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ABSTRACT Emerging applications across environmental, biomedical, and structural monitoring require the
measurement of physical variables over extended regions. Because addressing many sensors individually can
result in impractical bandwidth and power requirements, there is a need for distributed sensing approaches
wherein readouts are obtained directly at the ensemble level. In turn, this generally requires sensor nodes
capable of interacting with each other to implement the required readout statistic. Here, the first practical
steps towards approaching this challenge via a nonlinear analog approach based on chaotic synchronization
are presented. Namely, single-transistor oscillators, representing remarkably low-complexity yet highly-
flexible entities, are experimentally found to be suitable for wireless coupling via mutual induction,
realizing a simple form of telemetry for luminous flux. Via numerical simulations and numerous laboratory
experiments, a rich repertoire of possible interactions among multiple sensor nodes and between the same
and an external exciter is demonstrated, encompassing synchronization, desynchronization, relay effects,
and chaotic transitions. Together, these results reveal the possibility and means of accurately estimating the
average of a distributed physical magnitude from the complexity of ensemble dynamics. This new approach
contributes an important blueprint for future work using simple chaotic circuits in sensing applications.

INDEX TERMS Chaos, chaotic oscillator, correlation dimension, distributed sensing, entropy, inductive
coupling, remote measurement, synchronization, transistor oscillator, telemetry, wireless network.

I. BACKGROUND AND INTRODUCTION
A. DISTRIBUTED SENSING
Over the last two decades, automation has undergone
a profound transformation towards ever more distributed
paradigms wherein, instead of controlling separate pro-
cesses based on input from individual sensors, control
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systems are increasingly used to manage complex systems
and networks [1]–[3]. An indispensable ingredient for this
evolution is, and has been, the ability to gather data from
multiple sensors scattered over a structure, surface, or envi-
ronment. In turn, this ability has principally been provided
by the development of wireless sensor network technologies,
which alleviate the cost and physical overheads associated
with laying extensive or dense wired connections. To date,
these networks constitute a topic of intensive research,
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targeted at core issues such as over-the-air timing syn-
chronization, as well as the optimization of bandwidth
and power budgets, which are often the limiting factors
in real-world scenarios. Their predominant applications are
in agriculture, meteorology, air quality monitoring, and
biomedicine [4]–[7].

Arguably, the most established instances of ‘‘distributed
sensing’’ are presently realized using specially-designed fiber
optics, which generate a back-scattering signal tracking in
a calibrated manner a physical variable such as temper-
ature or the concentration of an analyte. In this context,
time- and frequency-domain techniques allow reconstruct-
ing a one-dimensional measurement profile along the fiber
length. Aside from the high cost due to the advanced opto-
electronic devices required, these technologies are inherently
poorly suited for applications requiring pervasive monitor-
ing, or minimum intrusiveness [8], [9]. On the other hand,
existing wireless sensor networks generally hinge around
a one-to-many communication scheme, wherein a limited
number of base-stations individually address (or passively
receive from) a large number of nodes. This requires a con-
siderable aggregate bandwidth, translating into the need for
complex radio-frequency infrastructure, potentially requiring
transceivers that are difficult to power purely based on har-
vesting techniques such as solar cells. Ad-hoc networks can
mitigate this problem but still imply significant hardware and
software complexity [10], [11].

B. PARAMETRIC MAPPING VS. SUMMARY STATISTICS
Inmany applications, a full topographical mapping is not con-
tinuously necessary, and a summary statistic, such as average,
sum, or extrema values, is sufficient for ongoing monitoring,
enabling the triggering of more detailed data gathering and
inference only when an anomaly is detected. In such sce-
narios, a drastic data reduction is performed during analysis,
rendering it wasteful to transfer data from each sensor in the
first place: it would be more efficient if the network itself
could, collectively, calculate the summary statistic by a form
of consensus.

One example application would be the monitoring of con-
crete pillars: assuming hundreds or thousands of ‘‘smart
dust’’ sensors are embedded in the mixture, the challenge
would be to seamlessly quantify the overall structural degra-
dation, i.e., sum the number of micro-fissures. Another pos-
sible application would be in precision agriculture: assuming
sensors are equipped with biochemical transducers able to
measure the presence of a parasite, the purpose of the moni-
toring would be to detect the highest or average concentration
in a field. In both cases, a distributed computation of the sum-
mary statistic, performed continuously at low power draw,
would reduce the complexity of ‘‘middleware’’ infrastructure.
Further, there would be substantial practical advantages if the
state of the network as a whole, reflecting the variable to be
measured, could be inferred based on signals received from
a small subset of it, thus reducing the communication range
requirements [10]–[14].

In order to implement the distributed calculation of a sum-
mary statistic, it is needed for sensor nodes to interact among
themselves, engendering a purposeful collective behavior,
which could, for instance, be in the form of synchronized
dynamics. This requirement is closely related to the approach
of ‘‘autonomic computing’’ or intelligent networks, wherein
nodes can self-organize, realizing in an emergent manner
not only computation but also recovery and optimization
functions [3], [15], [16].

C. COUPLED NONLINEAR OSCILLATORS
Because it requires substantial interaction, self-organization
may translate into a high power consumption when it is
implemented digitally, due to computing and transceiver load.
An innovative approach would be to elicit it in the analog
domain, for example, via coupled oscillators. Thus far, in the
field of wireless sensor networks, coupled oscillators have
been considered almost exclusively regarding pulse coupling
schemes aiming to provide robust frequency distribution;
nevertheless, it is known from biological models that non-
linear oscillators can also give rise to complex emergent
phenomena [1], [17]–[20]. With that in mind, in the present
work, we investigate the possibility of taking the degree
of dynamical complexity in partially-synchronized network
activity as a means of obtaining a distributed measurement
of a physical variable. We demonstrate a number of network
phenomena having direct relevance for this purpose.

It is well-established that nonlinear oscillators, mainly
when operating in or close to chaotic mode, can real-
ize complex operations, including forming emergent spa-
tiotemporal patterns such as clusters (or communities),
stationary and traveling waves, even instances of remote
entrainment [21]–[25]. At its simplest, an electronic chaotic
oscillator can be realized through a bipolar junction transis-
tor, whose transfer function provides both the amplification
and the nonlinearity. Notably, a rich spectrum of dynamical
behaviors can arise under diverse arrangements comprising a
single transistor, two inductors, one capacitor, and one control
resistor. Recently, it was suggested that networks of these
circuits, coupled diffusively in elementary topologies such as
rings or lattices or more complicated configurations, can be
used as a basis to realize emergent collective behaviors via
chaotic synchronization [26]–[30].

Yet, at present, only minimal research has been conducted
on the synchronization of these oscillators at a distance with-
out an electrical collection, limited to two studies on the
Colpitts circuit: one measuring a magnetically coupled pair,
and another simulating a light coupling scheme [31], [32].
Realistic studies similar to those available for wirelessly cou-
pled oscillators with a frequency distribution such as Ref. [33]
are lacking.

D. CONTRIBUTION
In this paper, we experimentally demonstrate for the first time
the possibility of realizing the core mechanisms necessary
for distributed sensing via chaotic synchronization. Namely,
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FIGURE 1. Schematics of the physically-realized circuits. a) Exciter node
(E); L(E)

2 denotes the externally-connected wire-loop coupling coil, U and
RO represent the output buffer towards an oscilloscope. b) Sensor node
(S); voltage VB at current iB corresponds to the photovoltaic cell
illuminated with a light source having flux φ or to an external source,
UZ and C0 implement over-voltage protection and bypassing, L(S)

2 denotes

the printed coil, coupled to L(E)
2 with coefficient k . Components C , L1 and

Q are nominally equal for all circuits, whereas R(E) and R(S) represent the
individually-tuned parameters controlling the node dynamics. Depending
on the configuration, each exciter may be coupled to more than one
sensor, and multiple sensors may be coupled between themselves.

we implemented it in a network of inductively coupled single-
transistor chaotic oscillators powered by photovoltaic cells.
We show the occurrence of chaotic transitions, synchroniza-
tion, the interaction with an external field and confirm the
possibility of accurately estimating the global light intensity
from the dynamical complexity characterizing the collective
oscillation.

In Section II, the circuit of interest is firstly presented from
the practical viewpoint of its realization and the associated
experimental setup. In Section III, aspects of the underlying
theory are provided with reference to numerical simulations
of an elementary model capturing the essential dynamical
features. In Section IV, an extensive series of experimental
results is reported, firstly about the effects of coupling then
about the sensed variable. Finally, in Section V, the implica-
tions of the observed phenomena are considered, and direc-
tions for future applications of a new approach to distributed
sensing are proposed.

II. CIRCUITS AND MEASUREMENTS
A. OSCILLATOR DESIGN, REALIZATION AND COUPLING
Each node comprised one autonomous oscillator, consisting
of a single NPN bipolar-junction transistor in a common-
emitter configuration, whose base and collector terminals
are connected via separate inductors to a grounded capacitor
and a variable resistor towards a DC voltage source (Fig. 1).
Despite its elementary form, this arrangement was discovered
only recently, and remarkably found to generate a multitude
of chaotic behaviors, including spiral, funnel, phase-coherent
and Rössler-like attractors; in a realization wherein the

inductors are replaced with fractal resonators, this cir-
cuit is also capable of producing high-dimensional
dynamics [30], [34]. Chaos arises due to nonlinear interaction
between the currents in the two inductors via the transistor;
furthermore, there is an interplay between oscillations at the
frequencies determined by the L-C pairs, corresponding not
only to the discrete capacitor but also to the junction capac-
itance at the collector. By moving the operating point of the
transistor, the series resistor shapes the nonlinearity: as such,
it acts as the primary control parameter, depending on which
chaotic transitions can be observed. In these experiments,
it was generally tuned to obtain operation close to an order-
chaos transition [30], [34].

The experiments in the present study revolved around two
structurally coincident realizations of this oscillator. The first,
dubbed ame ( , rain), served as ‘‘exciter’’ (E) for one or a
multitude of sensor nodes which were inductively coupled to
it. In other words, it provided access to a signal reflecting the
dynamical activity of the network, not in a passive manner
(as a simple receiver would) but via actively synchronizing
with it, that is, exchanging energy bidirectionally [26]. In this
circuit, the inductor attached to the base of the transistor was
constructed as a wide-field coil. It shared a small fraction of
its magnetic fluxwith the corresponding coils in the collective
of sensor nodes. Power was provided externally, and a low-
capacitance buffer drove a transmission line towards a digi-
tizing oscilloscope (Fig. 1a). The second, dubbed tsubomi
( , bud), implemented a sensor node (S), wherein the induc-
tor attached to the transistor base was also a coupling coil, but
one featuring a considerably narrower field.Mimicking a rep-
resentative use scenario, power for these nodes was provided
by photovoltaic cells, and no external electrical connections
were necessary (Fig. 1b).

In both nodes, the transistor Q was of type 2SC5226A
(ON Semiconductor Inc., Phoenix AZ). The fixed induc-
tors and capacitors had nominal values L1 = 220 µH
(type NLFV32T-221K-EF; TDK Corp., Tokyo, Japan) and
C = 270 pF (type CC0603JRNPO9BN271; Yageo Corp.,
New Taipei City), and the variable resistors had values
R(E,S) ∈ [0, 2000] �. For the exciter node (E), the buffer
was of type MAX4201 (Maxim Integrated Inc., San Jose
CA), with RO = 50 �; the supply voltages to the oscil-
lator and buffer were, respectively, 5 V and ±6 V. For the
sensor node (S), the photovoltaic source consisted of three
monocrystalline cells (type KXOB22-04X3F; IXYS Corp.,
Milipitas CA) connected in series, providing an open-circuit
voltage VB up to UZ = 6.2 V limited by a Zener diode (type
CZRU52C6V2; Comchip Technology Corp., New Taipei
City). The high-frequency source impedance was lowered
through two low-ESL parallel bypassing capacitors having a
total value of C0 = 9.4 µF (type LWK212BJ475KD; Taiyo
Yuden Corp., Tokyo, Japan). Importantly, all components
were subject to fabrication tolerances, which rendered the
nodes nonidentical: these were on the order of ±10% for L1
and L2, ±5% for C and the setting of R, and ±20% for the
transistor parameters and the photovoltaic cell voltage VB.

36538 VOLUME 8, 2020



L. Minati et al.: Distributed Sensing Via Inductively Coupled Single-Transistor Chaotic Oscillators

FIGURE 2. Circuit boards and arrangement. a) Exciter node (E); left-side
connectors are for power input and signal output, right-side connector is
towards the wire-loop coupling coil. b) Sensor node (S), whose area is
largely covered by the photovoltaic cells. c) Representative arrangement
of 4× 4 sensor nodes illuminated by four LEDs located at the corners
(underneath the blue heat-sinks).

The circuits were physically realized on separate two-layer
printed circuit boards, both types having size 32 × 32 mm,
whose fabrication files are publicly available [35]. In the
exciter node, SMA connectors were provisioned for interfac-
ing to the wide-field coil and oscilloscope (Fig. 2a). In the
sensor node, there were no connectors; however, test-points
were provided for external voltage supply and measurement
during some of the experimental sessions (Fig. 2b). The cou-
pling coils for the two circuits were designed in such amanner
as to reproduce a situation of weak coupling over a scale of
distances convenient for laboratory measurement conditions
while allowing a multitude of topographical arrangements.
Namely, the wide-field coil connected to the exciter node
consisted of 8 turns of single-core wire having a diameter
of 0.25 mm along the perimeter of a 90 mm square (Fig. 3a).
In contrast, the flat coil for the sensor node was embedded in
the solder copper side of its printed circuit board, covering
the outer area and arranged as a square concentric pattern
with 15 turns of a 0.2 mm-wide track with 0.2 mm spacing,
thickness 35 µm (Fig. 3b).

At f = 2 MHz, approximately corresponding to the cen-
troid of the oscillation spectrum, their inductances respec-
tively measured L(E)2 = 21 µH and L(S)2 = 10 µH
(type E4991A; Keysight Inc., Santa Rosa CA); as shown
in Ref. [30], these values are not critical for obtaining
chaos. Considering one wide-field coil and one sensor node
coil directly overlaying its center, the coupling coefficient,
measured at Z0 = 50 � via a signal generator and

FIGURE 3. Coupling coils. a) Wide-field coil realized as a wire loop on a
cardboard support and connected to the exciter node (E). b) Flat coil with
square winding printed onto the underside of each sensor node board
(S). Experimentally-measured coupling coefficient k as a function of
c) the distance d between the wire-loop and one printed coil, (E)-(S), and
d) the spacing d̂ between two printed coils, (S)-(S).

oscilloscope (type WS3054; Teledyne LeCroy Inc., Chestnut
Ridge NY), gradually decayed as k ≈ {0.14, 0.04, 0.01,
0.004} at distances d = {0, 50, 100, 150} mm (Fig. 3c).
For two coplanar sensor coils linearly displaced along one
axis from each other, the coupling coefficient decayed
as k ≈ {0.11, 0.02, 0.005, 0.003} at spacings d̂ =

{0, 20, 40, 60} mm (Fig. 3d). These values are comparable
to those which can be observed over considerably larger dis-
tances, appropriate for real-world applications, when suitably
scaled coils are used, and to the configuration considered
in the preexisting study on magnetically coupled Colpitts
oscillators [31], [36].

B. DATA ACQUISITION AND ANALYSIS
The interactions between the exciter and sensor node(s), and
among the sensor nodes themselves, were evaluated for sev-
eral different arrangements, which are detailed in Sec. IV; in
brief, the influence of distance and spacing was measured
while powering the sensor(s) with a fixed external voltage,
whereas the effect of light intensity was assessed while illu-
minating their photovoltaic cells with high-intensity LED
arrays (Fig. 4).

All measurements were conducted in a shielded enclo-
sure; they were repeated and averaged between 3-5 times,
depending on the experiment, to confirm consistency and
attenuate random error. Time-series of one million points
were recorded at 1 GSa/s using a digitizing oscilloscope
(type WS3054; Teledyne LeCroy Inc.), separately for all
experimental conditions under the control of scripts written
in the Matlab language (MathWorks Inc., Natick MA). The
raw data are freely downloadable from Ref. [35]. When
acquiring directly from sensor nodes, low-capacitance probes
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were used to record the capacitor voltage vC (t), which was
elected as the physical state variable of interest and, where
appropriate, the supply voltage VB. All acquisitions were
performed in AC coupling mode, and a-posteriori smooth-
ing was performed to reduce analog-to-digital conversion
discretization effects. Software-controlled illumination was
provided by four independent high-current white LED arrays
(type CMA3090; Cree Inc., Durham NC), each emitting a
luminous flux up to φmax = 12400 lm; these were positioned
at a fixed distance over either single sensors or an array of
4 × 4 sensors (Fig. 2c). Their intensity was controlled via
dimmable power supplies (type HBG-100-48B; Mean Well
Inc., Fremont CA) controlled by an Arduino UNO board
(Interaction Design Institute, Ivrea, Italy).

Off-line analyses were performed, aiming to quantify the
level of dynamical complexity as well as synchronization
between the nodes in each configuration. Firstly, a mea-
sure of attractor fractality, namely the correlation dimension
D2, was computed. To this end, phase-space reconstruc-
tion was performed based on time-delay embedding, with
x(t) = [x(t − δt(m − 1)), x(t − δt(m − 2)), . . . , x(t)]
[37] setting, as customary, the embedding lag δt equal to
the first local minimum of the time-lag mutual information
function [38], the embedding dimension m as the lowest
integer number for which < 5% of false nearest neighbors
are observed [39], and the minimum neighbor time separation
(Theiler window w) to twice the first local maximum on the
space-time separation plot [40]. These analyses were carried
out using theTISEAN package (ver. 3.0.1) [41]. Based on this
time-lag embedding, D2 was estimated via the Grassberger-
Procaccia method, namely from the correlation sum

C(m, ε) =
1

Npairs

N∑
j=m

∑
k<j−w

2(ε − |xj − xk |) (1)

where Npairs = (N − m + 1)(N − m − w + 1)/2 denotes
the number of point pairs covered by the sums, and 2(x) is
the Heaviside step function [42]. Insofar as the embedding
dimension m exceeds the box-counting dimension of the
underlying attractor, over sufficiently small length scales ε,
one has

C(m, ε) ∝ εD2 . (2)

Here, over-embedding was carried out up to 2m, calculations
were performed in each recording for 10 evenly-spaced seg-
ments of 50,000 points, and the convergence plateau of D2
in m, ε was estimated via a direct search method introduced
previously [29], [30]. While this estimator tends to be neg-
atively biased in the presence of high-dimensional signals,
it was deemed adequate given the relatively low-dimensional
dynamics expected in these experiments [43].

A further complexity measure, based on information the-
ory rather than dynamics, was also applied. Namely, the per-
mutation entropy is a non-parametric technique, which only
considers an ordinal representation of the temporal evolu-
tion in a signal; as such, it is particularly robust to noise,

discretization, and other issues that often affect experi-
mental datasets. To apply this method, the dynamics x(t)
were transformed to a map-like representation by extracting
the sequences of local extrema points, identified through
ẋ(t) = 0, with either ẍ(t) < 0 and x(t) ≥ x(t ±
δt) or ẍ(t) > 0 and x(t) ≤ x(t±δt), wherein δt = 20 ns. This
yielded a step-wise amplitude time-series having length l;
such a representation has been shown to successfully capture
the cycle amplitude fluctuation dynamics occurring in this
circuit [34]. In brief, the dynamics are encoded by ranks,
meaning, based on the symbolic sequences of ascending and
descending values. Insofar as the phase space bin counts are
sufficiently large to be statistically representative, the permu-
tation entropy is given by

H = −
m!∑
j

pj log2 pj, (3)

wherein pj denote the relative symbol frequencies. Usually,
H is normalized, giving h = H/ log2 m! ∈ [0, 1] [44].
The order (sequence length) was set to m = 6 (not critical),
ensuring that the coverage criterion 5m! < l was inmost cases
met [45].

Synchronization was estimated in terms of phase locking,
which is a robust hallmark of entrainment between chaotic
oscillators [26]. To this end, for each pair of experimental
time-series xj(t) with j = 1, 2, the analytic signals were
calculated

ψj(t) = xj(t)+ ix̃j(t) = Aj(t)eiϕj(t), (4)

where i =
√
−1, x̃j(t) denotes the Hilbert transform of xj(t)

x̃j(t) =
1
π
p.v.

[∫
∞

−∞

xj(τ )
t − τ

dτ
]
, (5)

and where p.v. represents the Cauchy principal value of the
integral. The instantaneous relative phase is then

1ϕ(t) = arg[ψj(t)ψk (t)], (6)

from the distribution of which the corresponding phase-
locking value can be obtained as

r = |〈ei1ϕ(t)〉t |. (7)

III. THEORY AND SIMULATIONS
As introduced in Section I.C, the approach presented in this
study is founded on several universal concepts from the the-
ory of nonlinear dynamical systems and networks. One fun-
damental notion is that of chaotic transitions, that is, the abil-
ity of isolated as well as coupled nonlinear oscillations to
seamlessly transition between periodic and chaotic behavior.
This can ensue as a function of an arbitrary control param-
eter (such as coupling, or a physical variable to be sensed)
and involve diverse mechanisms, including bifurcations and
quasiperiodicity. Another notion is synchronization, that is,
the ability to entrain oscillators which are possibly rendered
nonidentical by small or large mismatches, generating stable
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FIGURE 4. Board arrangements in the experiments measuring a) Effect of the distance d between the wire-loop coil (E) and one sensor board (S) above
it, b) Effect of the distance d between the wire-loop coil (E) and two co-planar sensor boards (S1), (S2) above it, c) Effect of the spacing d̂ between two
isolated co-planar sensor boards (S1), (S2), d) Effect of the spacing d̂ between two co-planar sensor boards (S2), (S3) located next to a fixed sensor
board (S1), e) Effect of the luminous flux φ on an isolated sensor board (S), f) Effect of the luminous flux φ on a sensor board (S) located at a fixed
distance above the wire-loop coil (E), g) Effects of the distance d , luminous flux φu and other interventions on a 4× 4 array of sensor nodes (Si,j ),
located above the wire-loop coil (E).

phase relationships (locking). Notably, synchronization and
chaotic transitions are related in various aspects. Coupling
two systems may result in their synchronization, if the energy
transfer rate is sufficiently high, with higher levels required
for synchronizing chaotic than periodic dynamics. At the
same time, depending on the specific configuration, coupling
may cause a transition towards chaos or periodicity; in the
presence of mismatches, increased coupling strength often
promotes transition to chaos [22], [26], [46].

While a detailed presentation of these concepts is omit-
ted for brevity, the main phenomena are exemplified in this
section, via three idealized scenarios. These are numerically
simulated to support the interpretation of the experimental
results which follow. Previous theoretical work on the chosen
transistor circuit has shown that, upon consideration of the
oscillation dynamics and associated circuit variables, it is
possible to reproduce the qualitative features of individual
and collective behavior while reducing the transistor equa-
tions as follows [34], [47]. Firstly, the base-emitter junction
is represented by a DC voltage source Vth = 0.6 V; this
is acceptable because the base-emitter voltage vBE remains
approximately constant. Secondly, the junction capacitances
are collapsed into a fixed capacitor C̃ = 1 pF between
collector and ground; despite its relatively small value, this
capacitor is essential for sustaining oscillation (details not
shown). Thirdly, the collector-emitter current is captured by
a nonlinear current source controlled by the base current iB
and collector voltage vC̃ according to

it = α
(
iB, vC̃

)
(8)

FIGURE 5. Simplified circuit representing two coupled oscillators in the
numerical simulations, wherein each transistor Q is replaced by a
constant voltage source Vth, a nonlinear controlled current source
i (A)
t or i (B)

t , and a parasitic capacitance C̃ .

where, empirically, one can write

α (x, y) = β0 (x) tanh (y/2Vth) . (9)

Here, 0(x) = x2(x), where 2(x) is the Heaviside step func-
tion, and the corresponding term serves to prevent the amplifi-
cation of negative base current, while tanh(y) approximates a
step function and implements the nonlinear amplification; the
rationale for this simplification and its agreement with more
realistic simulations have been clarified previously [34].

Predicated on the above, a simplified diagram of an induc-
tively coupled pair of these oscillators is readily obtained
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(Fig. 5). Applying Kirchhoff’s laws one has

dvC (A)

dt
=
V (A)
− vC (A)

RC (A) −

iL(A)1
+ iL(A)2

C (A)

dvC̃ (A)

dt
=

iL(A)1
− i(A)t

C̃
diL(A)1

dt
=
vC (A) − vC̃ (A)

L1
diL(A)2

dt
=
vC (A) − Vth

L2
− k

vC (B) − Vth
L2

dvC (B)

dt
=
V (B)
− vC (B)

RC (B) −

iL(B)1
+ iL(B)2

C (B) ;

dvC̃ (B)

dt
=

iL(B)1
− i(B)t

C̃
diL(B)1

dt
=
vC (B) − vC̃ (B)

L1
diL(B)2

dt
=
vC (B) − Vth

L2
− k

vC (A) − Vth
L2

(10)

these equations represent a valid approximation assuming
k � 1, which corresponds to the weak coupling regime
of interest in this study and realized through the physically-
realized inductors (Fig. 3). Without loss of generality, below
let us assume ideal inductors with L1 = 220 µH and L2 =
15 µH; under experimental settings, the nodes are noniden-
tical, with richer dynamics engendered by parametric mis-
matches and imperfections such as inductor self-resonance.
Further, without loss of generality, let us assume a fixed
transistor current gain β = 200 and DC supply voltage
V (A,B)

= 2.5 V. To provide sufficient inter-node variability
for avoiding complete synchronization, the capacitor values
were drawn randomly in C (A,B)

∈ [240, 300] pF. The initial
conditions were identically set to vC (0) = vC̃ (0) = Vth and
iL1 (0) = iL2 (0) = Vth/R. The ODE system was solved up
to t = 15 × 10−5 with the Klopfenstein-Shampine method
of orders 1-5 for stiff equations, setting a relative tolerance
of 10−6 [48]. For brevity, permutation entropy results are not
presented for these simulations.

Firstly, we evaluated the effect of the coupling coefficient,
sweeping it in k ∈ [0, 0.2], approximately corresponding to
the distance ranges between exciter and sensor nodes (E)-(S)
and spacings between sensor nodes (S)-(S) considered exper-
imentally (Fig. 3). In these simulations, the series resistance
was set to R = 1000 �, and, aside from the mismatch in
their values of C , the two nodes were identical. As k → 0.1,
the gradual onset of phase synchronization was well-evident,
leading to k(0.1) ≈ 0.9 (Fig. 6a). In the absence of coupling,
the two nodes were initially non-chaotic, with their average
correlation dimension 〈D2〉 ≈ 1.1. As the coupling level was
increased, the level of D2 > 2.0 was reached already for k ≈
0.07; past this point, an inflection was observed, followed
by a less marked increase towards a plateau at 〈D2〉 ≈ 2.2
(Fig. 6b).

Secondly, we considered the effect of sweeping the DC
supply voltage at one node (B), with V (B)

∈ [0, 5] V,

FIGURE 6. Numerical simulation results. a) and b) Effect of the coupling
coefficient k on the synchronization r between two oscillators (A)-(B),
and the average correlation dimension 〈D2〉 of their dynamics.
c) and d) Effect of changing the supply voltage V (B) at one node (B, acting
as sensor) while holding it constant at the other (A, acting as exciter).
e) and f) Effect of uniformly changing the supply voltage V (Si ) over an
array of n = 10 sensor nodes coupled among themselves and to an
exciter via a mean field M; σ [M] and D(E)

2 denote, respectively,
the standard deviation of the mean field and the correlation dimension of
the exciter node dynamics.

effectively electing it as a sensor node and evaluat-
ing the impact on the dynamics of the other cou-
pled node (A). In these simulations, the series resis-
tance was set to R = 1500 � and the cou-
pling coefficient was set to a very low value, namely
k = 0.01, physically corresponding to a distance d ≈
100 mm between exciter and sensor nodes (Fig. 3c) and to
a separation d̂ ≈ 25 mm between two sensor nodes (Fig. 3d).
A nontrivial influence on synchronization was observed,
wherein initially the two nodes were non-synchronized, then
a moderate level of phase synchronization ensued between
1.6 V < V (B) < 3.6 V and eventually vanished (Fig. 6c).
This pattern was closely reflected in the complexity of the
dynamics of the node configured as a sensor, whose supply
DC voltage was swept (B), which was highest in the inter-
mediate range of V (B). Of particular importance for possible
sensing applications, that voltage had an even more marked
effect on the activity of the other, remote, node. Its dynamics
were initially periodic, with D(A)

2 ≈ 1, after which the
correlation dimension gradually increased, first reaching a
plateau D(A)

2 ≈ 2.1 in the vicinity of V (B)
= 2.5 V and after

that increasing further towards D(A)
2 ≈ 3.6 for V (B)

= 5 V
(Fig. 6d).
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Thirdly, we simulated a larger scenario consisting of a
network of n = 10 sensor nodes (Si, with i = 1, . . . , n), each
one receiving a supply voltage V (Si) ∈ [0, 5] V, coupled in an
all-to-all configuration between themselves and to an exciter
node (E). This situation can be represented as

dvC (E)

dt
=
V (E)
− vC (E)

RC (E) −

iL(E)1
+ iL(E)2

C (E)

dvC̃ (E)

dt
=

iL(E)1
− i(E)t

C̃
diL(E)1

dt
=
vC (E) − vC̃ (E)

L1
diL(E)2

dt
=
vC (E) − Vth

L2
−

k
L2

M

· · ·

dvC (Si)

dt
=
V (Si) − vC (Si)

RC (Si)
−

i
L
(Si)
1
+ i

L
(Si)
2

C (Si)
,

dvC̃ (Si)

dt
=

i
L
(Si)
1
− i(Si)t

C̃
di
L
(Si)
1

dt
=
vC (Si) − vC̃ (Si)

L1
di
L
(Si)
2

dt
=
vC (Si) − Vth

L2
−

k
L2

M

(11)

where the all-to-all coupling may be conveniently approxi-
mated as a mean field having the form

M =
vC (E) +

∑n
i=1 vC (Si)

n+ 1
− Vth . (12)

In a physical setting, the coupling strengths naturally
depend on the distances. However, for explanatory purposes,
the mean-field representation has the advantage of a compact
formulation while retaining a considerable ability to replicate
many results obtained in more complex network topologies
and processes [49], [50].

Retaining the settings R = 1500 � and k = 0.01,
a gradual build-up in the amplitude of the irregular mean-field
oscillations was observed, albeit with a nonmonotonic effect:
this consisted of a peak σ [M] ≈ 0.1 V at V (Si) = 1.4 V,
followed by a dip, then a more gradual increase towards
σ [M] ≈ 0.12 V at V (Si) = 5 V, where σ [x] stands for the
standard deviation of x(t) (Fig. 6e). Considering the dynamics
of the exciter node (E) as a proxy for the state of the entire
ensemble of sensors, a pattern similar to the previous scenario
was elicited, but with more abrupt transitions. In other words,
starting from periodic dynamics, the correlation dimension
initially peaked at D(E)

2 ≈ 1.9 for V (Si) = 1.4 V, then dipped
and remained on an elongated plateau at D(E)

2 ≈ 1.3, until
V (Si) = 3.6 V, past which point it rapidly arose towards
D(E)
2 ≈ 2.8 (Fig. 6f).
Altogether, these simulations recapitulated the principal

phenomena at the basis of the experimental findings dis-
cussed next. Very weak inductive coupling appears to be
sufficient for engendering moderate or intense levels of

phase-locking in these circuits. Moreover, even in the pres-
ence of limited entrainment, inductive coupling can cause a
transition to chaotic dynamics. Owing to these effects, it is
possible, even at relatively large distances for which the cou-
pling coefficient is low, to remotely infer from the dynamics
of an exciter node the value of a physical variable at a sensor
node, in this case, the applied DC supply voltage. These
results straightforwardly extend to a network comprising an
ensemble of nodes, amongwhich one can be chosen for signal
readout and supplied by a constant voltage, and the others act
as sensors. They agree with existing work covering a single
pair of coupled Colpitts oscillators, and with a recent analysis
of the behavior of diverse numerical and analog electronic
systems under situations of weak coupling [31], [51]. By con-
firming that generative effects are visible even through the
lens of highly simplified numerical simulations, the present
findings affirm the general validity of the approach well
beyond a specific circuit implementation.

IV. EXPERIMENTAL OBSERVATIONS AND THEIR
INTERPRETATIONS
A. EFFECTS OF INTER-NODE DISTANCE AND SPACING
1) EXCITER AND ONE SENSOR
Ahead of demonstrating the usage of inductively cou-
pled oscillators in measuring a physical variable remotely,
it appears necessary to illustrate the synchronization and
phase transition phenomena, which can be observed as the
coupling strength between network nodes is varied through
changing the distances. To this end, as an initial experiment,
the effect of coupling between one exciter node (E) and one
sensor (S) was investigated, with the latter overlaying the
center of the wide-field coil at a distance d ∈ [0, 150] mm
(Fig. 4a). The sensor node was powered by an external DC
source VB = 5 V, and its signal was recorded via a probe.
Three different configurations A-C were considered, each
corresponding to different settings of the DC supply series
resistors, namely: R(E) = 560 �, R(S) = 600 � for A,
R(E) = 760 �, R(S) = 1570 � for B, and R(E) = 1830 �,
R(S) = 350 � for C. The level of phase coherence revealed
a marked heterogeneity between these configurations, in that
the maximum entrainment was r ≈ 0.2 for A and B, whereas
it was considerably higher for C, namely, r ≈ 0.6; as
expected, in all three cases the synchronization vanished as
the nodes were drawn apart (Fig. 7a).

In configuration A, despite the weak synchronization level
attained, with decreasing distance the correlation dimension
increased across both nodes; namely, from D(E)

2 ≈ 1.2 to
D(E)
2 ≈ 3.3 and from D(S)

2 ≈ 2.2 to D(S)
2 ≈ 3.8; albeit

with some differences, the permutation entropy followed a
similar pattern, in particular via increasing from h(E) ≈ 0.32
to h(E) ≈ 0.45 (Fig. 7b). Visual inspection of the spectro-
gram for the exciter (E) as a function of distance revealed
a well-evident and gradual transition to chaos, wherein at
long distances, the spectrum was dominated by discrete
peaks at f ≈ {0.5, 1.1, 1.6, 2.2, 2.7, 3.3, 3.8, 4.3}MHz.
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FIGURE 7. Effect of the distance d between the wire-loop coil connected to the exciter node (E) and one sensor board (S) located above it (arrangement
in Fig. 4a). a) Synchronization r between the exciter and sensor node for three different configurations A, B and C. b), f) and g) Corresponding correlation
dimension D2 and permutation entropy h. c) Spectrogram for configuration A; color-map reflects the logarithm of the Fourier amplitudes.
d) and e) Representative time-series from the exciter node in configuration A, acquired at d = 150 mm and d = 0 mm, respectively.

As the boards were drawn nearer, the two predominant
peaks at f ≈ {1.1, 2.2}MHz gradually became wider, even-
tually morphing into a broad distribution over the range
0.3-3.5 MHz and thus hallmarking the transition to chaos
(Fig. 7c) [46]. Representative waveforms acquired at the two
distance extrema demonstrated the onset of large and low-
frequency cycle amplitude fluctuations, in line with previous
recordings of oscillators of this kind. Those were, however,
rendered chaotic either via control parameter tuning or via
direct electrical couplings (Fig. 7d,e) [28]–[30], [34].

In configuration B, a different situation was manifest,
which exemplified how the effect of coupling strength (dis-
tance) may interact with the control parameter settings.
On the one hand, the distance had a marked effect on the
dynamics of the sensor node (S), with D(S)

2 ≈ 1.3 increasing
toD(S)

2 ≈ 3.3 and h(S) ≈ 0.3 increasing to h(S) ≈ 0.45. On the
other, despite a similar level of synchronization, the effect
on the dynamics of the exciter (E) was visibility more con-
strained, with D(E)

2 ≈ 2.2 increasing to D(E)
2 ≈ 3.3, and

h(E) ≈ 0.43 remaining approximately constant (Fig. 7f).
In configuration C, the relative effects on complexity were
comparable, albeit at lower levels for the exciter (E); plau-
sibly for the latter reason, an appreciably stronger synchro-
nization ensued, showing the potential decoupling between
the two aspects of dynamics (Fig. 7a,g).

2) EXCITER AND TWO SENSORS
Subsequently, to exemplify the simplest scenario of interac-
tion with multiple sensors, the effect of coupling between
one exciter node (E) and two sensors (S1), (S2) was inves-
tigated, with the latter in a coplanar arrangement at a fixed
pitch of 75 mm, overlaying the center of the wide-field coil
at a distance d ∈ [0, 150] mm (Fig. 4b). Two different
configurations D and E were considered, each correspond-
ing to different settings of the DC supply series resistors,
namely: R(E) = 1830 �, R(S1) = R(S2) = 350 � for D,

and R(E) = 760 �, R(S1) = R(S2) = 1570 � for E. In con-
figuration D, for distance decreasing below d ≈ 50 mm,
the synchronization between the three nodes raised rapidly,
eventually approaching r ≈ 0.9, which indicates near-
perfect phase locking (Fig. 8a). The corresponding effect on
the dynamics was visible predominantly for the two sensor
nodes, with D(Si)

2 ≈ 1.3 increasing to D(Si)
2 ≈ 3.6, whereas

the activity of the exciter remained largely insensitive around
D(E)
2 ≈ 2.2 (Fig. 8b).
By contrast, in configuration E, for decreasing distance,

the synchronization between the exciter (E) and either sen-
sor (Si) increased gradually up to r ≈ 0.22, whereas the
synchronization between the two sensor nodes themselves,
initially r ≈ 0.6 when far from the exciter coil, dropped
rapidly to a similar value (Fig. 8c). This difference illustrated
how interaction with the exciter could have both a synchro-
nizing or a desynchronizing effect, depending purely on the
control parameter settings; at the same time, the influence
on sensor dynamics remained qualitatively similar to the
previous case (Fig. 8d).

3) PAIR OF SENSORS
Next, to show the phenomena which can arise via interactions
between sensor nodes themselves, i.e., away from external
perturbation by the exciter, the effect of coupling between
two isolated sensors (S1), (S2) was investigated, in a coplanar
arrangement with a spacing between them d̂ ∈ [0, 70] mm
(Fig. 4c). Three different configurations F-H were consid-
ered, each corresponding to different settings of the DC sup-
ply series resistors, namely: R(S1) = 470 �, R(S2) = 520 �
for F, R(S1) = 1880 �, R(S2) = 1840 � for G, and R(S1) =
470 �, R(S2) = 1480 � for H. In configuration F, the syn-
chronization was rather weak, and for decreasing spacing
followed a nonmonotonic trend, peaking at r ≈ 0.08 around
d̂ = 30, then dipping for d̂ = 20 and increasing towards
r ≈ 0.14 upon direct contact between the boards (Fig. 9a).
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FIGURE 8. Effect of the distance d between the wire-loop coil connected
to the exciter node (E) and two co-planar sensor boards (S1), (S2) located
above it (arrangement in Fig. 4b). a) and c) Synchronization r between the
exciter and sensor nodes for two different configurations D and E. b) and
d) Corresponding correlation dimension D2 and permutation entropy h.

FIGURE 9. Effect of the spacing d̂ between two isolated co-planar sensor
boards (S1), (S2); arrangement in Fig. 4c. a), c) and e) Synchronization r
between them for three different configurations F, G and H. b), d) and f)
Corresponding correlation dimension D2 and permutation entropy h.

As the same were drawn nearer, the correlation dimension
gradually increased, from D(Si)

2 ≈ {1.1, 1.6} converging
towards D(Si)

2 ≈ 3.6; the permutation entropy followed a
similar trend (Fig. 9b).

In configuration G, the situation was markedly different,
in that the synchronization remained relatively low at r ≈ 0.1
above d̂ = 20 mm, below which spacing a rapid jump to a
considerably higher level r ≈ 0.7 was observed (Fig. 9c).

FIGURE 10. Effect of the spacing d̂ between two co-planar sensor boards
(S2), (S3) located next to a third sensor board (S1); arrangement
in Fig. 4d. a) and c) Synchronization r between them for two different
configurations I and J. b) and d) Corresponding correlation dimension D2
and permutation entropy h.

In this case, the correlation dimension was elevated only
for intermediate spacings between d̂ ≈ 20-50 mm, and
mainly for one of the sensors (S1), further demonstrating
the diversified relationship between the dynamical complex-
ity and synchronization (Fig. 9d). In configuration H, yet
another pattern was elicited, wherein the synchronization
gradually increased up to r ≈ 0.4. However a sharp peak
was observed for d̂ = 10 mm, at which r ≈ 0.7, effectively
resembling a resonance effect (Fig. 9e). Corresponding to this
point, a sharp dip in the correlation dimension values was
observed, indicating a transient loss of dynamical complex-
ity; albeit with differences, the effect was visible for both
nodes (Fig. 9f). Altogether, these measurements further illus-
trate the availability of very different influences of the weak
coupling upon synchronization in any given configuration,
based on the control parameter settings.

4) CHAIN OF SENSORS
Finally, we illustrate two interaction and relay scenarios
which can arise in a chain of three sensor nodes (S1),
(S2), (S3), away from external perturbations. There were
investigated in a coplanar arrangement with a fixed spacing
of 30 mm between the first two, and a variable spacing d̂ ∈
[0, 70] mm between the other two (Fig. 4d); as above, all
nodes were powered by an external DC source VB = 5 V
and their signals were recorded via probes. Two different
configurations I and J were considered, each corresponding
to different settings of the DC supply series resistors, namely:
R(S1) = 1440 �, R(S2) = 1470 �, R(S3) = 1330 � for I, and
R(S1) = 1440 �, R(S2) = 1070 � and R(S3) = 2000 � for
J. In configuration I, two regions were clearly identifiable:
for d̂ > 20 mm, near-complete entrainment was present
between the nodes (S2), (S3) together with a stable moderate
entrainment r ≈ 0.6 between the fixed nodes (S1), (S2);

VOLUME 8, 2020 36545



L. Minati et al.: Distributed Sensing Via Inductively Coupled Single-Transistor Chaotic Oscillators

below this spacing, the synchronization between all nodes
suddenly dropped to r ≈ 0.2 (Fig. 10a). Consideration
of both complexity measures revealed the underlying phe-
nomenon: when the nodes were sufficiently decoupled, their
dynamics were largely periodic, whereas drawing the node
(S3) closer caused a collective transition to chaos. Notably,
this extended also to node (S1), thus demonstrating a relay
effect by node (S2) which, through becoming chaotic, also
caused it to transition (Fig. 10b).

In configuration J, three situations were apparent: for large
spacing d̂ > 30 mm the entrainment between the nodes (S2),
(S3) was nearly zero, and accompanied by a moderate level of
entrainment r ≈ 0.3 between the fixed nodes (S1), (S2). For
small spacings d̂ < 10 mm, a similar scenario was found,
albeit with different relative intensities of synchronization.
In between these settings, the nodes reached a high level of
collective synchronization, peaking at r ≈ 0.8 (Fig. 10c).
Also in this case, the effect was associated to different levels
of complexity: at sufficiently large spacings, it was intermedi-
ate D2 ≈ 1.8 for the fixed nodes (S1), (S2) and low D2 ≈ 1.1
for the node (S3). Accordingly, as the last node (S3) was
drawn nearer, its effect was initially opposite to the previous
configuration, in that it drew the other nodes towards periodic
dynamics, thus enabling the emergence of synchronization
between them. Eventually, however, the couplings became
strong enough to cause a collective transition to chaos, with
consequent loss of entrainment (Fig. 10d).

5) RELEVANCE AND IMPLICATIONS
In summary, these experiments demonstrate the remarkable
generative potential that, in spite of their simplicity, these
oscillators can express when remotely coupled, depending
on their topographical layout and on the control parameter
settings. Firstly, increasing the coupling strength via reducing
the distance can promote a transition to chaos, which may
remain localized or engulf the entire network. Secondly, this
transition may be accompanied by an elevated synchroniza-
tion, or occur on its own, even in the absence of significant
entrainment. Thirdly, the application of an external field, such
as via the wide-field coil of the exciter or a sensor node being
drawn nearer, may, depending on the settings, promote the
emergence of synchronization or dissipate a synchronization
level that preexists. Fourthly, the effect of coupling on syn-
chronization can be highly nontrivial in that, as nodes are
drawn near to each other, entrainmentmay increase gradually,
suddenly, or even though a resonance-like peak around a
characteristic value. Fifthly, relay effects are readily observed
between sensor nodes, for example, arranged as a chain;
these may appear in diverse forms, propagating a transition to
chaos or transition to periodicity and thus promoting or hin-
dering the diffusion of synchronization at the network level.

Altogether, these phenomena can be accurately understood
in terms of the universal properties of nonidentical cou-
pled chaotic oscillators known from existing simulations and
experiments. On the one hand, when the control parameters
are tuned for operation close to an order-chaos transition,

FIGURE 11. Effect of the luminous flux φ on an isolated sensor board (S);
arrangement in Fig. 4e. a) and c) Correlation dimension D2 and oscillation
amplitude vRMS of the node dynamics for two different configurations K
and L. b) and d) Corresponding spectrograms; color-map reflects the
logarithm of the Fourier amplitudes.

as in the present cases, greater energy exchange generally
promotes the onset of chaos due to the absence of an invariant
manifold. For the same reason, even at the lowest energy
exchange rates, coupling with an oscillator, which is already
chaotic, more quickly results in chaos. On the other hand, due
to the presence of a limit cycle or an open orbit, the energy
exchange rate which is required to maintain a given level of
entrainment is considerably lower for periodic than chaotic
dynamics [26], [52]–[56].

B. EFFECTS OF SENSED VARIABLE (LUMINOUS FLUX)
1) ISOLATED SENSOR
Having established the effects of the interactions between
nodes as a function of their topographical arrangement, this
section shall demonstrate the ability to perform remote sens-
ing of a physical variable of interest, namely, luminous flux.
Initially, we consider the intrinsic dynamics of an isolated
sensor node (S), located at a fixed distance of 50 mm under-
neath a single LED array illuminating it with flux φ (Fig. 4e).
In all cases considered herein, the sensors were powered
purely by their photovoltaic cells, whose output voltage
VB depends on both the luminous flux φ and the resistor
value R, due to the nonzero equivalent output resistance of
the source (Fig. 1b). Given this scenario, it is relevant to
evaluate the power requirements of each sensor node: to
address this point, given that the current draw iB could not
be measured directly, corresponding values were determined
via SPICE simulations based on the LTspice XVII envi-
ronment (Analog Devices, Inc., Norwood MA, USA). Each
measured value of VB was entered, and the corresponding
average current 〈iB〉was estimated based on a realistic circuit
model.

Two different configurations K and L were considered,
each corresponding to a setting of the DC supply series
resistor, namely: R(S) = 700 � for K, and R(S) = 2000 �
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FIGURE 12. Effect of the luminous flux φ on a sensor board (S) and
exciter node (E), whose wire-loop coil was located at a fixed distance
under it (arrangement in Fig. 4f). a) and c) Correlation dimension D2 of
the exciter node dynamics, also oscillation amplitudes vRMS and
synchronization r , for two different configurations M and N.
b) and d) Corresponding spectrograms (E); color-map reflects the
logarithm of the Fourier amplitudes.

for L. In configuration K, as the luminous flux was gradually
increased, the initially periodic dynamics exhibited a sharp
resonance-like transition to chaos for φ = 1625 lm, at which
D2 ≈ 2.0, followed by a decay back to periodicity D2 ≈ 1
up to φ = 2300 lm, beyond which the complexity gradually
increased again towards D2 ≈ 2.2. The corresponding oscil-
lation amplitude increased gradually with a log-like trend,
from vRMS ≈ 20 mV up to vRMS ≈ 80 mV (Fig. 11a).
The corresponding spectrogram as a function of flux revealed
a pattern similar to that observed for distance (Fig. 7c),
wherein transitions to chaos were associated with a well-
evident generation of broad spectral activity over the region
0.3-4.5 MHz (Fig. 11b). Across the first transition to chaos,
periodicity dip and subsequent recovery, the supply voltage
was recorded as VB = {1.5, 2.1, 3.5} V, with estimated
currents iB = {1.1, 1.9, 3.9} mA, corresponding to power
draws of VBiB = {1.7, 4.0, 13.7} mW.
In configuration L, the pattern was different in that the

effect of increasing illumination was even more clearly non-
monotonic and evident as two distinct chaotic bands between
φ = 1350-1450 lm and φ = 1750-2050 lm, wherein D2 ≈

2.0. As in the previous case, the oscillation amplitude vRMS
increased gradually (Fig. 11c), and the spectrogram con-
firmed clear transitions between comb-like and broad spectra
corresponding to these regions (Fig. 11d). Across these order-
chaos-order-chaos-order transitions, the supply voltage was
recorded as VB = {1.9, 2.1, 2.8, 4.5, 5.9} V, with estimated
currents iB = {0.6, 0.7, 1.0, 1.9, 2.6} mA, corresponding to
power draws of VBiB = {1.1, 1.5, 2.8, 8.6, 15.3} mW. These
initial results confirm the possibility of powering the sensor
node photovoltaically, and of rendering its dynamics sensitive
to the light intensity, with a relationship determined by the
control parameter (series resistor).

FIGURE 13. Effect of the luminous flux φ on a 4× 4 array of sensor
boards (Si,j ) and an exciter node (E), whose wire-loop coil was located at
a fixed distance under it (arrangement in Fig. 4g). a) and c) Correlation
dimension D2 of the exciter node dynamics, for two different
configurations O and P. b) and d) Corresponding permutation entropy h.
For a)-d), sigmoidal fits (D̂2) shown together with the relative error
(φ̂ − φ)/φ incurred estimating the flux φ̂ from the nonlinear dynamics.

2) EXCITER AND ONE SENSOR
Next, we turned to the first proper remote sensing experi-
ment, wherein a similar arrangement as above was prepared,
however, with the sensor node (S) coupled to an exciter node
(E) located a fixed distance of 50 mm underneath it (Fig. 4f).
Two different configurations M and N were considered, each
corresponding to different settings of the DC supply series
resistors, namely: R(E) = 1250 �, R(S) = 1900 � for M, and
R(E) = 510 �, R(S) = 1900 � for N. In configuration M,
with increasing luminosity the oscillation amplitude gradu-
ally grew for the sensor node (S) between v(E)RMS ≈ 10-90 mV
while remaining relatively stable v(E)RMS ≈ 300 mV for the
exciter node (E). The correlation dimension in the dynamics
of the latter followed a biphasic trend, starting fromD(E)

2 ≈ 1,
then peaking at D(E)

2 ≈ 2.5 for φ = 2100 lm, dipping
at D(E)

2 ≈ 1.2 for φ = 2500 lm and finally approaching
D(E)
2 ≈ 1.8 for φ > 2750 lm (Fig. 12a). As previously

observed directly for the sensor node itself, the spectral con-
tent closely reflected the level of dynamical complexity, grad-
ually becoming broader with stronger illumination (Fig. 12b).

In configuration N, the situation was similar, however,
the correlation dimension for the exciter node (E), instead of
a biphasic relationship, showed a monotonic step-wise trend,
wherein it was initially D(E)

2 ≈ 1, then increased to D(E)
2 ≈

2.3 and dwelt around this value for φ = 1430-2400 lm,
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FIGURE 14. Representative examples of the dynamics in a 4× 4 array of sensor boards (Si,j ) and an exciter node (E) as a function of the luminous flux
φ; phosphorus-like temporal averaging with log-intensity scaling, and same settings as in Fig. 13d-f. a) and b) Two-dimensional time-lag (τ = 0.12 µs)
attractor reconstructions for the exciter and the sensor at location (1,1). c) and d) Time-series recorded given flux φ = 580 lm and φ = 3300 lm,
respectively.

and subsequently increased again towards D(E)
2 ≈ 3.0

(Fig. 12c). The spectral content reflected this trend, in par-
ticular, delineating a chaos-chaos transition around φ =
2500 lm (Fig. 12d). These results demonstrate that telemetry
based on chaotic oscillators is in principle possible, and,
importantly, the relationship between the sensed variable and
the dynamics can be modified over qualitatively different
function shapes purely based on the local control parameter
of the exciter, R(E).

3) EXCITER AND ARRAY OF SENSORS
Subsequently, we considered the case of 4×4 sensors boards
(Si,j), laid out in a similar co-planar arrangement at a fixed
distance from the exciter node (E) coil. The improve illumina-
tion homogeneity, the four LED illuminators were positioned
at the corners of the array, providing light incident at a 45◦

angle; in this experiment, their luminous flux was identically
set, i.e., φA-D = φ (Fig. 4g). Two different configurations
O and P were considered, each corresponding to different
settings of the DC supply series resistors, namely: R(E) =
1270 �, R(S) = 970 � for O, and R(E) = 1270 �, R(S) =
1300 � for P. Here, it should be borne in mind that even
though the nominal value of R(S) was identical for all nodes,
appreciable parametric mismatches rendered them noniden-
tical. In each configuration, and separately for the correlation
dimension D(E)

2 and permutation entropy h(E), the measured
relationship between the luminous flux x = 0.02φ (scaled for
instrumental reasons) and the dynamical complexity param-
eter y = {D(E)

2 , h(E)} was fit with a sigmoidal function having
the form

y(x) =
a

1+ e−b(x−c)
+ d . (13)

A nonlinear least-squares approach was applied, assuming
the starting point a = y(xmax)− y(xmin), b = 0.1, c = xmax/2
and d = y(xmin), determined based on heuristic criteria.
Inverting this function via brutely searching for the x value
nearest to each given y, the flux φ̂ was estimated from the
dynamics, and the corresponding relative error (φ̂−φ)/φ was
obtained.

In configuration O, the correlation dimension increased
gradually from D(E)

2 ≈ 1.2 to D(E)
2 ≈ 2.6, with a larger

slope up to φ = 2000 lm. Remarkably, the relationship was
nearly perfectly fit assuming the parameter settings a = 2.1,
b = 0.09, c = 8.5, d = 0.47, yielding R2adj = 0.99 (variance
explained adjusted, not to be confused with resistance); the
correspondingmedian absolute error for φ̂ was 8% (Fig. 13a).
The permutation entropy increased nearly linearly up from
h(E) ≈ 0.36 to h(E) ≈ 0.41 at φ = 1400 lm, with a nearly flat
plateau observed thereafter. This relationship was also nearly
perfectly fit assuming the parameter settings a = 0.053,
b = 0.20, c = 13.9, d = 0.35, yielding R2adj = 0.98; limited
to the range φ ≤ 1400 lm, the correspondingmedian absolute
error for φ̂ was 11% (Fig. 13b). Accordingly, the spectrogram
showed the stronger effect in the range φ ≤ 1000 lm, with
considerably weaker changes in spectral amplitudes above
that level (Fig. 13c).

In configuration P, the increase in correlation dimension
was quantitatively more contained, from D(E)

2 ≈ 1.0 to
D(E)
2 ≈ 2.1, but more evenly distributed over the span φ

values. Similarly, it was nearly perfectly fit assuming the
parameter settings a = 1.1, b = 0.12, c = 35.8, d = 1.00,
yielding R2adj = 0.99; the corresponding median absolute
error for φ̂ was also 8% (Fig. 13d). Analogous consideration
applied for the permutation entropy, which increased from
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FIGURE 15. Additional interventions on a 4× 4 array of sensor boards
(Si,j ) and an exciter node (E), whose wire-loop coil is located at a fixed
distance under it (arrangement in Fig. 4g). a) Gradually reducing the
number of viable sensors n in a pseudo-random sequence via severing
the coupling coils. b) and c) Corresponding correlation dimension D2 and
permutation entropy h curves. d) Partial illumination of only m quadrants
(averaged over all combinations of the zones A-D). e) and f)
Corresponding correlation dimension D2 and permutation entropy h
curves.

h(E) ≈ 0.27 to h(E) ≈ 0.35, and was nearly perfectly fit
assuming the parameter settings a = 0.074, b = 0.12,
c = 40.3, d = 0.27, yielding R2adj = 0.98; the corresponding
median absolute error for φ̂ was 10% (Fig. 13e). Compared
to the previous configuration, the spectrogram showed amore
gradual transition to broadband activity, building up around
φ ≈ 1500 lm (Fig. 13f).

Additional insights into the coupled activity could be
obtained by visualizing the attractors reconstructed in two
dimensions via time-lag embedding. The dynamics of exciter
node (E) delineated a particular snail-like trajectory, which,
for low illumination levels, corresponded to a limit cycle,
maintaining the same scale but becoming gradually more
irregular, hence blurred when averaged over time, with
increasing luminous flux on the sensor array (Fig. 14a).
On the other hand, due to the increasing supply voltage
applied to it, the oscillations of the sensor node (S) steadily

grew in amplitude, concomitantly morphing from a circle
into a similar snail-like shape (Fig. 14b). Two represen-
tative examples of the underlying time-series are visible
in Fig. 14c,d.

4) RELEVANCE AND IMPLICATIONS
Summing up, the results discussed herein unequivocally
demonstrated the possibility of performing remote measure-
ments using these oscillators. Firstly, it was possible to power
each sensor node via a photovoltaic cell, which also acted as
a sensing element because the circuit dynamics were con-
trolled by the supply voltage itself, which depended on the
illumination level. Secondly, by coupling two nodes, it was
possible to harvest information about the physical variable
at the remote node (sensor) from the dynamics of the local
one (exciter). Thirdly, when using a single sensor node, even
though a relationship between the dynamics and the sensed
variable was well evident, this was not univocal and thus
problematic to invert.

On the other hand, when multiple sensor nodes were com-
bined, the collective dynamics developed a level of complex-
ity that more adequately tracked the parameter to bemeasured
and which was closely reflected in the signal generated by the
exciter oscillator. It, therefore, became possible to perform
an accurate measurement, which, as more explicitly shown
in the next section, harvested ensemble information from the
network as a whole. This offered an issue of calibration,
which implied determining a response function and its fitting
parameters, as elaborated in other works on distributed and
traditional sensing: here, the challenge could be addressed
straightforwardly by fitting a sigmoidal curve [57], [58].

C. ADDITIONAL NETWORK MANIPULATIONS
The results reported thus far leave open the question of
whether it is the majority of the network contributing to the
measured value, or potentially only a subset of influential
nodes. Though rigorously addressing this question requires
detailed analyses beyond the scope of this work, two addi-
tional interventions were performed to gain further insight.
Here, we set R(E) = 525 �, R(S) = 1550 �.

1) INCIPIENT DAMAGE TO SENSOR ARRAY
Firstly, measurements at four representative illumination lev-
els φ = {500, 1500, 2500, 3500} lm were repeated while
gradually reducing the number of viable sensor nodes through
severing the connection of the respective coupling coils
L2; this operation was iterated until only two oscillators
were left active (Fig. 15a). According to the correlation
dimension, the parameter distribution observed between these
four levels when all n = 16 nodes were active, namely
D2 ≈ {1.4, 2.2, 2.6, 2.8}, was only weakly compressed after
removing half of the node, yielding D2 ≈ {1.3, 2.3, 2.6, 2.6}
for n = 8. However, when just n = 2 oscillators were
operating, the distribution was considerably shrunk towards
low values, even though the rank positions were preserved,
with D2 ≈ {1.2, 1.6, 1.8, 1.9} (Fig. 15b). The permutation
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entropy revealed an analogous pattern, albeit with a consid-
erably more marked effect of the number of active nodes:
for n = 16, h ≈ {0.38, 0.39, 0.41, 0.42}, but already for
n = 8, this range was significantly compressed towards lower
values, into h ≈ {0.38, 0.39, 0.40, 0.40}; for n ≤ 6, the rank
positions were lost (Fig. 15c).

2) INCOMPLETE ILLUMINATION
Secondly, measurements sweeping the luminous flux emit-
ted by each LED over φ ∈ [0, 3900] lm were repeated
while illuminating only m = 1, 2, 3, 4 quadrants (i.e., 25%,
50%, 75% and 100% of the array area), and averaging
over all possible combinations for each value of m (i.e.,
zones A-D in Fig. 15d). The correlation dimension, which
gradually increased with stronger illumination, was visibly
higher depending on the number of illuminated quadrants,
for all settings φ > 1500 lm; the relationship was, however,
clearly sub-linear. For example, at φ = 2000 lm the cor-
relation dimension was D2 ≈ {2.1, 2.3, 2.5, 2.6}; however,
at φ = 3900 lm, it was D2 ≈ {2.4, 2.6, 2.7, 2.9}. In other
words, even though the rank positions were consistent,
between one and four illuminated quadrants D2 increased
only by ≈ 20% (Fig. 15e). The situation was analogous for
the permutation entropy, with h ≈ {0.38, 0.39, 0.40, 0.41}
for φ = 2000 lm and h ≈ {0.39, 0.40, 0.41, 0.42} for
φ = 3900 lm (Fig. 15f).

3) RELEVANCE AND IMPLICATIONS
These results confirm that the collective dynamics reflect an
ensemble evaluation over a representative multitude of nodes.
On the one hand, the number of electrically viable or illu-
minated sensors had an evident influence on the measure-
ment, rendering it sufficiently indicative of a sum or average
operation, which represents the predominant requirement in
distributed sensing [10]–[14]. On the other, albeit with some
differences between the correlation dimension and permuta-
tion entropy, the relationship between the illumination level
and the dynamics was relatively resilient to the loss of a
subpopulation of nodes, remaining well visible even when
only half of the network was retained. These two features
are of central importance to distributed sensing since its
purpose is obtaining a robust ensemble measurement that is
not excessively influenced by a minority of sensors, while at
the same time ensuring that viability is maintained up to a
moderate level of damage, which in real-life scenarios could
ensue due to spontaneous failure or deliberate attack [7], [10],
[11], [59], [60].

The sublinear relationship elicited for the sensed vari-
able, as well as the number of sensors, is inherent in the
nature of the system, which is governed by synergistic rather
than summative interactions (as would be, for instance,
in the case of pure transmitters whose output power gets
integrated spatially). While a transition from periodicity to
chaos can be engendered relatively straightforwardly in the
presence of sufficient nonlinearity, and the chaotic dynam-
ics can be enriched via couplings, the dimensionality is

FIGURE 16. Examples of possible future application concepts. a)
Monitoring of average human body temperature 〈◦C〉, via a resistive
temperature sensor and a biological electrochemical power source (e.g.,
sweat). b) Monitoring of human oscillatory movement a(t) (e.g., tremor),
with oscillator synchronization via a capacitive acceleration sensor.
c) Monitoring of total solar photon flux density

∫
φ in an agricultural

field, via a photovoltaic cell acting both as sensor and power source.
d) Monitoring of cracking in a concrete structure, via a break wire
inductor (maximum inductance max(L)) and a photovoltaic power source.
e) Monitoring of the concentration max(c) of an analyte via a
chemically-sensitive transistor and long-life battery. Coupling
infrastructure not shown, sensorized circuit element highlighted in red.

eventually bound by the finiteness of the system. Approach-
ing dimensional saturation (that is, attaining a strange attrac-
tor whose fractional dimension nears the number of physical
variables in the phase space) may be hindered by the weak
level of couplings [26], [30]. A clear demonstration of this
phenomenon for experimental and simulated systems can be
found, for example, in a recent study of star networks but also
in realizations of the present single-transistor oscillator with
fractal elements [34], [51]. Finally, the negative bias of the
complexity estimators should be borne in mind, potentially
accounting for the steeper slopes observed for the permuta-
tion entropy than the correlation dimension [42]–[45].

V. CONCLUSIONS AND FUTURE APPLICATIONS
A. CONTRIBUTION
This precursory study aimed to bring together two research
fields that, thus far, had remained mostly separate: wireless
sensor networks and electronic chaotic oscillators. It demon-
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strated that it is, in principle, possible to realize a viable
distributed sensing system while implementing each node
with a simple analog circuit, consisting only of a single
transistor and a limited number of passive components,
rather than a microprocessor-based entity. In other words,
the explicitly-coded behavior of an automaton is replaced by
the nonlinear dynamics of an oscillator, fuzzy and heteroge-
neous, powerfully capable of giving rise to complex emergent
phenomena via synchronization [61]–[63].

Because the present approach is new, there is limited lit-
erature to which direct comparisons can be made. In this
regard, the most important study is that in Ref. [31]: therein,
the experimental synchronization of two inductively-coupled
Colpitts oscillators was demonstrated. Synchronization and
chaotic transitions were demonstrated as a function of the
coupling coefficient k . However, no usage in remote sensing
was elaborated, and only one configuration was considered,
namely an oscillator pair, as opposed to the seven arrange-
ments of sensor and exciter nodes considered herein; more-
over, the transistor circuit was structurally more complex.
At a more general level, the present results are well in line
with existing work on the synchronization of chaotic oscilla-
tors using direct electrical connections [27], [28], [51].

Even though for demonstration purposes in this work the
oscillators were realized using discrete components and had
a current draw on the order of milliwatts, it is well estab-
lished that, on a mainstream CMOS process node, single-
chip chaos generators can be implemented with an area
and power footprint on the order of ≈ 0.03 mm2 and ≈
0.05 µW. A distributed sensing approach hinged around
simple oscillators, therefore, appears ideally suited for the
realization of fine-granularity smart dust sensors, insofar
as future work can realize on-chip, via appropriate fea-
ture size and frequency scaling (e.g., X band and beyond),
both the coupling antenna and an energy harvesting sys-
tem (electromagnetic, electromechanical, thermoelectric or
photovoltaic) [10], [64]–[68].

B. NOVELTY
To the authors’ knowledge, these findings represent the first
physical demonstration that chaotic oscillators may be cou-
pled remotely in an extended network, expanding previous
work limited to an isolated node pair [31]. A particularly
relevant result, which is expected to have general valid-
ity, is that emergent phenomena such as synchronization,
desynchronization, relaying, and chaotic transitions could
be elicited, as a function of both the network topography
and the sensed physical variable, even in the presence of
weak coupling. Importantly, the coupling coefficients under
consideration, on the order of ≈ 0.01, are expected to be
unproblematic to realize over considerably longer distances,
on the order of meters and beyond, using optimized electro-
magnetic structures. It should be noted that even this though
initial laboratory demonstration was based on simple induc-
tive coupling, without any attempt at design optimization,
the mechanisms are expected to straightforwardly generalize

to diverse antenna types, as well as to frequencies well-suited
for on-chip coil realization [36], [64], [67].

A specific aspect of novelty is the readout of the network
dynamics via an active exciter node coupled to all sensors,
that is, a structurally identical oscillator possessing its intrin-
sic dynamics. Due to the bidirectional nature of the inductive
coupling, the dynamics of this node may both be influenced
by and act upon the dynamics of the remote sensor nodes,
which is unlike the simple averaging performed by a passive
receiver. As exemplified by the configurations considered,
this allowed realizing different interaction patterns, such as
the transition to synchronization or chaotic state, only as
a function of the local control parameter (series resistor
value) within the exciter node (which would, in an appli-
cation, functionally correspond to a base-station). Further-
more, depending on the settings, it enabled the externally-
applied excitation field to enhance or hinder synchronization
among the sensors. Sensing via applying an external exci-
tation is pervasive across physical measurement techniques,
most notably nuclear magnetic resonance, and rhymes with
the notion of harvesting information about a complex net-
work via externally perturbing it; however, this approach
had seemingly not yet been applied to wireless sensor
networks [69]–[71]. Future work should investigate it more
extensively, elucidating its advantages over a passive receiver
also in terms of sensitivity and selectivity, and consider-
ing more advanced configurations such as a possibly adap-
tive exciter node capable of rapidly sweeping its control
parameter.

C. APPLICATIONS
For demonstration purposes, here, the sensed variable,
namely the light intensity, coincided with the power source
for the sensor nodes. The approach, however, is entirely
generic and may be realized with other configurations, and
other nonlinear electronic oscillators; for example, a sens-
ing element could be instanced corresponding to the supply
resistor, or the tank capacitor, while the node is powered at
a voltage unrelated to the sensed variable. Indeed, previous
work has demonstrated that the dynamics of these circuits
are more responsive to the series resistance than to the supply
voltage [28], [30].

The concrete next steps towards prototype implementa-
tions shall depend on the specific application scenarios. For
example, in a biomedical scenario, low-energy oscillators
could be powered by an electrochemical source based on
sweat, and the body itself could act as an electrical coupling
medium between the oscillators. The accurate approxima-
tion of core body temperature from noninvasive measure-
ments is knowingly challenging, hence application of the
present techniques to obtain a large-area average could be
beneficial [6], [72]; this could be realized by altering the
series supply resistor via a suitably-sized parallel thermistor
(Fig. 16a). Insofar as the oscillation frequency (or a sec-
ondary, modulating component) can be lowered down to the
range of ≈ 5 Hz to allow direct synchronization between the
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physiological and electronic dynamics, coupled oscillators
could also find applications in the detection of subclini-
cal tremors in movement disorders. One approach may be
coherently integrating them over multiple limb locations, for
instance through capacitive micro-sensors (Fig. 16b); a simi-
lar method could also be applied to monitoring the oscillation
of an engineered structure [73], [74].

In an agricultural scenario, the present demonstration of
average illumination estimation could have immediate rel-
evance to the determination of the solar photon flux den-
sity, provided that the coupling coils are redesigned and
scaled to operate on the range of at least several meters
(Fig. 16c). Towards such an application, via the relay mecha-
nisms demonstrated in the present results, it could be helpful
to exploit a small subset of nodes as a proxy for the state of
the entire network [4]. Differently, in a civil engineering sce-
nario, one could envisage a network of these oscillators being
coupled via a conductive structural element and individually
equipped with a wire break sensor altering, for example,
the value of one of the coils when opened [75], [76]. The
nodes could be tuned for collective oscillation close to chaos
transition in such a manner that, rather than representing an
ensemble average, the dynamics suddenly turn chaotic if one
sensor is damaged, triggering an alarm (Fig. 16d). Further,
in suitable chemical sensing applications, even the transistor
itself could act as a sensing element for the concentration of
an analyte (Fig. 16e) [77].

Lastly, diverse forms of coupled nonlinear networks can
provide viable substrates for physical reservoir computing.
Therefore, insofar as the nodes are distributed sufficiently
densely to ensure the emergence of collective behavior,
the paradigm of remote chaotic synchronization could be
used as a basis to implement distributed forms of reservoir
computing over wireless sensor networks [78], [79]. At the
same time, the elementary nature of single-transistor oscil-
lators renders them ideally suited for realization in the form
of flexible and printed electronics, considerably expanding
the pervasiveness of the distributed sensor nodes that can
be realized vastly beyond what is presently possible, one
example being skin patch transducers [80], [81].

REFERENCES
[1] L. A. Schintler, S. P. Gorman, A. Reggiani, R. Patuelli, A. Gillespie,

P. Nijkamp, and J. Rutherford, ‘‘Complex network phenomena in telecom-
munication systems,’’ Netw. Spatial Econ., vol. 5, no. 4, pp. 351–370,
Dec. 2005.

[2] Y.-Y. Liu and A.-L. Barabási, ‘‘Control principles of complex systems,’’
Rev. Modern Phys., vol. 88, no. 3, Sep. 2016, Art. no. 035006.

[3] K. Batool and M. A. Niazi, ‘‘Modeling the Internet of Things: A hybrid
modeling approach using complex networks and agent-based models,’’
Complex Adapt. Syst. Model., vol. 5, no. 1, pp. 1–19, Mar. 2017.

[4] T. Ojha, S. Misra, and N. S. Raghuwanshi, ‘‘Wireless sensor networks
for agriculture: The state-of-the-art in practice and future challenges,’’
Comput. Electron. Agricult., vol. 118, pp. 66–84, Oct. 2015.

[5] D.M. Broday and T. C.-S. P. Collaborators, ‘‘Wireless distributed environ-
mental sensor networks for air pollution measurement—The promise and
the current reality,’’ Sensors, vol. 17, no. 10, p. 2263, Oct. 2017.

[6] R. A. Khan and A.-S.-K. Pathan, ‘‘The state-of-the-art wireless body area
sensor networks: A survey,’’ Int. J. Distrib. Sensor Netw., vol. 14, no. 4,
Apr. 2018, Art. no. 155014771876899.

[7] F. Mao, K. Khamis, S. Krause, J. Clark, and D. M. Hannah, ‘‘Low-cost
environmental sensor networks: Recent advances and future directions,’’
Frontiers Earth Sci., vol. 7, p. 221, Sep. 2019.

[8] A. Ukil, H. Braendle, and P. Krippner, ‘‘Distributed temperature sensing:
Review of technology and applications,’’ IEEE Sensors J., vol. 12, no. 5,
pp. 885–892, May 2012.

[9] X. Lu, P. J. Thomas, and J. O. Hellevang, ‘‘A review of methods for fibre-
optic distributed chemical sensing,’’ Sensors, vol. 19, no. 13, p. 2876,
Jun. 2019.

[10] J. M. Kahn, R. H. Katz, and K. S. J. Pister, ‘‘Emerging challenges:
Mobile networking for‘Smart Dust,’’’ J. Commun. Netw., vol. 2, no. 3,
pp. 188–196, Sep. 2000.

[11] D. Puccinelli and M. Haenggi, ‘‘Wireless sensor networks: Applications
and challenges of ubiquitous sensing,’’ IEEE Circuits Syst. Mag., vol. 5,
no. 3, pp. 19–31, 2005.

[12] C. Guyeux, M. Haddad, M. Hakem, and M. Lagacherie, ‘‘Efficient dis-
tributed average consensus in wireless sensor networks,’’ Comput. Com-
mun., vol. 150, pp. 115–121, Jan. 2020.

[13] M. Wang, J. Cao, B. Chen, Y. Xu, and J. Li, ‘‘Distributed processing in
wireless sensor networks for structural health monitoring,’’ in Distributed
Processing in Wireless Sensor Networks for Structural Health Monitoring,
J. Indulska, J. Ma, L. T. Yang, T. Ungerer, and J. Cao, Eds. Berlin,
Germany: Springer, 2007, pp. 103–112.

[14] A. Khosravi and Y. S. Kavian, ‘‘Challenging issues of average consensus
algorithms in wireless sensor networks,’’ IET Wireless Sensor Syst., vol. 6,
no. 3, pp. 60–66, Jun. 2016.

[15] J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, N. Gámez, L. Fuentes,
D. Ludovino, and P. Ferreira, ‘‘Autonomic wireless sensor networks:
A systematic literature review,’’ J. Sensors, vol. 2014, Dec. 2014,
Art. no. 782789.

[16] H. Leung, S. Chandana, and S. Wei, ‘‘Distributed sensing based on intelli-
gent sensor networks,’’ IEEE Circuits Syst. Mag., vol. 8, no. 2, pp. 38–52,
Mar. 2008.

[17] F. Sivrikaya and B. Yener, ‘‘Time synchronization in sensor networks:
A survey,’’ IEEE Netw., vol. 18, no. 4, pp. 45–50, Jul. 2004.

[18] K. Konishi and H. Kokame, ‘‘Synchronization of pulse-coupled oscillators
with a refractory period and frequency distribution for a wireless sensor
network,’’ Chaos, Interdiscipl. J. Nonlinear Sci., vol. 18, no. 3, Sep. 2008,
Art. no. 033132.

[19] C. C. Canavier and S. Achuthan, ‘‘Pulse coupled oscillators and the phase
resetting curve,’’Math. Biosci., vol. 226, no. 2, pp. 77–96, Aug. 2010.

[20] T. Okuda, K. Konishi, and N. Hara, ‘‘Experimental verification of syn-
chronization in pulse-coupled oscillators with a refractory period and
frequency distribution,’’ Chaos, Interdiscipl. J. Nonlinear Sci., vol. 21,
no. 2, Jun. 2011, Art. no. 023105.

[21] M. J. Ogorzalek, Z. Galias, A. M. Dabrowski, and W. R. Dabrowski,
‘‘Chaotic waves and spatio-temporal patterns in large arrays of doubly-
coupled Chua’s circuits,’’ IEEE Trans. Circuits Syst. I. Fundam. Theory
Appl., vol. 42, no. 10, pp. 706–714, Oct. 1995.

[22] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal
Concept in Nonlinear Sciences, Cambridge, U.K.: Cambridge Univ. Press,
2003.

[23] A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna,
and J. Kurths, ‘‘Remote synchronization in star networks,’’ Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 85, no. 2,
Feb. 2012, Art. no. 026208.

[24] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy,
‘‘Cluster synchronization and isolated desynchronization in complex
networks with symmetries,’’ Nature Commun., vol. 5, no. 1, p. 4079,
Jun. 2014.

[25] Y. Wang, L. Wang, H. Fan, and X. Wang, ‘‘Cluster synchronization in net-
worked nonidentical chaotic oscillators,’’ Chaos, Interdiscipl. J. Nonlinear
Sci., vol. 29, no. 9, Sep. 2019, Art. no. 093118.

[26] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, ‘‘The
synchronization of chaotic systems,’’ Phys. Rep., vol. 366, nos. 1–2,
pp. 1–101, 2002.

[27] L. Fortuna and M. Frasca, ‘‘Experimental synchronization of single-
transistor-based chaotic circuits,’’ Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 17, no. 4, Dec. 2007, Art. no. 043118.

[28] L. Minati, ‘‘Experimental synchronization of chaos in a large ring of mutu-
ally coupled single-transistor oscillators: Phase, amplitude, and clustering
effects,’’ Chaos, Interdiscipl. J. Nonlinear Sci., vol. 24, no. 4, Dec. 2014,
Art. no. 043108.

36552 VOLUME 8, 2020



L. Minati et al.: Distributed Sensing Via Inductively Coupled Single-Transistor Chaotic Oscillators

[29] L. Minati, ‘‘Experimental dynamical characterization of five autonomous
chaotic oscillators with tunable series resistance,’’ Chaos, Interdiscipl.
J. Nonlinear Sci., vol. 24, no. 3, Sep. 2014, Art. no. 033110.
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