physiological data collector
(PDC) in the yellow frame and Environmental data collector (EDC) in the
green frame.

classify four behavioural conditions that represent the sleep
macrostructure.

The results obtained are encouraging and highlight the
technical validity of the Smart-Bed. However, an extensive
validation phase on a high number of heterogeneous subjects
is needed. In fact, we are currently testing a high number
of subjects in order to validate the Smart-Bed as a tool for
reducing socio-economic costs due to sleep disorders and for
increasing individual well-being.

II. MATERIALS AND METHODS
A. OVERALL ARCHITECTURE
The architecture of the Smart-Bed prototype comprises the
following functional blocks (see Figure 1):

• Docking station (DS)
• Physiological data collector (PDC)
• Environmental data collector (EDC)

Both the PDC and EDC are wired to DS via USB serial
communication interface. The DS is a Microsoft Windows
10 based system with a touchscreen interface. The DS
is equipped with tailored software for: i) managing PDC
and EDC, ii) processing the signals and parameters from
PDC/EDC, iii) storing the collected data, and iv) extract-
ing the sleep and environmental quality indices. The PDC
is a custom-designed acquisition unit with two different
kinds of sensors: pressure mapping system and three tri-axial
accelerometers. The architecture of the sensing components,
the PDC and the EDC were designed by IFC-CNR and Uni-
versity of Pisa. The mattress is made of memory foam and is
produced by Materassificio Montalese S.P.A. (Pistoia, Italy).
The PDC was developed by EB Neuro S.P.A. (Firenze, Italy),
and the EDC and DS by BP Engineering S.P.A. (Carrara,
Italy).

B. PRESSURE MAPPING SYSTEM
The PDC is equipped with a pressure mapping system based
on a piezoresistive textile applied onto the foam layer below
the mattress top cover. We designed the pressure mapping
system to detect the distribution of pressures when a subject
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FIGURE 2. Pressure mapping system based on a textile resistive matrix
with 13 column conductors and 15 row conductors for a total
of 195 sensing areas. A single sensing area is highlighted in the inset.

is lying on the bed. The pressure signals obtained can be used
to detect the subject’s position and movements and to extract
the subject’s breathing rate. On the basis of an analysis of
the literature and prioritizing low complexity, low cost and
good tolerance to external disturbances, we developed a resis-
tive sensor matrix configuration, similar to the one reported
in [28]. In the design phase, as a compromise between reduc-
ing the overall cost and complexity, we used a relative low
number of sensing areas yet still maintained an acceptable
quality of signals. Considering a single mattress measuring
190 × 90 cm, we built a pressure sensing textile based on a
resistive matrix of 15 × 13 uniformly-spaced sensing areas
that cover a surface of 125 × 75 cm (head and feet are not
considered). Note that most solutions in the literature have a
much higher number of sensors (typically by a factor greater
than 10). Figure 2 shows our solution: the central layer is a
pressure sensing piezoresitive fabric, while the additional two
layers are fabrics with integrated row and column conductors.
Row and column conductors are perpendicular. Two analog
multiplexers are used to scan rows (row mux) and columns
(col mux) in order to select all the sensing areas of the
resistive matrix. The row mux sequentially connects each
row conductor to Vcc (3.3V) through a pull-up resistor R1
(2 K�). When a row is selected (i.e. powered), the col mux
sequentially connects each column conductor to a voltage
divider stage (pull down resistor R2, 10K�). Each crossing
between a row and a column thus represents a sensing area
whose electrical resistance decreases as the applied pres-
sure increases. For the pressure-sensing layer, we used the
piezoresistive fabric CARBOTEX 03-82 manufactured by
SEFARAG (Heiden, Switzerland). The top and bottom layers
are made of a PET fabric (from SEFAR AG) with integrated
evenly-spaced metallic stripes. In our design, the metallic
stripes have a 2 cm width and are separated by 3 cm in the
top layer (rows) and 8 cm in the bottom (columns) layer.
As described in [29], this sensing architecture has parasitic
resistivity in the transversal directions due to the surface con-
ductivity of the pressure-sensing layer. To reduce the cross-
talk due to the parasitic resistivity, we built our prototype by
cutting the piezoresistive layer into strips parallel to the row
direction (around 3.5 cm width). The strips were then sewn

FIGURE 3. Prototype of the pressure mapping system.

TABLE 1. PDC-equipped accelerometer specifications.

onto the top layer centered on the row conductors. Figure 3
shows the pressure-sensing matrix prototype. The pressure
mapping system provides a 800 × 600 image in which each
pixel value is related to the pressure applied on the specific
point of the mattress. The pressure image is constructed by a
linear spatial interpolation of the raw output values obtained
by the 195 sensing areas to obtain the 800× 600 image.

C. ACCELEROMETERS
The accelerometers of the PDC were used to extract the
ballistocardiograph (BCG) signal [30] for the unobtrusive
recording of cardiac activity (i.e. heart rate) of the subject
lying on the mattress. For the extraction of the BCG signals,
we selected the micropower digital accelerometer ADXL362
(Analog Device Inc, MA, US). The main specifications of the
ADXL362 are reported in Table 1. The Smart-Bed simulta-
neously collects the signals of the three accelerometers (a1,
a2 and a3) placed in different positions over the pressure
mapping system. As shown in Figure 4, an accelerometer (a1)
was placed in a central area, the others (a2 and a3) in lateral
and contro-lateral sites. We used multiple accelerometers for
twomain reasons. Firstly, averaging the signals from different
accelerometers reduces the noise and robustly detects arti-
facts. Secondly, the multi-site configuration ensures that at
least one of the accelerometers lies below the subject, even if
the subject is not in a central position on the mattress.

D. ENVIRONMENTAL DATA COLLECTOR AND
ENVIRONMENT QUALITY INDEX
The EDC module is based on a Seeeduino V4.2 board, and is
equipped with four sensors that collect the following environ-
mental signals: i) sound intensity, ii) temperature, iii) relative
humidity, and iv) luminosity. All the signals are collected
with a sampling frequency of 1 Hz, except for the sound
intensity which is sampled at 20 Hz (due to the fast dynamics
of environmental noise and snoring events). The collection

45666 VOLUME 8, 2020



M. Laurino et al.: Smart Bed for Non-Obtrusive Sleep Analysis in Real World Context

FIGURE 4. Position and topological configuration of the three
accelerometers (a1, a2 and a3) over the pressure mapping layer.

of all the ECD signals and parameters is synchronized with
respect to the data from the PDC.

We used the collected signals to estimate a binary index
regarding the best environmental conditions for sleep (envi-
ronment quality index, EQI), based on data from the lit-
erature. For each environmental parameter, we therefore
assigned optimal sleep value ranges in order to obtain four
environmental criteria:

• sound intensity: continuous noise level lower than
35 dB, no more than 45 dB for single noisy
events [31], [32];

• temperature: minimum temperature of 17◦C and maxi-
mum temperature of 28◦C [33].

• relative humidity: between 40% and 60% [33];
• luminosity: less than 10 lux [34];

The EQI is evaluated for each night’s sleep and it is set to 1
if all four environmental criteria are satisfied, otherwise to 0
(not optimal environmental conditions).

In addition to the EQI extraction, we hypothesized that
information on sounds such as snoring, environmental noise
due to the subject’s activity, and voices could contain rele-
vant information on the subject’s state during sleep. We thus
used the recorded sound information as one of the inputs to
classify the behavioural conditions that will be described in
Section II-E. For each 30-second epoch, we therefore calcu-
lated the mean values and variances of the sound intensity
(SIe, SIv).

E. SLEEP QUALITY ALGORITHM
The analysis of the PDC data acquired by the Smart-Bed
consists of three main post-processing steps: 1) analysis of
the PDC signals and extraction of physiological (heart rate
and breathing rate) and activity (movement and sleeping
posture) data; 2) automatic classification of the subject’s
behavioural conditions based on the physiological and activ-
ity data extracted including the sound information extracted
from the EDC as described in Section II-D; 3) exploitation
of the classified behavioural conditions to estimate standard
sleep evaluation parameters, which are then condensed into a
global Sleep Quality Index (SQI).

All the algorithms and analysis were performed in Matlab
(R2018b, Natick, Massachusetts: The MathWorks Inc.).

1) PHYSIOLOGICAL AND ACTIVITY DATA
To estimate the breathing rate, we employed a frequency
spectrum-based approach. Firstly, we derived the signal aver-
aged over the sensing areas of the pressure matrix (below
the lying subject). Then, we evaluated the average signal
spectrum (Welch periodogram) to detect the maximum peak
of the spectrum in the frequency range 0.1 Hz to 0.35 Hz.
In our hypothesis, the maximum peak is likely to correspond
to respiratory activity.

We estimated the heart rate from the squared modulus
of the grand average raw signal of the three accelerom-
eters. To remove possible components due to respira-
tory activity or movements, the grand average signal
was band-passed in the frequency range of 0.3–20 Hz.
We then extracted the heart rate using a method based on
an autocorrelation function similar to the ones described
in [30], [35], [36].

To evaluate the activity data consisting in the position and
motion of the subject on the mattress, we reduced the sensing
area density from 15× 13 to 3× 3 by topological averaging.
The position feature vector obtained (9 elements) is assigned
by an artificial neural network (ANN) [37] according to six
putative classes: i) not on bed, ii) supine position, iii) lying on
the left side, iv) lying on the right side, v) prone position and
vi) movement. We used a two-layer ANN, the size of hidden
layer was set to 10. For the training process, we applied a
backward propagation algorithm with scaled conjugate gra-
dient method [38].

Each estimated data sequence (heart rate, breathing
rate, position and movements) is temporally divided into
30-second epochs in accordance with the clinical standard
in polysomnographic evaluation. For each 30-second epoch,
the mean values and variances of heart rate (HRe, HRv),
breathing rate (BRe, BRv), movements (MVe,MVv), and posi-
tion (PSe, PSv) were calculated.

2) BEHAVIOURAL CONDITIONS CLASSIFICATION
We classified the subjects’ behavioural conditions in
30-second epochs using the input parameters described
in Section II-E.1 and II-D: HRe, HRv, BRe, BRv, MVe,
MVv, PSe, PSv, SIe and SIv. We trained a decision tree
algorithm with bootstrap aggregation [39] to assign to
each 30-second epoch one of the following classes: no
bed occupancy, wakefulness, non-REM sleep and REM
sleep. We co-recorded the Smart-Bed signals and standard
polysomnography with a clinical polysomnographic system
in order to estimate the real behavioural conditions and sleep
staging following the clinical criteria. The following signals
were collected using the standard polysomnographic record-
ings: electroencephalography, electrocardiography, respira-
tory airflow, snoring, electromyography, and oxygen satura-
tion. Based on polysomnographic data, each sleep recording
is staged in 30-second epochs according to standard clinical
criteria [10], then the sleep staging is used as a reference to
train the decision tree algorithm.
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FIGURE 5. Pressure maps measured in four typical sleeping postures: left side,
supine, right side and prone.

3) GLOBAL SLEEP QUALITY INDEX
The final step of the sleep quality algorithm was based
on the sleep macro-structure estimated previously. Firstly,
the sleep macro-structure was used to extrapolate the main
sleep time-domain parameters [9], [40], [41] related to each
night’s sleep, such as: sleep efficiency, sleep latency, REM
latency, total sleep time, and wake after sleep onset (WASO).
The SQI was then estimated based on the following partial
criteria (pc):
• pc1 = 1 if sleep efficiency > 85%, otherwise it is set to
0

• pc2 = 1 if sleep latency < 15 min, otherwise it is set to 0
• pc3 = 1 if 60 min < REM latency < 120 min, otherwise
it is set to 0

• pc4 = 1 if total sleep time > 7 hours, otherwise it is set
to 0

• pc5 = 1 if 70 % < ratio between non-REM sleep and
total sleep time < 95%, otherwise it is set to 0

• pc6 = 1 if WASO < 45 min, otherwise it is set to 0
Finally, the SQI is assessed for each night and defined as:

SQI =
∑
i

pci

SQI ranges from 0 (bad sleep) to 6 (good sleep), with an
ordinal scale of seven discrete levels.

F. EXPERIMENTAL PROCEDURES
To evaluate the estimation of position/movement, breathing
activity and heart rate, we tested the Smart-Bed prototypes
on a group of 15 volunteers (29 to 72 years old, mean=48,4;
8 female/7 male) during wakefulness (signal-testing group).
In these wakefulness tests, during experimental sessions the
subjects were asked to voluntarily modulate their respiratory
activity and change their body position, thus enabling us to
collect different respiratory and postural patterns.

The ANN for the classification of the activity data
(Section II-E.1) was trained with a dataset of 30-second
epochs obtained from six subjects (29 to 59 years old,
mean=47,3; 3 female/3 male) during wakefulness (ANN-
training group, with different subjects from the signal-testing
group).

The decision tree used to classify the behavioural con-
ditions (Section II-E.2) was trained with a dataset acquired
from an additional group (condition-training group) of eight
subjects (26 to 71 years old, mean=54,3;1 female/7 male)
sleeping on the Smart-Bed prototype whilst being recorded
by standard polysomnography (BE LTM, EB Neuro S.p.A.,
Florence Italy). We used the 75% of the epochs for training
and 25% for testing, epochs of training and testing subsets are
not overlapped.

To test the durability and robustness of the Smart-Bed
and to evaluate the SQI and EQI as a function of time,
we collected the Smart-Bed signals from a group (long-
testing group with different subjects from the signal-testing,
ANN-training and condition-training groups) of five subjects
(27 to 45 years old, mean=35,2;2 female/3 male) over mul-
tiple continuous days (from 12 to 231 days).

III. RESULTS
To date, we have developed seven Smart-Bed prototypes to
test the modules’ (DS, PDC and EDC) functionality, sensing
solutions and algorithms. Our estimated cost for our Smart-
Bed prototype is around 1000 euros of which approximately
150 euros is for the pressure-sensing matrix. This cost is low
for a research prototype and could be lowered even further
with a series production (e.g. to the best of our knowledge,
existing solutions like XSENSOR [25], SensorEdge [26] and
BodyTrak [27] are in the range of 5-10k euros).

Figure 5 shows four examples of sleeping postures detected
by the pressure mapping system when a subject is lying
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FIGURE 6. Analysis of respiratory signals related to a subject in a supine
position: time course of breathing rate (Hz) obtained with Smart-Bed
(blue line) and with an estimation of the air-flow in the nasal cannula
(reference breath, red line). The respiratory frequency extracted from the
Smart-Bed accurately reflects the ground truth data.

on the Smart-Bed (prone, supine, left side, and right side).
The chest, upper arms and legs are easily recognizable. In
static conditions, the pressure image detects the presence
of the subject on the mattress and his/her sleeping posture.
In dynamic conditions, when the subject moves while lying
on the mattress, the pressure image changes continuously
and this variation can be used to determine the subject’s
movement during sleep.

Figure 6 shows an example of breathing activity estimated
by the Smart-Bed and compared with a ground truth obtained
using a thermistor inserted in a nasal cannula. The reference
signal is based on measuring the temperature during expira-
tion and inspiration and of the air passing in the nasal cannula.
The subjects of the test (signal-testing group) voluntarily
controlled and modulated their breathing in order to verify
the ability of the Smart-Bed to replay different breathing rates
without a significant delay. As shown in Figure 6, the estima-
tion of breathing rate extracted from the Smart-Bed repro-
duces the reference data well with only a small delay. The
same accuracy was observed in all the experimental sessions
with different subjects and different voluntarily-modulated
respiratory rates.

Figure 7 shows three traces of heart rate estimation com-
paredwith the heart rate obtainedwith reference ECG signals.
The heart rate obtained by our mattress proved to be very
efficient and accurate. The evaluation of the mean heart rate
over the 30-second epoch was very stable and close to real
values. Considering the estimation over one-second epochs,
the estimated heart rate shows a low pass filtering behav-
ior, with a loss of high frequency components. However,
the low-pass filtering showed no particular effects using the
30-second epochs for sleep staging and behavioural condition
classification. The estimation of heart rate via Smart-Bed-
BCG was accurate and robust when the subject was not
moving, as during sleep or in relaxed wakefulness before
sleep.

Figure 8 shows the results of the classification of the posi-
tion and motion of the subject on the mattress using the ANN
classifier on the ANN-training group. We obtained an overall
accuracy of about 91.8% and more specifically: 83.9% for
not on bed, 83.8% for supine position, 96.4% for lying on the
left side, 94.5% for lying on the right side, 89.3% for prone
position, and 93.1% for movement.

FIGURE 7. Analysis related to three different subjects: heart rate time
course (with different time lengths) detected by BGC with the Smart-Bed
(blue lines) and simultaneous heart rate signals collected by reference
ECG system (red lines). The estimation is performed with a 1 second time
resolution.

FIGURE 8. Confusion matrix related to the performance of the position
and motion classification (ANN algorithm) regarding the ANN-training
group, with six classes: i) not on bed, ii) supine position, iii) lying on the
left side, iv) lying on the right side, v) prone position and vi) movement.
The positive predictive values and false discovery rate are reported.

We performed the training and testing of the automatic
classifier (decision tree algorithm) of behavioural conditions
on the condition-training group. From the eight nights of
recordings of the condition-training group, we collected a
total of 4761 epochs (i.e. about 40 hours). We removed
1280 artifactual epochs due to the poor EEG signal quality
of the polysomnography. We extracted 581 epochs of no bed
occupancy, 554 epochs of wakefulness, 2193 epochs of non-
REM sleep, and 153 epochs of REM sleep. The classification
performance obtained with the decision tree algorithm was
satisfactory in terms of aim f the classification. The overall
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FIGURE 9. Confusion matrix related to the performance of the
behavioural conditions classification (decision tree algorithm) regarding
the condition-training group, with four classes: no bed occupancy,
wakefulness, non-REM sleep, and REM sleep. The positive predictive
values and false discovery rate are reported.

accuracy was about 86%, and specifically (see the confusion
matrix in Figure 9): 99% for ‘‘no bed occupancy’’, 83% for
‘‘wakefulness’’, 83% for ‘‘non-REM sleep’’, and 79% for
‘‘REM sleep’’.

Figure 10 reports the variation in estimated heart rate,
breathing rate, motion and behavioural conditions as a
function of time (in epochs) for one subject in the condition-
training group. Within each epoch, the estimated physio-
logical and environmental information (see II-E.2 section)
is used as input in the automatic classifier to evaluate the
related behavioural condition. The behavioural condition pat-
tern assesses the sleep macrostructure (sleep staging) of the
subject and can reproduce the hypnogram.

Figure 11 reports the time course of the SQI and EQI for a
subject in the long-testing group, monitored with the Smart-
Bed for 60 days continuously. As regards the environmental
quality, the deviations in environmental parameters from the
optimal ranges are also reported. A comparison of the time
courses suggests that sub-optimal environmental conditions
have contributed to non- fully restorative sleep. However,
it seems that the subject adapted to the environmental condi-
tions (from day 27), demonstrating an improvement in sleep
quality. During the durability tests, no functional issues, data
losses or hardware faults were reported.

IV. DISCUSSION
The results of Section III show that our mattress is a valid
unobtrusive solution for detecting physical, physiological,
and environmental parameters.

FIGURE 10. Physiological signals and behavioural conditions estimated
from the data collected by Smart-Bed for a subject (condition-training
group) during sleep. The estimated data are heart rate (beats per minute,
bmp), breathing rate (bpm) and motion (movement detected or not). The
time unit is the epoch (30 seconds).

FIGURE 11. Single subject continuously monitored for 60 sleep nights.
The time course of the Sleep Quality Index (SQI, seven-level index) and
the Environmental Quality Index (EQI, dichotomic index) are shown in the
upper and lower panels, respectively. In the lower panel, for each
parameter contributing to EQI, up-pointing red triangles and
down-pointing blue triangles for each day indicate whether the
corresponding parameter exceeded or losing to the optimal range,
respectively.

To the best of the authors’ knowledge, our mattress is
the only in-bed solution that can simultaneously detect posi-
tion and motion as well as breathing and heart activity.
The WhizPad [15] and the Kinotex [22] were tested for
posture/motion and breathing detection, while the solution
developed by Kortelainen [23] was assessed for breathing
and cardiac activity detection (i.e. no static postures due to
the piezoelectric technology). The other examples cited in
Section I ( [18]–[20], [24]) focus on the measurement of a
single parameter (position/movement or a single physiologi-
cal parameter).

It should also be emphasized that some of the examples in
the literature show a much higher performance with regard
to the spatial resolution of the pressure mapping system.
For example, the XSENSOR pressure mapping system [25],
tested in [18] to prevent ulcers, has 6136 sensing areas
(52 rows x 118 columns) that can be scanned at a rate
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of 1 Hertz. The Smart-Bed pressure mapping system has a
smaller number of sensors by a factor of about 30 (195 vs
6136). If the objective was to monitor and prevent pressure
ulcers, the lower spatial resolution could be a limitation.
However, for a low-cost prototype suitable for future exploita-
tion as a consumer product that monitors sleep quality in
the general population, the lower spatial resolution is not a
limitation. In fact, we have demonstrated that the pressure
mapping system with a lower number of elements still leads
to a good evaluation of postural andmotion parameters.Many
of the prototypes presented in the literature discussion in
Section I have a higher number of pressure sensing areas by
a factor greater than 10.

In addition, the Smart-Bed, unlike other solutions, is able
to monitor a set of basic environmental parameters (sound
intensity, relative humidity, temperature and luminosity) that
are known to be correlated with sleep quality.

From a technical point of view, we have demonstrated the
robustness of the Smart-Bed prototype which continuously
monitored five subjects for up to 231 days without significant
data losses (data collection and extraction of the SQI and EQI
indexes).

The most important result obtained with the Smart-Bed is
the classification of the main behavioural conditions charac-
terizing sleep, which is the basis for a robust extraction of an
index used to quantitatively assess sleep quality. To the best
of the authors’ knowledge, the existing smart bed solutions
have not been demonstrated as being capable of classifying
the different behavioural conditions that characterise sleep.
An approach to behavioural assessment based on machine
learning was developed and assessed by Wang et al. [17]
with the WhizPad prototype [15]. However, in their work the
authors classified only two classes: sleep vs awake. In fact,
the ability to classify four conditions, in particular REM vs
non-REM, is a key feature of the design of our prototype.
In fact, despite the relative low number of sensors, the Smart-
Bed can detect relevant physiological and activity parameters
that are integrated through our machine-learning approach.

Monitoring environmental conditions together with physi-
ological parameters could lead to the development of specific
applications aimed at identifying causes and thus suggesting
solutions to the poor sleep quality. In addition, an integrated
environmental-subjective index of sleep quality is advisable.

V. CONCLUSION
In this work, we have described the architecture and prelim-
inary results of an innovative system for non-invasive sleep
monitoring in real world contexts. The proposed system,
developed within the L.A.I.D. research project, is a low-cost
smart mattress (Smart-Bed) capable of recording the sig-
nals related to the physiological (cardio-respiratory activity),
postural (body position and movements) and environmental
(temperature, noise, humidity and luminosity) aspects used
to identify the main stages of wakefulness and sleep and
to estimate a global sleep quality index and environmental
quality index.

Our preliminary tests with the Smart-Bed prototypes
verified the full functionality and robustness of the pro-
posed architecture, both considering the hardware and data-
processing solutions. However, the results presented herein
were obtained from a relatively small number of subjects.

In fact, we are in the process of performing additional in-
depth tests on a higher number of subjects to validate and
improve the prototypes. This will lead to the final version
of the Smart-Bed for the easy and low-cost monitoring of
sleep quality for large populations. Sleep investigations based
on a validated Smart-Bed solution would enable the sleep
macrostructure to be studied in real life.We are also designing
a second version of the prototype to improve various engi-
neering aspects. This includes a wireless connection between
the sensors and a remote data collection hub in which the data
are transmitted when the Smart-Bed detects that the subject
is not present.
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