
Received December 31, 2019, accepted February 8, 2020, date of publication February 24, 2020, date of current version March 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2976045

Enhanced Skin Condition Prediction Through
Machine Learning Using Dynamic Training
and Testing Augmentation
TRYAN ADITYA PUTRA , SYAHIDAH IZZA RUFAIDA ,
AND JENQ-SHIOU LEU , (Senior Member, IEEE)
Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Corresponding author: Syahidah Izza Rufaida (syahidah.izza@gmail.com)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST-108-2221-E-011-061.

ABSTRACT In recent years, deep learning has taken the spotlight in automated medical bioimaging.
However, the performance of current state-of-the-art score stems primarily from well-tuned parameters and
architecture. There is still only limited research focused on dynamic data augmentation, even in the fields of
machine learning and computer vision. In this study, we propose a dynamic training and testing augmentation
capable of increasing performance significantly. The searching augmentation framework used in this study
requires fewer GPU hours than a conventional search algorithm, which needs to train a newmodel every time
augmentation is proposed. Speeding up of the search algorithm is achieved by using Bayesian optimization
on a trainedmodel, so we do not have to train a newmodel every time a new augmentation policy is proposed.
The performance of our method is compared with that of a single model and the ensemble model that
happens to be the winner of the ISIC 2019 challenge. Furthermore, we use the latest compact yet significantly
accurate network architecture EfficientNet as the backbone system. Our method delivers a superior result,
and this study also shares the searched augmentation policy utilized, which requires extraordinary resources.
Thus, other researchers can use the searched augmentation policies for dermoscopic images to improve
performance.

INDEX TERMS Machine learning, augmentation, skin cancer, dermoscopic images.

I. INTRODUCTION
Skin cancer diagnosis has increased significantly over the
last decade: 54% from 2009 to 2019 [1]. Skin cancer is an
abnormal condition in which skin cells multiply rapidly due
to DNA mutation or genetic defects. This abnormality is
predominantly caused by protracted exposure to ultraviolet
radiation from the sun [2].

Traditionally, dermatologists diagnose skin cancer via
physical examination and biopsies. The skin samples taken
from the suspected spot during the biopsy are sent to a labora-
tory for examination. However, obtaining the final diagnosis
may take about one week. Meanwhile, about 10,000 people
in the United States are diagnosed with skin cancer every-
day [1]. The traditional process is time consuming, and the
survival rate for early-detected skin cancer is about 98%.
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Unfortunately, with late detection, the survival rate decreases
dramatically to 23% [3].

More than two people die every hour due to a skin cancer
disease, and the number of deaths in 2019 is estimated at
around 7,230 people (4,740 men and 2,490 women) [1].
Furthermore, from age 15 to 39, which is the productive age
range, men are 55% more likely to die from melanoma than
women in the same age group [4].

Deep Learning has achieved significant breakthroughs in
medical image segmentation, such as brain tumor segmen-
tation and retinal vessel segmentation [5]–[7]. Skin cancer
segmentation is a challenging area due to the presence of
artifacts such as hair, reflection, air and oil bubbles [8],
[9]. Another crucial challenge with medical problems is the
limited training data.

Data augmentation is one of the essential keys to over-
coming the challenge of limited training data. Augmentation
that expands data diversity can make a machine learning
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model aware of invariance in the data domain. Only a few
studies have focused on improving augmentation techniques
[10], [11]. However, there is a lot of attention directed
at improving machine learning architectures to enhance
performance [12]–[15]. For example, most winners of the
largest competition on image datasets [16] held annually
since 2010 achieved state-of-the-art score by improving the
model architecture [12], [13], [17]–[19]. All the winners have
used the same augmentation technique, with small changes,
as the one proposed in 2012 [17].

There are many problems that come with using image
datasets; from medical issues to everyday objects, such as
disease, character, and animal classification. Several studies
have explored the best augmentation for a single dataset.
However, there is no research exploring whether the aug-
mentation can be combined or transferred between datasets.
To the best of our knowledge, only Cubuk et al. have explored
the possibility of transferring an augmentation policy to
another dataset [10]. This study has inspired us to continue
the exploration of augmentation policies for images in the
medical-domain.

Not only that we explore the application of the probabilistic
augmentation framework to images in the medical-domain,
specifically to dermoscopic images, to diagnose skin cancer
types. We also expand the idea of probabilistic augmenta-
tion from training to inference stage. From the experimental
results, the application of probabilistic augmentation can be
expanded to cover dermoscopic images. We are able to even
push the result further by using probabilistic augmentation
at inference stage. We share the searched augmentation for
future research to be used. Thus, other researchers that use
skin datasets can focus on tuning the model parameters
alone while leaving the search process for the best augmen-
tation policy by using our result. A brief overview of the
probabilistic augmentation framework is presented in Fig. 1.
We use EfficientNet for the backbone network [20]. Efficient-
Net is the latest and the most compact network with high
performance.

FIGURE 1. Autoaugment Illustration.

To summarize, the contributions of this paper are as
follow:
• We exploit the advance dynamic training augmentation
called Fast Autoaugment to train the machine learning
model for skin cancer diagnosis.

• We purpose dynamic preprocessing on inference (DPI)
in order to adapt the environmental condition when the
image was taken.

• We proved the performance of dynamic augmentation
and DPI outperform the current state-of-the-art ensem-
ble model for skin diagnosis.

• We present the searched augmentation for future
research which need thousand of GPU hours to be found.

II. SKIN LESIONS
In this section, we explain the general pathological hierarchy
of skin lesions and briefly describe the dermoscopic charac-
teristics of eight diagnosis categories from the dataset used in
our experiment [28].

Hierarchically, there are two types of skin lesions:
melanocytic and non-melanocytic. Based on the origin
of the lesion, a melanocytic lesion or melanoma comes
from a genetic defect in pigment-producing cells known as
melanocytes. A melanoma-type cell can rapidly grow from
stage 0 (melanoma in situ) to stage 4 (metastatic melanoma)
without proper treatment [29]. Furthermore, based on the
degree of malignancy, melanoma lesions can be classified
into two categories: benign and malignant. Benign melanoma
cells lack the ability to spread or interfere with nearby cells.
Oftentimes, the benign melanoma cells will stop growing
once they reach a certain size, while malignant melanoma
cells never stop growing and can thus press and interfere with
surrounding healthy cells [30].

Melanoma is a malignant melanocytic lesion that should
be detected as early as possible. However, it is hard to detect
melanoma early because its characteristics vary depending
on its anatomic site [31]. Generally, the characteristics of
melanoma are dark (brown or black) rhomboidal structures
and asymmetric pigmented follicular openings (Fig. 2a).
Another important characteristic in relation to facial area is
the appearance of slate-gray globules and dots. The only
effective treatment for melanoma is surgical excision.

A melanocytic nevus (NV) is a benign variant of
melanocytic lesions. Unlike the malignant-melanoma, this
benign variant, the NV, has a symmetrical structure and color
[21]. It is worthy of note that a symmetrical structure in
biology refers to a uniform pattern regardless of an irregular
shape or the presence of stain. A melanocytic nevus sample
can be seen in Fig. 2b.

Basal cell carcinoma (BCC) is a malignant form of non-
melanocytic lesions. The BCC cells rarely grow but can
spread if left untreated. The dermoscopic descriptions of
non-pigmented BCC are arborizing vessels and shiny white-
red structureless areas, while the description for pigmented-
BCC are: maple leaf-like areas and large blue-gray ovoid
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FIGURE 2. Skin lesion categories.

nests [22]. Dermoscopic samples of BCC are presented
in Fig. 2c. There are several treatment options for removing
BCC cells: curettage and electrodessication, radiation ther-
apy, photodynamic therapy, and surgery.

Actinic Keratosis (AK) is a variant of mini-squamous cell
carcinoma that can be treated without surgery. However,
AK should be diagnosed and treated as early as possible
before it progresses and evolves into squamous cell carci-
noma in situ. AK is commonly found in the facial area,
and its characteristics take the form of red pseudo-network
(strawberry-network), dotted/glomerular vessels, white struc-
tureless areas, a central mass of keratin, and diffuse yellow
opaque scales [23], as shown in Fig. 2d.

Benign keratosis (BKL) is a benign type of non-
melanocytic lesion. Seborrheic keratoses, solar lentigo,
and lichen-planus like keratoses (LPLK) are categorized
under the BKL group because they are biologically sim-
ilar. As shown in Fig. 2e, the dermoscopic criteria for
benign keratosis are: milia-like cysts and comedo-like
openings [24], [32].

Dermatofibroma is a benign variant of the non-melanocytic
type of lesion. The most common characteristics are a central
white patch and peripheral pigment network [25]. Dermatofi-
broma is harmless because it a benign type. Furthermore,
optional treatments are available for aesthetic reasons, such
as freezing or laser procedures. Sample images are presented
in Fig. 2f.

A vascular lesion is a benign variant of the non-
melanocytic type of lesion. Angiomas, angiokeratomas,
pyogenic granulomas, and hemorrhage are included in this
category. As shown in Fig. 2g, the characteristics are a solid
purple color with well-circumscribed structures known as red
clods or lacunes [31].

TABLE 1. The variant of EfficientNet models.

Squamous cell carcinoma is a thickened plaque or nod-
ule. It has varied characteristics depending on the location
on which it appears. The characteristics are white circles,
keratin, and blood spots [27], shown in Fig. 2h. Primarily,
the optional treatment is excision surgery.

III. METHODOLOGY
A. EFFICIENTNET
Recent state-of-the-art architecture is used as backbone in
our experiment. Tan and Le proposed a compound-scaling-
method to construct an efficient machine learning architec-
ture. In order to get a better performance, many researchers
have been trying to scale the width of the network [12],
the depth of the network [13], and the resolution of the image
[33]. However, none of them define how to balance all the
dimensions with a proper ratio. The size of input resolution
is a crucial aspect for the model to achieve a superior perfor-
mance. Furthermore, if the input resolution is increased, then
more layers and channels should be added to capture more
pattern in order to increase the model’s receptiveness.

EfficientNet is a family model that is built from a base-
line model which developed through a neural architecture
search [34]. The neural architecture search is a framework
to search for the best architecture in the search space under
certain constrain. The main building block of the network is
mobile inverted bottleneck (MBConv) layer which proposed
by Sandler et al. [35] and Tan et al. [36]. The illustration of the
baseline model which called as EfficientNet b0 is displayed
at Fig. 3. The detail of the scale for other expanded models
can be seen in the Table 1.

The performance of EfficientNet is better than all the
predecessors with similar computation and memory need by
large margin. EfficientNet b4 which has similar number of
FLOPs and parameters as ResNet50 [13] performs 6% better
(82% vs 76%) at ImageNet dataset. The performance of
EfficientNet b4 is the same asNasNet-A [34] with 5.7× lower
computational resources and 4.7× lower memory needs.

B. AUTOAUGMENT
AutoAugment uses a reinforcement learning approach to for-
mulate the problem of finding the best augmentation tech-
nique for a dataset. In this problem, a state is represented
by an image, which can be an original image or an image
to which augmentation techniques have been applied. Then,
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FIGURE 3. The architecture of EfficientNet b0.

FIGURE 4. Example of random augmentation from the searched policies. Each policy contains two
transformations and the probability of its usage.

the action space consists of augmentation techniques for
images, such as rotation, translation, and scaling, because
the augmentation techniques for images require a magnitude
parameter. For example, in rotation transformation, the mag-
nitude of the degree through which an image is to be rotated
is required to perform the transformation. Thus, the degree
becomes a parameter required for the transformation. The
action comes in a pair: an image transformation and a mag-
nitude value as its parameter. A reward in AutoAugment
is based on a machine learning models performance on a
validation set after applying the augmentation techniques.

For each episode, an RL agent selects the proper aug-
mentation technique to apply to the dataset. Subsequently,
a backbone machine learning model is trained with a dataset
in which the images have been augmented. Then the final
accuracy is used as a reward to the RL agent to improve its
next action.

An RL agent will have a sufficient ability to pick the
best augmentation policy after several episodes. Because a
completely new model is trained in each episode, the time
complexity of this framework is expensive. Based on the
experiment by Cubuk et al., they needed thousands of GPU
hours to improve state-of-the-art score [10].

Lim et al. proposed an improvement, called Fast AutoAug-
ment, that overcomes the time constraint of the AutoAugment

framework. Instead of re-training the model each time a new
augmentation technique is selected, they only train a model
once and pick the best augmentation technique based on
inference time [11].

Let us denote φ as an image transformation that can be used
as an augmentation technique that receives an image x, mag-
nitude m, and probability p. The result of the transformation
can either be φ(x;m) with probability p or the original x itself
with probability 1− p. The illustration is shown in Fig. 4.

φ(x;m, p) =

{
φ(x;m) with probability p,
x with probability 1− p.

(1)

Then, several image transformations can be stacked sequen-
tially and annotated as 9n, which contains n augmentation
techniques applied sequentially to the input image x. For-
mally, the definition can be expressed as follows:

9n(x) = φn(· · ·φ0(x; ,m0, p0) · · · ; ,mn, pn). (2)

At first, a trained dataset δ is divided into k-folds. Each
fold consists of a tuple <δktrain, δ

k
val>. Then, several classifiers

f kθ are trained concurrently with each dataset δktrain. Sub-
sequently, using the Bayesian optimization approach [37],
the top-n augmentation techniques are selected based on the
lowest error rates of classifier f kθ when predicting dataset δkval .
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Algorithm 1 Fast AutoAugment
Data: Classifier fθ , Dataset δ, Bayesian Opt β, Policies

9all , k , t , and n
Result: Policies 9best

1 9best
:= ∅ ;

2 {< δ1train, δ
1
val >, · · · , < δktrain, δ

k
val >} = split(δ, k);

3 for i← 0 to k do
4 train fθ with δitrain ;
5 for j← 0 to t do
6 9 j

:= β(9all, fθ (δival)) ;
7 9

j
n := extract best(9 j, n) ;

8 9best
:= 9best

∪9
j
n;

9 end
10 end
11 Return 9best ,

All the best augmentation techniques 8n are merged from
each fold. The final step is to train the entire training set δ
with augmentation techniques8nk . The complete step by step
procedure is outlined in Algorithm 1.

C. BAYESIAN OPTIMIZATION
The primary goal of Bayesian optimization is to find the min-
imum value of a function fθ (x) based on a finite input set X .
First, Bayesian optimization uses an approximation function
f̂θ (x) that represents the probabilistic function fθ (x). Then,
Bayesian optimization constructs an acquisition function q to
exploit the approximation function for picking the next input
x of f̂θ (x) to be evaluated.

A Gaussian process is selected to be the approximation
function fθ (x). We define 8 as the cumulative distribution
function of the Gaussian distribution. The acquisition func-
tion used in our paper is the expected improvement function,
which is mathematically defined as:

q(x) = σ (f̂θ (x))[ζ (x)8(ζ (x))+N (ζ (x))]. (3)

ζ (x) is the probability of improvement of the current maxi-
mum value, which can be calculated using:

ζ (x) =
f (xmin)− µ(x, {xn, yn})

σ (x, xn, yn)
. (4)

The µ(·) and σ (·) is the mean and variance of · respectively.
In this study, we use the Bayesian optimization to find the best
augmentation by using the loss given by the trained model as
the target to be minimized.

D. DYNAMIC PREPROCESSING ON INFERENCE (DPI)
In recent years, most researchers have focused on the best
network architecture, while only a few have focused on data
augmentation. To the best of our knowledge, there is no study
focus on dynamic preprocessing framework for inference yet.
To achieve dynamic augmentation on inference, we define
Pϑ : xi− > 9 as a convolution neural network function

FIGURE 5. A sample from each category.

that maps an image xi into augmentation space 9. The aug-
mentation space 9 contains all possible augmentations. The
training objective can be define as:

min
ϑ

∑
i

∑
j

zi,j × log(Pϑ,j(xi)), (5)

where zi is the top-k augmentation of the i-th data. The index
j on zi,j is a boolean indicator whether the j-th augmentation
is one of the top-k augmentation. The definition of zi is
mathematically described as:

zi = topk (−`(fθ (9(xi), yi))), (6)

where ` is the loss function of the main model. The
task of finding the top-k augmentation becomes multilabel
classification problem with the top-k augmentation as the
label. Because the magnitude of augmentation is continuous,
we discretize into several levels of equal chunks. The model
for inference augmentation is trained using (xi, zi) to under-
stand which augmentation works best for certain images.
After successfully training the network with the multilabel
data on inference, we use the maximum logit value to select
the desired augmentation.

E. DATASET
The International Skin Image Collaboration (ISIC) is the
largest dermoscopic dataset in the world with an open license
and has a total of 25,331 dermoscopic images with ground-
truth labels [28], [31], [38]. The data also comes with clinical
information, such as age and gender. The ground-truth labels
have 8 different diagnostic categories: melanoma (MEL),
melanocytic nevus (NV), basal cell carcinoma (BCC), actinic
keratosis (AK), benign keratosis (BKL), dermatofibroma
(DF), vascular lesion (VASC), and squamous cell carcinoma
(SCC). A sample from each category in the dataset shown
in Fig. 5. The image resolution comes in a 600× 450 dimen-
sion.

The obvious problem with the dataset is an imbalanced
class distribution, shown in Fig. 6. The NV class consists
of 12,875 samples, while DF and VASC contain fewer than
300 samples.

IV. EXPERIMENT
In this experiment, we set the augmentation search space
as follows: shear, translate, rotate, auto-contrast, invert,
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FIGURE 6. Distribution of class in ISIC dataset.

FIGURE 7. Dynamic Preprocessing Inference (DPI) model is used to select
the best augmentation policy for a test image, before being predicted by
the main model.

FIGURE 8. Probability of image augmentation based on the searched
policies.

equalize, solarize, posterize, color, contrast, brightness,
sharpness, and cut out. We employ EfficientNet, which is
state-of-the-art architecture in deep learning [20] proposed by
Tan and Le as a backbone model for classifying dermoscopic
images. Precisely, we are using the EfficientNet b4 model
with the exact same setting as Tan and Le. We called this
model as probabilistic augmentation (PA) model. We used
512,000 steps, with 16 as the batch size. The Adam opti-
mizer [39] is used with a learning rate of 0.0001. We also
use an exponential decay of 0.99998. The search for aug-
mentation is done using four independent training models.

FIGURE 9. Average magnitude of each augmentation policy.

FIGURE 10. Validation accuracy while training progresses.

TABLE 2. Binary classification metrics.

Each independent training model uses two searches. For
every search, the top-5 policies with the lowest loss are
added to the final augmentation policies. For the final training
model, we used the same setup as for the augmentation policy
search with a batch size of 64. Using probabilistic augmenta-
tion policy, a higher training step is needed to achieve a well-
trained model. This is required to ensure stochastic stability
in the training phase.

For preprocessing a model on inference, we used the
exact same model as the main model, Efficient-net b4.
We called the second model as dynamic preprocessing on
inference (DPI) model. We train the DPI model as follows:
for each possible augmentation, we use 16 levels of magni-
tude, where the 0 level means no augmentation is applied.
Because we have 13 candidates for augmentation with 16 lev-
els, we have 13 × (16 − 1) + 1 = 196 possible outputs.
The final preprocessing on inference is determined by the
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TABLE 3. Comparison result with other studies on the ISIC 2019 challenge vs purpose method based on AUC, accuracy, sensitivity, and F1-Score. Results
marked with † are the results measured on the competition test set.

maximum logit given by the DPI model. The overall flow of
our experiment can be seen in Fig. 7.

To compare our method, we ran two different scenarios.
First, we used the searched augmentation policy to train
the PA model. Second, we combined the first scenario with
dynamic preprocessing on inference. We compared those
scenarios with a single model trained using static augmen-
tation and the ensemble model (the ISIC 2019 challenge
winner).

V. EVALUATION
In this section, we describe several metrics that can quantify
the models performance in our experiment. We divide our
metrics into two categories: binary classification metric and
multiclass classification metric.

A. BINARY CLASSIFICATION METRIC
Despite the ISIC dataset having eight categories, we can
measure the models performance using a binary classification
metric. We can calculate the correctness of the predictions for
each class separately. Therefore, for each metric, we produce
eight different scores for each class.

In a binary classification problem, we can assign a
positive-negative class scenario directly. A common met-
ric for binary classification measurement is to calculate
how many samples are truly classified as positive (TP),
truly classified as negative (TN), falsely classified as posi-
tive (FP), and falsely classified as negative (FN) as shown
in Table 2.

1) ACCURACY
Accuracy is a metric for determining the quality of the mod-
els performance in categorizing both positive and negative
classes. The score is calculated by comparing all truly classi-
fied data with all data. The formal definition can be written
as follows:

ACC =
TP+ TN

TP+ FP+ TN+ FN
(7)

2) SENSITIVITY/RECALL
The sensitivity, also known as the recall score, is used to
measure how good the models performance was for discov-
ering positive data from the actual positive data. When the
smaller positive sample is categorized as negative, a higher
recall score will be achieved. From amedical perspective, it is
important tominimize the number of sick persons categorized
as healthy because it can jeopardize their life. The recall score
can be calculated as follows:

Recall =
TP

(TP+ FN)
. (8)

3) F1 SCORE
As mentioned previously, the recall score is very important
from a medical perspective, and we do not want our model to
categorize every sample as positive. Therefore, we also need
an F1 score that can balance recall and precision. Precision
is used to measure how precise the model’s ability is for
identifying the actual positive data from positive-predicted
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FIGURE 11. Confidence Matrix Improvement of DPI framework.

FIGURE 12. Confidence score with probability Augmentation.

data. The precision score is expressed as:

Precision =
TP

(TP+ FP)
. (9)

While the formula of F1 score is defined as follows:

F1 score = 2 ∗
(Precision ∗ Recall)
(Precision+ Recall)

. (10)

4) AREA UNDER CURVE (AUC)
Binary classification comes with a single probability:
whether a sample belongs to a positive or negative class.

TABLE 4. Comparison of methods based on balance accuracy score.
Result marked with † is the result measured on the competition test set.

Instead of determining a fixed threshold for categorization,
an AUC metric is used to measure how well data are ranked
based on their prediction probability. The AUC metric is
obtained by calculating the area under the receiver operating
characteristic (ROC) curve. The ROC is a graph representa-
tion of the false-positive rate (FPR) and the true-positive rate
(TPR). FPR and TPR are mathematically defined by:

TPR =
TP

TP+ FN
(11)

and

FPR =
FP

FP+ TN
. (12)

The final AUC value is a number representing the total area
under the ROC curve. The AUC value bounded between
0 and 1 with the higher value is superior.

B. MULTICLASS CLASSIFICATION METRIC
The common problem with medical datasets is a highly
imbalanced number of samples for each class. Therefore,
tomeasure themodels performance, we cannot use a common
accuracy metric that treats each sample equally because it
stimulates the model to ignore samples from the minor class.
Because we need to treat each class equally, we use balance
accuracy to know howwell themodel performs on the dataset.
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TABLE 5.

1) BALANCE ACCURACY
Balance accuracy is a weighted accuracy score based on the
proportion of samples from each class to the total sample.
Mathematically, balance accuracy can be written as follows:

ACCbalance(y, ŷ, n, c) =
1
c

∑ ∑
1(yi = ŷi)
ni

. (13)

We can get an overall score that represents the ability to
identify each class equally regardless of the imbalanced
samples.

VI. RESULT
We employ the search for the best set of augmentation poli-
cies using Fast AutoAugment using Bayesian-optimization.
The searched augmentation probability and magnitude can
be seen in Fig. 8 and Fig. 9. The procedure to run the
search requires around 300 hours of GPU time (Tesla
V100) for completion. Thus, we present the details of the
searched augmentation in Appendix A to be used for future
research.

Based on the results presented, the evidence that augmen-
tation plays a significant role in medical image prediction
is undeniable. The comparison of accuracies between static
and PA while training can be seen in Fig. 10. We refer to the
term ‘‘static augmentation’’ as using a few augmentation poli-
cies. The augmentation policies are limited to crop, resize,
and horizontal flip. In Fig. 10, static augmentation during
training phase provides a faster convergence rate than prob-
abilistic augmentation. However, the weight is not stochasti-
cally tuned because we only use a few augmentations, which
leads to memorization instead of generalization [10], [40].
Due to not being stochastically tuned, the accuracy cannot
grow further, unlike training using probabilistic augmenta-
tion. A low convergence rate is a drawback of employing the

considerably massive possibility of augmentations. Greater
augmentation possibilities will lead to lower convergence
rates.

As part of the multiclass classification, the confussion
matrix is one of the most important visualization metrics.
We can see in Fig. 11a and 11b that high accuracy is concen-
trated in classes with a high number of samples. At a glance,
combining both PA and DPI gives a better confusion matrix
in Fig. 11b than using only PA, as can be seen in Fig. 11a.

The entire experiment using PA and PA plus DPI is com-
pared with a single model trained using static augmentation
and the ensemble model that is the first place solution in
the ISIC 2019 challenge, which does not use an additional
dataset. The ensemble method uses several EfficientNets [20]
and SerestNexts [41]. As can be seen in Table 3 and 4,
our methods can supersede other methods on all average
metrics, including AUC, accuracy, sensitivity, and F1 score.
Since the competition does not release label for the test set,
we showed the ensemble model performance metrics on both
cross validation and the competition leaderboard. We can
see in the Fig. 12 the example of images after dynamic
augmentation applied. The probability of the actual class is
increased significantly and able to alter the network outcome.

VII. CONCLUSION
This study proposes a technique for exploring the possibility
of having multiple probabilistic training augmentations
and dynamic augmentation on inference. The searching
framework uses Bayesian optimization to reduce GPU hours
compared to that required for reinforcement learning-based
augmentation search [10]. We present the searched augmen-
tation in Appendix A for future research. In addition to the
first work to apply augmentation search on medical dataset,
our paper also proposed novel technique to perform dynamic
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preprocessing on the inference.We use twomodels to accom-
plish our goal: the first model is for predicting the skin
condition, and the second model is built to predict the best
augmentation for the inference stage. We use EfficientNet
b4 for both models. The performance of PA and PA plus
DPI proved to be better than that of the normal model and
the ensemble model that is the ISIC 2019 challenge winner.
Although the proposed method has high accuracy, more steps
are needed to train the model. The low convergent rate of our
method is due to achieving stochastically tunedweight, which
is rarely achieved using minimum augmentation.

APPENDIX
THE SEARCHED POLICY
See Table 5.
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