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ABSTRACT Due to the existence of unfavorable factors such as turbid water quality and target occlusion,
it is difficult to obtain valid data of target features. Due to the repeated calculation of similar data,
the real-time performance of the algorithm is poor. In view of the above problems, this paper proposes a
multi-AUV collaborative target recognition method based on transfer-reinforcement learning. The features
of the target information which is collected by multi-AUV are fused based on wavelet transformation and
affine invariance. The similarity of features is calculated by Mahalanobis distance and the learning model
is selected autonomously based on the similarity threshold. Based on the Q-learning reinforcement learning
model, the target information under the interference environment is trained intensively, and the effective
features are extracted and stored in the source domain, which can reduce the impact of the environmental
interference on the target recognition. The feature transfer learning model based on deep confidence network
transfers the feature data of the source domain to the target domain, reducing the repeated calculation of
similar data, and then ensuring the real-time performance of the algorithm. Simulation experiments are
conducted in the SUNdataset under five underwater environments (turbidwater, target occlusion, insufficient
light, complex background, and overlapping targets), and the results demonstrate that the proposed model
achieves better performance.

INDEX TERMS Small sample, target recognition, multi-AUV collaboration, reinforcement learning,
transfer learning.

I. INTRODUCTION
The Autonomous Underwater Vehicle (AUV) is an intelligent
robot that can perform tasks related to the underwater envi-
ronment without an operator [1]. It can be used as auxiliary
equipment for various underwater tasks to prevent opera-
tors from working in more dangerous underwater environ-
ments, and it can adapt to underwater environments and carry
out underwater tasks well. With the increasing complexity
of the work, the working ability of a single AUV can no
longer meet the requirements, and the collaborative control of
multiple Autonomous Underwater Vehicles (multi-AUV) has
become a hotspot in recent years. This paper introduces the
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multi-AUV collaboration mechanism into the field of target
recognition, and multi AUV is used for target recognition.

In the actual underwater environment, target recognition
will be interfered by many factors, such as turbid water, target
occlusion, insufficient light, complex background, and over-
lapping targets, and so forth. At present, researchers mainly
train a large amount of data on target image samples through
reinforcement learning [2]–[4], transfer learning [5], [6], and
adversarial learning [7], [8] to improve the real-time per-
formance and the accuracy of target recognition. However,
the current research still has the following problems: 1) Insuf-
ficient data sample, poor recognition quality, and unpre-
dictable underwater environment make it difficult to obtain
valid data of the required target features, seriously affecting
the accuracy of the recognition algorithm. 2) The target fea-
tures are not classified, leading to redundant calculation of
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FIGURE 1. Overall flow chart of multi-AUV collaborative target recognition based on transfer-reinforcement learning.

similar data and thereby jeopardizing the real-time perfor-
mance of the recognition algorithm. In view of the above
problems, this paper proposes amulti-AUV target recognition
method based on transfer-reinforcement learning, as shown
in Fig. 1.

The main contributions of this paper are as follows:
(1) Establishment of a multi-AVU collaborative sensing

model. The convolutional neural network is used to extract
target features, and feature fusion is based on wavelet trans-
formation and affine invariance. This model reduces the
impact of environmental interference on target information
collection and provides more effective information for target
recognition.

(2) A target recognition method based on transfer-
reinforcement learning is proposed. Feature similarity is cal-
culated based on Mahalanobis distance. If the similarity is
less than the threshold, reinforcement learning model is used
to identify the target. Through this method, we can reduce
the impact of insufficient target sample data and underwater
interference environment on target recognition and ensure the
accuracy of the algorithm. If the similarity is greater than
the threshold value, the transfer learning model is used for
target recognition to reduce the repeated calculation of the
same data and improve the real-time performance of target
recognition.

(3) The algorithm in this paper has been evaluated under
five underwater environments in the SUN dataset, and
achieved good performance.

The multi-AUV acquisition image is used as the algorithm
input. The convolutional neural network is used to extract the
feature and calculate the similarity between the target feature
and the source domain storage feature. If the similarity is
high, feature extraction is performed based on the transfer
learning model, and if the similarity is low, new features are
trained and extracted based on the reinforcement learning
model. Finally, multiple AUV information is merged and the
recognition target is output.

II. RELATED WORK
Currently, Convolutional Neural Network (CNN) is applied
to most target recognition technologies. Literature [9] uses
the theory of compressed sensing (CS) to generate saliency
maps, calibrates the targets in the image, and then uses the
CNN scheme to classify the targets, and extract different
features of the targets. The target recognition is achieved
through long-term training. In order to reduce the running
time of the algorithm, Li et al. [10] divides the convo-
lutional layer and the sub-sampling layer into two parts,
greatly reducing the training time without losing the recog-
nition rate. Ren et al. [11] introduce a Regional Proposal
Network (RPN) to share the full image convolution fea-
ture with the detection network. In order to solve the prob-
lem of authenticity and processing history of recognition
images, Bayar and Stamm [12] develop a new constrained
convolution layer CNN model, which suppresses the con-
tent of images jointly and adaptively while learning new
target features. CNN technology is improved to a new level
of autonomy and intelligence, but the above methods require
a large amount of data training for the target, and the target
recognition cannot be directly performed for a new target.

In the small sample scene, the literature [13] integrates
the convolution operation into statistical modeling for the
statistical identification problem with limited training data
and develops a convolution factor analysis model, which
achieves better recognition performance with less training
data. In [14], a multi-scale incremental dictionary learning
algorithm is proposed. Gaussian functions with different
fuzzy parameters are used to extract multi-scale features of
SAR images, which are then reconstructed based on the
weights of these features at different scales. Experiments on
the automatic recognition database of motion and station-
ary targets show that the recognition performance is better.
Zhang et al. [15] propose a small sample recognition algo-
rithm based on the new Siam network, which does not require
large samples for training. It maps input information to the
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target space by making used of supervised learning, to realize
effective target identification, in the case of a small number
of training samples in a single category.

When multi-AUV simultaneously detects a target, they can
obtain target information from different angles. In [16]–[18]
proposed integrated Glasius biological heuristic neural net-
work (GBNN), the bio-heuristic cascade tracking con-
trol method, and Greedy and Adaptive AUV Path-finding
(GAAP) heuristic algorithm respectively. These algorithms
enable multiple AUVs to quickly achieve consistency
during work. In terms of multi-view image recognition,
Cao et al. [19] proposed 3D aided duet generative adversarial
networks (AD-GAN), which not only improves the visual
realism of multi-view synthetic images but also preserves
identity information well. Xuan et al. [20] proposed a multi-
view-based 3D convolutional neural network (MV-C3D).
This network maximizes feature information from different
perspectives, and the recognition accuracy increases with
the number of training samples. Literatures [21], [22] pro-
pose a Multi-view automatic target recognition (NJSR-ATR)
method based on novel joint sparse representation and a
multi-view action recognition algorithm (MARA) respec-
tively. These algorithms increase the accuracy of target recog-
nition by improving the correlation between multiple views.
In terms of algorithm optimization, the reinforcement learn-
ing [23]–[25] algorithm extracts new features of the target
by maximizing the cumulative reward training to achieve
accurate target recognition in different interference environ-
ments. The transfer learning [26]–[29] algorithm can reduce
the repeated calculation of the same data and improve the
real-time performance of the algorithm.

In summary, although scholars have made great improve-
ments in target recognition and multi-AUV collaboration,
the repeated calculations of the same data and underwa-
ter environmental interference still affect the real-time and
accuracy of underwater target recognition. In this paper,
the multi-AUV collaborative mechanism is introduced to the
target recognition field, and the AUV is distributed around
the target by collaborative control to collect and identify
the target from different angles. The algorithm in this paper
can reduce the dependence of the algorithm on the target
training samples and the calculation of the target recognition
process. The use of multi-AUV information fusion reduces
the interference of environmental factors on target recog-
nition and improves the accuracy and robustness of target
recognition.

The rest of this article is organized as follows. The second
part provides an overview of the relevant literature. The third
part of the pilot method describes the establishment of a
multi-AUV collaborative sensing model, the extraction of
target feature information and the establishment of the source
domain, the establishment of a similarity measure model
of target feature, the choice of the transfer-reinforcement
learning algorithm, and the multi-AUV information fusion.
The fourth part analyzes the simulation experiment. Finally,
the fifth part summarizes the paper.

III. PROPOSED METHOD
A. MULTI-AUV COLLABORATIVE SENSING MODEL
In the process of multi-AUV sensing, how to make multi-
AUV systems collaborate quickly is the key to accomplishing
tasks. Assume that each AUV has the perception function
of tracking targets. In the complex underwater environment,
a single AUV might have a large error value when detecting
the target. In this paper, multiple AUVs are used to sense the
target. The AUVs are evenly distributed around the target,
and the images of the same target are collected from different
angles, thereby reducing the data error when the single AUV
senses the target.

In the multi-AUVmodel, the position and attitude informa-
tion of each AUV is assumed to be known. yt is the observed
value of AUV i for the target at time t , the specific formula is
Eq. (1).p (st | yt−1) =

∫
p (st | st−1) p (st−1 | y1:t−1)dxt−1

p (st | y1:t) =
p (yt | st) p (st | y1:t−1)

p (yt | y1:t−1)
(1)

In Eq. (1), p (st | st−1) is the target state transition proba-
bility distribution function. dxt−1 is the error integral of the
observed value at time t−1. p (st | y1:t) represents the proba-
bility distribution of the predicted target state. p (yt | y1:t−1) =∫
p (yt | st)p (st | y1:t−1) dst , where y1:t−1 represents observa-

tions from time 1 to t − 1.
In order to reduce the calculation amount of themulti-AUV

system, and improve the accuracy of the target recognition.,
the particle filter algorithm is applied to the perception of
the target. Firstly, we execute Gaussian perturbation of the
target state and position at the previous moment, and estab-
lish the state transfer function p (st | st−1) model. Then the
target information is released to each AUV, and multi-AUV
cooperate to collect the target information.

The multi-AUV collaborative sensing model is built based
on a linear consistency formation algorithm, and the recog-
nition target is regarded as the leader of the multi-AUV
formation. Each AUV calculates the coordinated relationship
with the pilot based on the movement of the pilot to achieve
multi-angle information collection of the target.

In the multi-AUV collaborative sensing model, the entire
collaborative sensing topologymapG is composed of a topol-
ogymapGcc and a topological mapGtc.WhereGcc represents
the topological relationship between AUV i, Gtc represents
the topological relationship between the target AUV T and
AUV i. Assume that the information transfer of the AUV i to
the sensing target AUV T is unidirectional, soGtc is a directed
graph.

The dynamic characteristics of the target are expressed

by a second-order integrator:
{
ξ̇0 = ζ0
ζ̇0 = u0

, where ξ0 is the

position of the perceived target AUV T , ζ0 is the speed
at which the target is recognized, and u0 indicates multi-
AUV control input information. The second-order integrator
with the dynamic characteristics of the cooperative AUV is
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FIGURE 2. Multi-AUV coordinated distribution position when the number of AUVs is 4, 6, and 8, respectively.

described as:
{
ξ̇i = ζi
ζ̇i = ui

, where ξi is the position of AUV i, ζi

is the speed of AUV i, ui is the acceleration of i-th AUV. That
is, the consistency control rate of AUV i is as follows:

ui = −
∑

j∈Ni
aij
[
ω0
(
ξi − ξj

)
+ ω1

(
ζi − ζj

)]
+ di [ω0 (ξ0 − ξi)+ ω1 (ζ0 − ζi)] (2)

In Eq. (2), aij is the (i, j) term of the adjacency
matrix A, which can represent the communication weight
between the cooperation AUV i. Ni is the set of neigh-
bor nodes of AUV i, di ∈ R+, ω0, ω1 ∈ R. −∑

j∈Ni aij
[
ω0
(
ξi − ξj

)
+ ω1

(
ζi − ζj

)]
is the effect of adjust-

ing the AUV i motion trajectory to make it consistent. The
main function of di [ω0 (ξ0 − ξi)+ ω1 (ζ0 − ζi)] is to make
the motion trajectory of AUV i tend to AUV T . Write the above
form into a matrix form:
ξ̇0
ζ̇0
ξ̇

ζ̇

=


0 1 01×n 01×n
0 0 01×n 01×n

0n×1 0n×1 0n×n In×n
ω0d̃ ω1d̃ −ω0(L + D) −ω1(L + D)



×


ξ0
ζ0
ξ

ζ

 (3)

where L is the Laplacian matrix corresponding to the topol-
ogy between AUV i and AUV T .ξ = [ξ1, ξ2, . . . , ξn]T ,
ζ = [ζ1, ζ2, . . . , ζn]T , d̃ = [d1, d2, . . . , dn]T ,D =

diag(d1, d2, . . . , dn).
Let ϕi = ξi − ξ0, φi = ζi − ζ0, then the condition that

multi-AUV reach consistency can be converted into:[
ϕ̇

φ̇

]
=

[
0n×n In×n

−ω0(L + D) −ω1(L + D)

] [
ϕ

φ

]
(4)

In Eq. (4), ϕ = [ϕ1, ϕ2, . . . , ϕn]T , φ = [φ1, φ2, . . . , φn]T .
With the consistency and coordinated control, the AUV i

can be evenly distributed around the sensing target AUV T .
As shown in Fig. 2, multi-AUV simultaneously collect
the multi-angle information of AUV T , through information
fusion, target recognition can be more accurate.

B. TARGET FEATURE EXTRACTION
The key to achieving efficient identification is the effective
collection and extraction of target features, but in practical
applications, the accuracy of recognition is affected by the
underwater environment (such as turbid water, target occlu-
sion, insufficient light, complex background, and overlapping
targets). In this paper, the target features are extracted based
on convolution neural network, and the multi AUV target
information is fused based on wavelet transform and affine
invariance, so that the algorithm can extract more complete
feature information.
Assuming that the functional expression of a continuous

image is f (x, y), one of the features vectors is denoted as
F = [f1, f2, . . . ,f(N−1), fN ], and one eigenvector in the M
image is Fi = [fi1, fi2, . . . ,fi(M−1), fiM ]. The center point
(x̄, ȳ) of the feature f (x, y) is calculated by fnormal (x, y) =
f ( x−x̄

κ
,
y−ȳ
κ
), and κ is a proportional coefficient. Normalizing

the (p+ q)-order central moment upq based on 6-dimensional
affine invariance.

In order to better preserve the feature, the transformation
relationship between the Cartesian coordinate system and
polar coordinate: x = r cos θ, y = r sin θ , calculate the
moment feature in polar coordinates, simplify the feature
extraction difficulty and reduce the computational complex-
ity. Let the image size is N × N and the multi-AUV angular
interval is1θ = 2π

N , the angle integral Sq (r) is calculated as
follows:

Sq (r)=
1
N

∑N−1

m=0
fnormal (r,m) e−

j2πmq
N , q = 0, 1, . . . ,N

(5)

where Sq (r) denotes the q-th frequency domain feature of
f (r, θ) in the entire phase space (0 ≤θ≤ 2π ), m is the scale
factor, and e−jq represents the angular component of the
transform kernel.

The wavelet basis function ψm,n (r) and the angle integral
Sq (r) are the inner product in r∈ [0, 1], that is, the wavelet
transform is obtained by wavelet transform:∥∥Fm,n,q∥∥
=

∥∥∥∥ 1N ∑1

r=0

∑N−1

m=0
fnormal (r,m) e−j2πmq/Nψm,n (r) r

∥∥∥∥
(6)
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FIGURE 3. Target feature extraction process.

If the selected wavelet matrix and the affine invariant
matrix are directly combined, a new set of features 8 will
be obtained. Due to the difference between the two different
features, the combined feature 8 needs to be normalized to
achieve the fusion of different features. The specific formula
is as follows:

8 =
28i −max (8)−min (8)

max (8)−min (8)
(7)

In Eq. (7),8 is stored as a target feature in the source domain,
which should affect the translation, rotation and scale scaling
of multi-AUVwhen extracting targets at different angles. The
specific process is shown in Fig.3.

C. TARGET FEATURE SIMILARITY MEASURE
The target recognition of amulti-AUV system ismainly a pro-
cess of comparing the extracted target features with the stored
feature similarities. Considering the connection between the
elements of the feature vector, it may be scale-independent
or measurement unit independent. This paper uses the Maha-
lanobis distance to measure the similarity of two features.

Assuming there are n samples, each sample is m-
dimensional, then the data set matrix X is:

x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

(8)

In Eq. (8), each of the rows represents a test sam-
ple, a total of n samples, which are denoted as Xi =
(x1i, x2i, · · · , xmi)T, i = 1, 2, . . . ,m. The data set matrix can
be abbreviated as X = (X1,X2, . . . ,Xm).

The overall mean of the sample is:

µX = (µX1, µX2, . . . , µXm)

µXi =
1
n

∑n

k=1
xki, i = 1, 2, . . . ,m (9)

The covariance matrix of the data set is 6X =
1
n (X − µX )

T(X −µX ), then the Mahalanobis distance of any
two eigenvectors is:

dM (x, y) =
√
(x, y)T6−1X (x − y) (10)

The similarity between the target feature and the source
domain storage feature can be obtained by calculating the
Mahalanobis distance d2M . When the similarity is large,
the source domain feature can be directly transferred to iden-
tify the target. If the similarity is small, the learning algorithm
can be used to learn the feature and increase the robustness of
the algorithm to target recognition.

D. TARGET RECOGNITION BASED ON
TRANSFER-REINFORCEMENT LEARNING
Because the underwater environment is more complex and
the target has fewer training samples, the recognition algo-
rithm cannot satisfy various target types. Therefore, this paper
proposes a transfer- reinforcement learning algorithm. The
algorithm first accesses the memory and uses the similarity
metric model to calculate the similarity between the target
domain and the source domain.

The similarity comparison between the current target fea-
ture and the feature stored in the source domain is performed,
and the corresponding recognition strategy is selected accord-
ing to the similarity size, as follows:{

dM (MS ,MT )− τ ≥ 0, Transfer Learning
dM (MS ,MT )− τ < 0, Reinforcement Learning

(11)

where dM (MS ,MT ) represents the similarity between the
detection target feature and the source domain storage fea-
ture. When the similarity between the source domain and the
target domain feature is greater than or equal to the thresh-
old τ , the target recognition is directly performed by using
transfer learning. When the similarity between the source
domain and the target domain is less than the threshold τ ,
the algorithm uses reinforcement learning to train the corre-
sponding target features.

When dM (MS ,MT ) ≥ τ , due to the dynamic underwa-
ter environment, subtle changes in target and environmen-
tal information always occur. This transfer learning adopts
the deep confidence network to seek a probability distribu-
tion from the display layer to the hidden layer, as shown
in Fig.3. The hidden layer consists of Restricted Boltzmann
Machines (RBMs), and the logistic regression layer uses a
classic back-propagation (BP) neural network to trim the
entire deep network with supervision. The whole transfer
learning process is mainly realized by constructing an energy
function, which can be described as (12):

E (v, h) = −
∑nv

i=1
bivi −

∑nh

j=1
cjhj−

∑nv

i=1

∑nh

j=1
hjWijvi

P (v, h) = exp (−E (v, h)) /E8
E8 =

∑
v

∑
h
exp(−E (v, h)) (12)

where E (v, h) represents the energy function of the display
layer v to the hidden layer h.P (v, h) represents the probability
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distribution of the layer v to the hidden layer h. vi represents
the i-th unit of the display layer. hj represents the j-th unit
of the hidden layer. Wij represents the connection weight
between the presentation unit vi and the hidden layer unit hj.
bi, vi indicates the offset value of the display layer and the
hidden layer. nv, nh indicates the number of cells in the dis-
play layer and the hidden layer.

After the initial training is completed, the network param-
eters (W , b, c) can be adjusted by feedback to reduce the
prediction error of the knowledgematrix. AssumingQst is the
optimal knowledge matrix of the source task, the transfer to
the new task knowledge matrix can be expressed as follows:

Qint = fi (W , b, c, ϕ) , i ∈ {1, 2, . . . ,N } (13)

In Eq (13), Qint means that AUV i obtains a new knowledge
matrix through transfer learning, and ϕ represents input fea-
ture information of the new task.

When dM (MS ,MT ) < τ , the target recognition is realized
based on a network model combining a convolutional neural
network and a Q-learning algorithm. The target characteristic
is mapped to the action type in the Q-learning algorithm, and
is denoted as at = {a1, a2, . . . , an}, where n is the number
of features. Assume that there is a series of actions at and
bonus values rt under the environment ε. The system ran-
domly selects an action, and the input layer obtains an image
sample xt . The xt is the vector of the original pixel values
of the training samples. After the forward propagation of the
neural network, the system will get a reward rt , indicating the
degree of fitting to the sample.

Let γ be the discount coefficient, Q∗(s′, a′) is the opti-
mal value of the sequence s′ in the next round of action
a′. The expected value of the selection action a′ maximize
r + γQ∗(s′, a′) can be expressed as:

Q∗(s, a) = Es′∼ε[r + γ max
a′

Q∗
(
s′, a′

)
|s, a] (14)

In practical applications, the loss function Lj(θj) is used for
training, and the loss function is updated as follows for each
iteration j:

Lj
(
θj
)
= Es,a∼ρ(·)[(yj − Q(s, a; θj))2] (15)

The target feature output function of the i-th training is:

yj = Es′∼ε[r + γ max
a′

Q∗
(
s′, a′; θj−1

)
|s, a] (16)

where ρ(s, a) is the probability density distribution of s and
action a. yi represents a new feature for enhanced learning
extraction of recognition targets.

Each AUV has a target information collection and recog-
nition function, the support vector machine (SVM) classi-
fier and Bayesian decision fusion method is applied to the
multi-AUV target recognition field. The output of a sin-
gle AUV to target recognition can be expressed as yk =
{yk,c; c = 1, 2, . . . ,C}, where c ∈ C is the identified target
category and k ∈ K is the k-th view image. According to the

TABLE 1. Target recognition algorithm based on migration reinforcement
learning.

Bayesian criterion, the output of multi-AUV target recogni-
tion from K perspectives is:

T = arg max
1≤c≤C

ac (17)

where ac =
∑K

k=1 l (xk | c). Multi-AUV recognizes the target
from different angles, and the information fusion can effec-
tively improve the recognition accuracy of the target, so that
the algorithm can have better robustness. The specific algo-
rithm flow is shown in Table 1, and the schematic diagram is
shown in Fig.4.

IV. EXPERIMENTAL RESULTS AND ANALYSES
The simulation experiment runs on a small server with a CPU
of E5-2630 v4, the base frequency of 2.2 GHz, and a memory
of 32 GB. The algorithm in this paper simulates the data
in MATLAB R2016a under the window10 system. In this
paper, the target recognition training and feature extraction
are performed based on the SUN dataset. The threshold τ
of the transfer reinforcement learning algorithm will affect
the recognition efficiency and recognition accuracy of the
algorithm. The analysis of the different values of the threshold

39278 VOLUME 8, 2020



L. Cai et al.: Multi-AUV Collaborative Target Recognition Based on Transfer-Reinforcement Learning

FIGURE 4. Target recognition based on migration reinforcement learning.

TABLE 2. Relationship between threshold τ and recognition time and accuracy. The data in the table is based on the average of 1000 recognition tests of
the SUN dataset.

τ shows that when the value of the threshold τ is too small,
the calculation amount of the algorithm can be reduced, and
the speed of target recognition can be improved, but the
target recognition accuracy will decrease. When the value
of the threshold τ is too large, the recognition accuracy of
the algorithm can be improved, but the recognition speed
will decrease, and the calculation amount of the algorithm
is increased. The specific data of different thresholds τ are
shown in Table 2. According to the data of Table 2, it can
be concluded that when the threshold τ = 0.6, the migra-
tion reinforcement learning algorithm has the highest benefit,
and thus the target recognition simulation is performed with
τ = 0.6.

The information of different angles of the target acquired
by multi-AUV is firstly normalized by 800 × 600 pixels for
different perspective images, and then the target is identified
by the multi-view information fusion transfer-reinforcement
learning algorithm. The target recognition process based
on the transfer-reinforcement learning algorithm is shown
in Fig.5.

In Fig.5, the first column graph is the original map as input
information of the target recognition algorithm. The second,
third, and fourth columns are feature extractions in the target
recognition process. The yellow area in the second column
of images represents the initial determination of the region of
interest by the algorithm, determining the approximate region
of the target. The third and fourth column images represent
recognition training and image binarization of the target fea-
ture. The last column of images is the output information
with the identification tag, the yellow rectangle represents the

target feature information, and the red rectangle represents
the identified target result. Based on multi-angle information
fusion, the recognition accuracy of images at different angles
is 86%, 84%, 85%, and 81%, respectively.

At present, excellent algorithms for multi-view recogni-
tion are AD-GAN [19], MV-C3D [20], NJSR-ATR [21],
and MARA [22]. The underwater targets (divers, sea tur-
tles, whale sharks, fishes) are identified from 4 different
perspectives, and compared with the algorithm in this paper.
The specific recognition results are shown in Fig. 6 and
Table 3.

Under different light conditions, four kinds of targets are
identified from multiple perspectives. The recognition result
is shown in Fig. 6 and the recognition accuracy is shown
in Table 3. The MV-C3D algorithm has a maximum recogni-
tion accuracy of 85.17% for sea turtles, which is 0.41% higher
than the algorithm in this paper. However, the recognition
accuracy of whale sharks and fish decreased when the light
is insufficient, and the average recognition rate of the four
targets is only 83.19%. The recognition accuracy of the
AD-GAN algorithm decreases with the change of light, and
the average recognition accuracy is 82.04%. The recognition
accuracy of NJSR-ATR algorithm and MARA algorithm has
less fluctuation, but the average recognition accuracy is only
77.56% and 80.51%. The algorithm in this paper has the
highest recognition accuracy for divers, whale sharks and
fish, and the average recognition accuracy is 84.40%. The
above data shows that the algorithm in this paper still has
excellent recognition ability under the interference of light
environment.
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FIGURE 5. Multi-angle target recognition based on the transfer-reinforcement learning algorithm.

TABLE 3. Multi-view algorithm target recognition accuracy. The second to fifth columns represent the average recognition accuracy of different angles,
and the last column represents the average recognition accuracy of different targets. The best data in bold.

In the actual underwater environment, multi-AUV is sub-
ject to environmental interference at any time during infor-
mation collection, such as turbid water quality, uneven light,
target occlusion, complex background, and overlapping tar-
gets. The algorithm in this paper simulates the above influ-
encing factors, compared with the algorithm R-FCN [30],
Faster R-CNN [31], JCS-Net [32], OHEM [33], FP-SSD [34],
YOLO [35] Compare. The basic settings of each algorithm
are shown in Table 4.

Different algorithms are used to identify underwater divers,
the specific recognition results are shown in Fig.7. The left-
most column of overlapping images represents the original
image to be identified, and the remaining images represent
the target image under the influence of turbid water quality,

object occlusion, insufficient light, complex background, and
target overlapping environment from top to bottom. The tar-
get is mainly identified by key features and marked with a red
rectangle. The proposed algorithm is more excellent in object
occlusion and target overlap. At the same time, the proposed
algorithm can accurately identify similar targets with only a
small amount of existing sample training.

In order to further verify the effectiveness of the target
recognition algorithm in this paper, this algorithm is com-
pared with six excellent target recognition algorithms. The
detailed data is shown in Table 5. In the case of insufficient
light, the recognition accuracy of R-FCN algorithm for divers
is up to 81.47%, and the recognition time is 91.52 ms/img.
The JCS-Net algorithm has a minimum recognition time
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FIGURE 6. Comparison of multi-view algorithm target recognition results.

TABLE 4. Network model and image input size settings for different
algorithms.

of 43.72 ms/img when the targets overlap, but the target
recognition accuracy is only 63.18%. In terms of turbid water,
the OHEM algorithm has a minimum target recognition time
of 43.29 ms/img, but the target recognition accuracy rate
is 69.17%. There is no particularly outstanding result for
the recognition accuracy and recognition time of other algo-
rithms, but these algorithms are relatively stable in different
interference environments.

In the case of insufficient light, the target recognition
accuracy of the algorithm in this paper is 81.41%, which is
0.06% lower than the R-FCN algorithm (81.47%). However,
the target recognition time of the algorithm in this paper
is 44.72 ms/img, which is 51.14% lower than the R-FCN
(91.52 ms/img) algorithm. When the targets overlap, the
target recognition time in this paper is 0.53 ms/img longer
than the JCS-Net algorithm. In the turbid water environment,
the target recognition time of the algorithm in this paper
is 2.52 ms/img longer than that of the OHEM algorithm.
In other interference environments, the target recognition
rate and recognition time of our algorithm are superior. The
average recognition accuracy is 82.82%, and the average
recognition time is 44.33 ms/img. Analysis of the above data
shows that the algorithm in this paper not only reduces the
impact of various underwater interference factors, but also
ensures the real-time and accuracy of target recognition.

In summary, the algorithm proposed in this paper is not the
highest in the case of insufficient light, but it performs well
in other interference environments. In terms of the average
value under different interference environments, the recog-
nition accuracy rate is up to 82.82%, and the recognition
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FIGURE 7. Identification results of different algorithms (diversity identification in case of turbid water quality, object occlusion, insufficient
light, complex background, and target overlapping).

TABLE 5. The accuracy and recognition time of different algorithms for diver identification in the case of turbid water quality, object occlusion,
insufficient light, complex background, overlapping targets, and the best data in bold.

time is 44.33ms. Future research should pay attention to
boosting the recognition efficiency of the algorithm, reducing

the recognition time of the algorithm, and improving the
robustness of the algorithm.
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V. CONCLUSION
Enough target information and long-term sample training are
the keys to improving the accuracy of target recognition.
However, in the complex underwater environment, the crux
is how to accurately identify the target under the condition
of insufficient sample training and incomplete information
collection. Aiming at the above problems, this paper pro-
posed a multi-AUV target recognition algorithm based on
transfer-reinforcement learning. The transfer-reinforcement
learning algorithm and multi-AUV information fusion mech-
anism are introduced into the underwater target recogni-
tion field to realize target recognition under multi-angle
and multi-interference environments. Experiments demon-
strate that the proposed algorithm presents excellent recog-
nition results, but the recognition accuracy needs to be
improved in the case of insufficient illumination. In future
work, we will focus on the above issues to ameliorate the
algorithm.
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