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ABSTRACT In this paper, we propose a perceptual adaptive quantization based on a deep neural network
on high efficiency video coding (HEVC) for bitrate reduction while maintaining subjective visual quality.
The proposed algorithm adaptively determines frame-level QP values for different picture types of the
hierarchical coding structure in HEVC by taking into account the high-level features extracted from the
original and previously reconstructed pictures. A predefined model based on the visual geometry group
(VGG-16) network is exploited to extract the high-level features for subjective visual characteristics.
Furthermore, the Lagrange multiplier for each frame is also adaptively determined by involving the proposed
features for deciding the appropriate parameter of the Lagrange multiplier that can be used for rate-distortion
optimization during the encoding process. Experimental results reveal that the proposed perceptual adaptive
QP selection can facilitate bitrate savings up to 65.73% and 47.68% and improve the BD-rate based on SSIM
by approximately 20.68% and 14.27% under low-delay-P and random-access coding structures, respectively,
with very minimal visual quality degradation when compared to HM-16.20 without adaptive QP selection.

INDEX TERMS Adaptive quantization parameter, deep neural network, high efficiency video coding
(HEVC), perceptual quantization parameter, VGG-16 network, video coding.

I. INTRODUCTION
High-efficiency video coding (HEVC) standard has been
widely accepted to achieve better compression performance
over H.264/Advanced Video Coding (AVC) by maintain-
ing similar visual quality [1]. It has encompassed various
video media services and applies not only to full high def-
inition (FHD) but also to 4K/8K ultra-HD (UHD) [2]–[4].
Since the standard was released, many studies have been
conducted for the sake of its advantages of visual quality
improvement [5]–[7], computational complexity reduction
[8]–[16], bitrate reduction [17], [18], and prospects as a
future video coding standard [19]–[26]. Among many cod-
ing tools, rate-distortion optimization (RDO) in the HEVC
software model (HM) [26]–[28] is used to improve its coding
efficiency [30], [31]. It is based on optimization using the
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global Lagrange multiplier and determines the quantization
parameter (QP) value using a QP- λ model. The Lagrange
multiplier λ can be termed as a function of the quantization
step size, which is closely related to the QP value. It is used
for the coding efficiency of each basic unit by selecting the
best coding mode under a given QP value, where the basic
unit can be a frame, slice, or coding unit (CU). The common
test condition (CTC) designed by the Joint Video Experts
Team (JVET) employs static quantization parameters for fair
comparison in standardization [32]. However, an adaptive
QP selection is known to be effective in improving subjec-
tive visual quality for practical applications. The adaptive
QP should be designed to be harmonized within the RDO
process. It can adjust the QP value for a distinctive frame
or slice according to different spatial, temporal, or visual
aspects. Some studies have discovered approaches to improve
the compression rates [33]–[37] or visual quality [38]–[44]
with various adaptive QP techniques. Typically, these studies
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prioritize the determination of optimum QPs for the RDO
process to produce better encoding parameters by analyz-
ing the QP- λ relationship or by observing the effective-
ness of spatial-temporal dependencies among the basic units.
Generally, these studies take into consideration the essential
role of λ in the RDO process. Thus, it will be interesting to
consider a deep neural network (DNN) for more varied QPs
in HEVC. Studies have prevailed benefits of DNN for video
coding [45]–[49]. However, there is no existing effective
DNN-based algorithm for perceptual adaptive QP purposes.

This study presents a DNN-based QP selection method by
the adaptive determination of frame-level perceptual QP for
HEVC to achieve bitrate reduction without inducing visual
quality degradation. The proposed algorithm is embedded in
HM-16.20 and generates QP values adaptively for different
picture types and coding structures in HEVC. The proposed
algorithm first determines a QP for the first frame in a
sequence by averaging the standard deviation value of the
original blocks (StD). Then, the proposed algorithm obtains
high-level features from the original and reconstructed frames
using a pretrained visual geometry group (VGG-16) network
model [50]. Based on the extracted high-level features, more
visual-friendly QP is then distributed for the next consecutive
frames in the encoding order. The algorithm also determines
the Lagrange multiplier adaptively for each frame based
on the proposed model, which can be used for RDO in
the encoding process. As a result, the proposed algorithm
demonstrates significant coding gain with minimal visual
degradation against HM-16.20 and other existing adaptiveQP
algorithms.

The rest of this paper is organized as follows. In section 2,
we briefly present an overview of the QP decision in HM
and related works. In section 3, we discuss the proposed
perceptual adaptive QP for HM. In section 4, we review
several performance evaluations of the proposed algorithm,
and finally, we draw the conclusions and suggest further
research directions in section 5.

II. CURRENT STATE OF QP SELECTION AND RELATED
STUDIES OF PERCEPTUAL ADAPTIVE QP IN HEVC
The current QP selection within the RDO process in HEVC is
not optimal. Many studies have revealed several weaknesses
of the QP selection technique in the HEVC encoder. In this
section, several adaptive QP techniques for HEVC are dis-
cussed as follows.

A. GENERAL QP SELECTION CONCEPT IN HM
QP selection in video coding can be mathematically
described as an RDO problem [35], [36] that minimizes the
total coding distortion D at a given bitrate RT as:

QP∗ =
(
QP∗i , · · · ,QP

∗
N
)
= argmin (QP)

∑N

i=1
Di,

s.t.
N∑
i=1

Ri ≤ RT (1)

where N denotes the number of basic units, Di is the coding
distortion, and Ri is the coding bitrate of the i−th basic unit.
Note that the basic unit in HEVC term may be a frame, slice,
or CU. Di and Ri in (1) form on QP = (QPi, · · · ,QN ).
QPi refers to the QP value for the i−th basic unit and
QP∗ = (QP∗i , · · · ,QP

∗
N ) represents the optimal QP set

for the N basic units. Applying the λ method [29] into the
following unconstrained form, equation (1) can be rewritten
as:

QP∗ = argmin (QP) {J},

J =
N∑
i=1

Di + λ �
N∑
i=1

Ri (2)

where J stands for the total rate-distortion (RD) cost function,
and λ represents the trade-off parameter between Di and Ri.
Along with the RDO process, λ in HEVC can be obtained as

λ = QPfactor � 2QP/3, (3)

where QP denotes the quantization parameter, and QPfactor
is a constant parameter related to coding configurations. The
QP value in (3) is an integer introduced to represent an actual
quantization step size by an exponential mapping function.
However, the quantization step size in HEVC tends to be
static for complexity reduction in the RDO process. Applying
a fixed or predefined QP scheme may cause the compression
rate to drop significantly, while HEVC has different coding
configurations. Hence, this becomes a major challenge for
any QPmethod design in HEVC. Many QP adjustment meth-
ods have been studied for better coding gain. For example,
a QP–λ relationship is used to determine the λ value accord-
ing to an initial QP, and subsequently, the new QP value is
recalculated [30], [31]. This algorithm is widely known as
a straight-forward algorithm for the RDO scheme in HEVC.
Wang et al. [33] introduced an improved block-level adaptive
QP value that considers previously coded block information.
Zhao et al. [34] proposed a QP cascading scheme that assigns
QP values to different hierarchical temporal picture layers.
Similar algorithms were also introduced by Li et al. [35] and
He et al. [36], which presented only an inter-frame depen-
dency technique. As far as we know, these last two algorithms
can provide better coding gain for an HEVC encoder. Exten-
sive use of spatial-temporal predictions in HEVC is important
for adaptive QP selection in RDO. Although the integration
of such propagation effects is desirable, there are not many
such studies.

B. EXISTING METHODS OF PERCEPTUAL ADAPTIVE QP
SELECTION FOR HM
Determining the QP value for video encoders also affects
the entirely visual quality of a video sequence. To improve
the subjective quality of adaptive QP, the spatial and tem-
poral features or combination of those may be designed
empirically. Open software of × 265 [38] becomes one of
several algorithms that developed a perceptual adaptive QP
method with spatial and temporal features. However, it still
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fails to give promising outcomes if a reference frame has
characteristics different from the current coding frame. Test
Model 5 (TM5 Model) of MPEG-2 software [39] also uses
the method that scales a quantization step according to the
spatial activity of one CU relative to a frame-level average
of the spatial activity. This method fails when the size of a
large CU block needs to be estimated, thus limiting its perfor-
mance [37]. Similarly, Yeo et al. [40] also introduced a block-
level adaptive QP selection algorithm. It observes the spatial
and temporal pixel characteristics of CU blocks. However,
it needs a higher encoding time. Prangnell et al. [41] used
transform coefficients based on a soft thresholding method.
However, the proposed soft thresholding method may still
cause fluctuations of the visible quality, resulting in severe
visual distortion.

An alternative algorithm was proposed by determining a
QP offset based on a QP − λ relationship that is formed.
Yeo et al. [40] has also studied related topics. However, their
method utilized only the spatial variance of a block, which
is limited for videos with large homogeneous areas [42].
Xiang et al. [43] proposed a perceptual motion estimation
method using a spatial-temporal just-noticeable-distortion
(JND) model for a QP offset design. Rouis et al. [44] gen-
erated perceptual features temporally as well as CTU visual
sensitivity for spatial features. However, both features con-
sidered in this algorithm are provided only for an adaptive λ
in RDO. As a conclusion, spatial and temporal perceptual
features for an adaptive QP decision can provide a better
trade-off [43], [44].

C. DNN APPROACH TO PERCEPTUAL ADAPTIVE QP
SELECTION FOR HM
The use of DNN for video coding has now become pos-
sible for the video coding community. Liu et al. [45] and
Ma et al. [46] have presented case studies on deep
learning-based video coding. Several researchers such as
Choi and Bajic [47] studied a deep learning-based frame
prediction using decoded frames to predict the textures of a
block. It performs both uni- and bi-directional predictions at
various distances from a target frame. Ki et al. [48] developed
a JND model based on deep learning for the assessment of
perceptual distortion in HEVC. Li et al. [49] proposed a
DNN-based rate control for Intra coded pictures in HEVC
that is designed to predict the parameters of the R − λ rate
control model. Other studies have successfully revealed the
benefits of deep learning for video encoding. However, it is
still difficult to find one specific deep learning method for a
perceptual adaptive QP. In this paper, we present a perceptual
adaptive QP based on a predefined VGG network for HEVC.

III. PROPOSED ALGORITHM FOR PERCEPTUAL
ADAPTIVE QP SELECTION FOR HEVC ENCODER
The main objective of the proposed algorithm is to achieve
significant bitrate savings without inducing noticeable visual
distortions in reconstructed video frames. We first observed
the current setting of the QP − λ relationship in HEVC,

as shown in (3). The two main factors involved are the
QPfactor and QP value. Frame-level QP decision in HM-16.20
is determined with the same QP offset for multiple frames
in the same temporal ID layer, while the QPfactor denotes
for the coding structure parameter is always set static as
0.57, regardless of frame or slice types and coding structures.
In HEVC, the different frames form a set of hierarchical
structures within a group of pictures, GOP. For example,
frames at a higher temporal layer in the same GOP can be
predicted from one or more frames at the lower temporal
layers. Therefore, giving only the default value of QP off-
set and QPfactor to generalize different frames and coding
structures is not perceptually wise for HEVC encoders. Both
spatial and temporal features could be sufficient to resolve the
issues. However, most of the existing adaptive QP methods
mainly concentrate only on one of both elements. In this
paper, the proposed algorithm demonstrates visual feature
extraction based on a particular convolutional layer of a DNN
model for a frame-level adaptive QP. We consider both the
spatial and temporal features to generate the adaptive QP and
QPfactor decision for the proposed algorithm.

Fig. 1 depicts the whole process of the proposed algorithm.
As shown in Fig. 1, the proposed algorithm is embedded
in the HEVC encoder. The proposed algorithm is processed
during the slice initialization. Depending on the slice or frame
types, the QP value and QPfactor are determined adaptively.
Fig. 2 shows the detailed process of the proposed algorithm.
For the first frame in a sequence, the proposed algorithm
is designed in a straightforward manner by considering the
standard deviation values of the original frame to decide
upon a QP value and set QPfactor as its default value. Then,
a pretrained VGG-16 model is employed to extract visual
features from the original and reconstructed frames to predict
the QP and QPfactor for consecutive frames. The designed
visual features result in a perceptual loss value based on
the Euclidean distance measure, VGGfeature. The QP and
Lagrange multiplier values based on VGGfeature are then
adaptively estimated by considering the picture types and
coding configurations in HEVC. A detailed discussion of
this section is divided into several sub-categories as follows.
Symbols and descriptions used in the proposed algorithm
of the adaptive frame-level perceptual QP for HEVC are
tabulated in Table 1.

A. GENERATION OF VISUAL FEATURES FOR THE
PROPOSED PERCEPTUAL ADAPTIVE QP ALGORITHM
We propose to adaptively adjust a perceptual QP value
per frame by employing a deep learning network, namely,
the VGG-16 network [50]. The proposed algorithm employs
a pretrained VGG-16 model to construct high-level feature
descriptors using a specific convolutional layer. We select
VGG-16 for this study due to some of its desirable charac-
teristics. VGG-16 is widely recognized for its remarkable
performance on image classification, which classifies over
14 million images to 1000 categories. It has a better image
classification accuracy than the AlexNet model [51]. It has
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FIGURE 1. Block diagram of the proposed perceptual adaptive QP.

FIGURE 2. Overall flowchart of the proposed perceptual adaptive QP.

a straightforward architecture that is constructed simply by
stacking convolution, pooling, and fully connected layers
without branches or shortcut connections to reinforce gradi-
ent flow. Such a design is versatile and adaptable for different
practical purposes. Besides, the VGG-16 has an extremely

deep convolutional layer design used to train on an enormous
and manifold image dataset, which results in convolution
filters that are well suited to search universal patterns and gen-
eralize them. It is also widely applied as a feature extraction
technique in many computer vision solutions [52], [53]. For
the same reason, the proposed algorithm also takes advantage
of the VGG-16 convolution layers only for visual feature
extraction. In this paper, a simplified VGG-16 network is
employed by removing the latest pooling and fully connected
layers, as depicted in Fig. 3. In the figure, h and w represent
the height and width of the input 64×64 CTU block, respec-
tively. Fortunately, the VGG network can handle any input
block size, as long as h and w are multiplication of 32. Hence,
the CTU block size can be used directly without necessary
prior processing. By examining the visualization of convo-
lution filters and trial–and–error experiments, we selected
‘block5conv1’, which is the first-fifth convolution layer to
build general features for the proposed algorithm. The ‘pool5’
layer is initially included in the network. However, it is nei-
ther considered for the algorithm nor included in the figure.
The ‘pool5’ layer is commonly affected by specific classifi-
cation objects, which is not favorable for the detection of gen-
eral features. We mainly consider the generalizability of the
VGG network, and thereby, the proposed feature descriptors
can search for common and universal patterns.

For better features with HVS consideration, we introduce
a perceptual loss function with a full-reference visual quality
measure that uses the Euclidean distance. It is based on a
comparison of different feature maps extracted from original
and reconstructed blocks, as depicted in Fig. 4. The recon-
structed block fed to the network is derived after the in-loop
filter process. The figure shows that the same model of the
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TABLE 1. Symbols and descriptions used in the proposed perceptual
adaptive QP selection.

VGG-16 network is utilized for extracting those high-level
features. The Euclidean distance is preferred owing to its
simplicity in expressing VGGfeature as a perceptual loss value.
To do this, we first convert the color format of both the
original and the reconstructed CTU blocks to the RGB color
format. This process is suggested as a requirement of the
VGG-16 architecture. Then, the network can operate ade-
quately to obtain visual features from both input blocks. Once
a VGGfeature is generated, we then use it to determine the
QP value and QPfactor adaptively for the Lagrange multiplier
decision.

B. PERCEPTUAL ADAPTIVE QP DETERMINATION WITH
QP-λ RELATIONSHIP
From the formula in (3), the QP value per frame can be
derived. However, the λ value in HM-16.20, which represents
the Lagrange multiplier is decided later after the QP decision
is determined, while the QP value per frame is decided empir-
ically based on the HM configuration. Therefore, finding
a proper parameter for predicting a frame-level perceptual
adaptive QP is a challenging issue.

Generally, coding errors may propagate from the previous
frame to subsequent frames because of the prediction coding

scheme in video coding standards. In this study, the proposed
algorithm determines the frame-level QP for different picture
types by obtaining a perceptual loss value based on high-level
features from the original and previously reconstructed pic-
tures. With regards to the first frame in a sequence, the deter-
mination of a proper QP value is crucial as it will determine
the overall coding performance. However, having only an
original picture is not enough to provide a perceptual loss
value before the encoding. Hence, we examine whether the
standard deviation values (StD) of the original blocks can
demonstrate the characteristics of a complete picture for
frame-level QP decision. We activated rate control to observe
the different QP values of every CTU within the intraframe
using the ‘BasketballPass’ test sequence with QP 22, 27, 32,
and 37. Subsequently, a relationship between QP and StD is
presented in Fig. 5. A lower StD, which reflects a flat region,
tends to have a higher QP, vice versa. Therefore, we can
expect some coding gain with lower visual quality depres-
sion in this area. However, applying the StD value directly
to vary λ over the QPfactor may lead to high coding loss
performance. Therefore, the QP decision in this algorithm is
adjusted by firstly normalizing the pixel value of every CTU
block in a frame before calculating StD and disregarded the λ
and QPfactor for QP decision. Then, the QP of the first frame
can be more visual-friendly provided and can be expressed
as:

QP0 = QPinit − 3 log2 (StDintra) (4)

StDintra =
1
N

N∑
i=1

σi (5)

σi =

√√√√√ 1
M

M∑
j=1

(xj − µi)2 (6)

where QP0 denotes the QP value of the first frame in a
sequence, and QPinit represents the initial QP value set by
the encoder. Since we design the proposed algorithm in CTU
wise, the final picture characteristic of the first frame is
decided based on the StDintra value, which is the average
StD of the total number N of the original CTU blocks in an
Intra frame. Thus, the symbols σi and µi become the StD and
mean values of the original i−th CTU block, respectively.M
denotes the total number of pixel values xj.

For the rest of the frames, the quality of the reconstruction
frames is generally influenced by a previously coded frame
with a certain QP value. In this study, instead of analyzing
the distortion of two consecutive frames, we investigate the
distortion of VGG features for determining a proper QP
value perceptually. Note that the proposed VGG features are
extracted from the original and reconstructed frames based on
theVGG-16model. Therefore, the distortion of VGG features
of two consecutive frames can be expressed as

DVGGpre = f
(
DVGGref

)
(7)
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FIGURE 3. Proposed double-simplified VGG-16 network architecture.

FIGURE 4. Proposed double-simplified VGG-16 network architecture.

where DVGGpre is the VGG feature distortion of a predicted
frame,DVGGref denotes the VGG feature distortion of a refer-
ence frame, and f (·) is the relationship between DVGGref and
DVGGpre.

Fig. 6(a) shows the VGG feature distortion relationship
between two consecutive frames of the ‘BasketballPass’ test
sequence. The sequence is encoded under LDP configuration
with the coding structure of I-P-P-P-P. Each P frame uses only
its previous coded frame as a reference. We set the predicted
frame with a fixed QP value of 32 and encoded the first
15 frames. It can be seen that DVGGref influences DVGGpre.

A further experiment was also conducted with rate control
enabled to support the observations. Fig. 6(b) shows a high
correlation between the VGG feature and QP selection per
frame. Accordingly, the QP decision for the rest of the frame
can be determined by considering the picture types as in (8).

The QP decision for a future intra picture can be deter-
mined by using the VGGfeature from a previously intra coded
picture. With regards to the QP decision for P- and B- frames,
we control QPinit with 1pQPFidi and 1bQPFidi depend-
ing on the hierarchical frame index i(Fidi) as shown
in Table 2. The values of1pQPFidi and1bQPFidi are derived
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FIGURE 5. Correlation between StD value of original blocks and QP
values.

FIGURE 6. Relationship of: (a) VGG feature distortion between reference
and predicted frames, and (b) VGG feature and QP selection.

empirically, which also corresponds to the coding structure
under the LDP and RA configurations, respectively. For
avoiding large fluctuations in quality between neighboring
frames, both 1pQPFidi and 1bQPFidi values for different
temporal levels should satisfy the conditions described in
(9)–(11), where QPOffsetModelScalei and QPOffsetModelOffseti are

derived as the default settings as in HEVC encoder configu-
rations organized depending on the frame index i. Values of
bothQPOffsetModelScalei andQPOffsetModelOffseti parameters can
be found as in Table 3.

QPperceptual =



QP0,
if I frame or slice, POC = 0

QPinit − 3 log2
(
VGGfeature

)
,

if I frame or slice, POC 6= 0
QPinit +1pQPFidi ,
if P frame or slice

QPinit +1bQPFid i ,
if B frame or slice

(8)

1pQPOffset = Clip(0.0, 3.0,1QPOffseti ) (9)

1bQPOffset =



Clip
(
0.0, 3.0,1QPOffseti

)
,

if Fid = 0
Clip

(
0.0, 3.0,1QPOffseti

)
,

if Fid = 1
Clip

(
0.0, 6.0,1QPOffseti

)
,

if Fid = 2
Clip

(
0.0, 7.0,1QPOffseti

)
,

if Fid = 3
Clip

(
0.0, 9.0,1QPOffseti

)
,

if Fid = 4

(10)

1QPOffseti = QPperceptual × QPOffsetModelScalei
+QPOffsetModelOffseti + VGGfeature (11)

C. PERCEPTUAL ADAPTIVE LAGRANGE MULTIPLIER
DETERMINATION WITH QP-λ RELATIONSHIP
For increased bitrate savings while maintaining the visual
quality of the proposed adaptive QP decision algorithm,
we also aim to determine the Lagrange multiplier by involv-
ing the proposed VGGfeature. Note that the Lagrange multi-
plier in HM-16.20 is assigned a static QPfactor value. Hence,
it is essential to provide an adaptive QPfactor designed for
different picture types and coding structures in HEVC.

1) QPfactor DECISION FOR I-FRAMES
First, we searched for the best QPfactor of intra coded
frames by assigning several constant values of equation (3)
through experiments using HM-16.20 under All Intra config-
urations. ‘BasketballPass’, ‘BQSquare’, ‘BlowingBubbles’,
and ‘RaceHorses’ were used with all the QP settings for
the experiment. Fig. 7 depicts the BD-rate based on SSIM
performance with the correspondingQPfactor values. It shows
an approximation of the optimum QPfactor for intra frames,
which lies in the range of 0.60 to 0.80 with a minimal
BD-BR-SSIM gain of approximately−0.2%, while the high-
est coding gain is approximately −0.5% given by QPfactor
as 0.65. Accordingly, the QPfactor for intra pictures can be
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TABLE 2. Initial of 1pQPFidi
and 1bQPFidi

for different Fid i .

TABLE 3. Default value of QPOffsetModelScalei
and QPOffsetModelOffseti

for different Fid i .

FIGURE 7. QPfactor decision and BD-rate-SSIM of intra coded frames.

determined as

IQPfactor =

 0.57, POC = 0
StDIntra + VGGfeature

2
, POC 6= 0

(12)

where IQPfactor must satisfy 0.57 ≤ IQPfactor ≤ 0.80, POC
denotes the picture order count, and VGGfeature is a percep-
tual loss value from the original and previously intra coded
pictures based on the VGG-16 model.

2) QPfactor DECISION FOR P-FRAMES
In the Inter picture coding framework under the LDP config-
uration, the quality of the reconstruction frames is generally
influenced by the coding structure factor (or QPfactor as
previouslymentioned). As a result, the distortion of one frame
with a certain QP value may affect both the visual quality
and RD performance of future frames in encoding order
according to the given QPfactor . Based on the previous obser-
vation illustrated in Fig. 6(a), the VGG feature of a predicted
frame DVGGpre increases linearly with the VGG feature of a

reference frame DVGGref . Note that the λ values among
different frames in the same GOP should be set differently,
although they are coded with the same QP value. Hence,
deciding the QPfactor for different frames in a different
temporal layer is desirable, and relationship in (7) can be
approximated as

PQPfactor = DVGGpre ≈ c× DVGGref + D
(I )
ref (13)

where PQPfactor stands for theQPfactor of P-frame, and c is the
linear coefficient, i.e., the slope of the approximated linear
distortion relationship between DVGGpre and DVGGref . D

(I )
ref

is added to the linear relationship to represent the feature
extraction of the reference frame coded under all intra mode.
The D(I )ref value in the proposed algorithm is used to maintain
gaps of bit distributions among inter-coded pictures in the
same GOP and set as

D(I )
ref =

StDintra
(GOPsize − Fid i)

(14)

where GOPsize and Fidi denote the GOP size for LDP, which
is set to 4 and the frame index listed in the same GOP,
respectively. An illustration of how PQPfactor is provided for
P-frames under the LDP coding structure can be seen
in Fig. 8. Then, the combination of (13) and (14) can be
expressed as

PQPfactor = DVGGpre ≈ c× DVGGref

+

(
StDintra

(GOPsize − Fid i)

)
(15)

Since DVGGREF is the same as VGGfeature for the perceptual
retention purposes in PQPfactor , (15) can be further adjusted as
in (16), where the parameter c is empirically set as 0.45 in
this study.

PQPfactor = c× Vggfeature +
(

StDintra
(GOPsize − Fid i)

)
(16)
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FIGURE 8. Example of the proposed adaptive QPfactor for LDP case.

3) QPFACTOR DECISION FOR B-FRAMES
For RA configuration, the QPfactor decision uses a similar
concept as those in the LDP case with further adjustments.
We first analyzed the hierarchical B coding structure under
RA configuration in the HEVC depicted in Fig. 9. Both the
coding distortion and visual quality of the higher temporal
layers are affected by those of the lower temporal levels. For
the first frame in a GOP coded as an I-frame, its coding
distortion and visual quality will depend only on the spa-
tial operation. However, those pictures coded as B-frames,
including the frame with temporal ID= 0 but not an I-frames,
need to be treated in Interframe fashionwith its corresponding
reference frames. Table 4 shows the POC difference between
the current POC and its reference pictures to their tempo-
ral ID. This algorithm is designed to enable proper feature
extraction for the coding frames. However, we used only the
reference frame nearest to the current coded picture in the RA
coding structure.

As we follow a similar concept in LDP configura-
tion, thus, the formula in (17) for the RA case can be

TABLE 4. Pattern of POC difference between the current POC and its
reference POCs.

expressed as

BQPfactor = ci × Vggfeature +
(

StDintra
(GOPsize − Tid i)

)
(17)

where BQPfactor represents the QPfactor for the B-frame, and
VGGfeature denotes the VGG feature extraction of the refer-
ence frames. StDintra is given from the I-frame depending on
the intra period of each sequence configuration. GOPsize is
the GOP size of the RA case, which is set to 16, and Tid i
is the temporal ID of frames in the same GOP. Parameter ci
is a constant value of the i−th temporal ID that determines
the BQPfactor of each frame in different temporal IDs. We first
searched the best c per Tid i empirically with the default QP
setting as in HM-16.20. Fig. 10 depicts the results of the BD-
BR-SSIM with the selected c values for different temporal
IDs. The ‘BasketballPass’ and ‘RaceHorses’ test sequences
are used for testing all the QP settings. According to Fig. 10,
it can be seen that the optimum c values for temporal
ID-1 (T_1) is 0.20, and for T_2 to T_4 have the best c values
0.30, 0.40, and 0.42, respectively. In this test, the ci values
increase with the temporal IDs; hence, we set the c values
as 0.12 for the Interframe having temporal ID = 0. Accord-
ingly, the c values for different temporal ID in (17) can be

FIGURE 9. Hierarchical B coding structure under RA configuration.
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FIGURE 10. c parameter decision for each Tid i under RA configuration.

expressed as:

ci =



0.12, if Tid = 0 and POC 6= 0
0.20, if Tid = 1
0.30, if Tid = 2
0.40, if Tid = 3
0.42, if Tid = 4

(18)

IV. EXPERIMENTAL RESULTS
The test configuration used for evaluating the proposed algo-
rithm is listed in Table 5. Coding efficiency evaluation was
performed under a common test condition for HEVC [32]
with the SSIM term [54]. In addition, subjective evaluation
was done using the difference mean opinion scores (DMOS).
The assessments were conducted by comparing the proposed
algorithm against HM-16.20 as an anchor software and also
against other existing works [40], [42].

TABLE 5. Experimental environment.

A. CODING PERFORMANCE EVALUATIONS
We conducted several evaluations of the coding performance
to assess the objective quality of the proposed algorithm.
All the objective quality measures are tabulated in Table 6.
First, we checked the SSIM difference, 1SSIM between the
proposed algorithm and the anchor. It is defined by

1SSIM = SSIMPRO − SSIMHM (19)

where SSIMPRO and SSIMHM denote the luma SSIM qual-
ity of the proposed algorithm and the anchor, respectively.
For (19), a negative value means that the SSIM quality of the

proposed algorithm is worse than that of HM-16.20. We also
evaluate the bitrate reduction, 1Bitrate towards the anchor
software, which can be denoted by

1Bitrate =
(
RPRO − RHM

RHM

)
× 100% (20)

where RPRO and RHM represent the output bitrate of the
proposed and anchor algorithms, respectively. The proposed
algorithm is also evaluated against the anchor in BD-BR with
the SSIMmetric (BD-BR-SSIM) [54], [55]. For bitrate reduc-
tion and BD-BR-SSIM measures, a negative value indicates
gains over the anchor. We used HEVC video test sequences
with the LDP and RA configurations for several QPs: 22, 27,
32, 37. As shown in Table 6, the proposed algorithm demon-
strates a very negligible SSIM degradation of approximately
−0.00541 and−0.00656 on average against HM-16.20 with-
out a perceptual adaptive QP method, respectively. In terms
of bitrate reduction, the proposed algorithm increases bitrate
saving, on average, by approximately−42.67% for LDP and
−33.93% for RA configurations over the HM-16.20. For the
‘BQTerrace’ test sequence, the proposed algorithm achieves
the highest bitrate reduction of −66% for the LDP case and
−48% for the RA case. Note that the sequence has large flat
regions over its frames that benefit the proposed algorithm
both spatially and temporally. In terms of the coding effi-
ciency, the proposed algorithm yields better BD-BR-SSIM
scores than the anchor about−20.68% and−14.27% for LDP
and RA configurations, respectively. The proposed algorithm
can also simulate better performance for test sequences with
higher resolutions. In the case of LDP, Class B and Class E
provide an average coding gain of approximately −21% and
−28%, respectively. In the case of RA, Class A also gives a
coding gain of approximately −15%.

According to Table 6, the proposed algorithm can achieve
better objective performances under the LDP configuration
than RA. For the sake of visual quality, the number of intra
coded pictures in the LDP case indicates that the proposed
algorithm has an essential role in maintaining the quality of
the reconstructed frames. Better quality of the reconstructed
frames can provide better prediction modes for the future
inter coded frames, as well as better visual features for the
proposedQP and Lagrangemultiplier selections. Considering
both spatial and temporal visual features for the proposed
algorithm results in significant bitrate reduction while retain-
ing the visual quality of the test videos. For test sequences that
have many homogeneous regions, slow motions, and larger
background areas than the moving objects in a frame, the pro-
posed algorithm can play a prominent role in obtaining higher
objective measures. The visual characteristics of such test
sequences can be seen in ‘BQTerrace’, ‘Johnny’, ‘FourPeo-
ple’, ‘Cactus’, ‘KristenAndSarra’ videos, etc., in which the
most significant coding gains are obtained in perceptual
terms. On the other hand, the proposed algorithm can con-
tribute only moderate coding improvements for ‘Kimono’
and ‘RaceHorses’ that have more textures and fast or more
motions.
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TABLE 6. Objective quality comparisons between the proposed algorithm and HM-16.20.

TABLE 7. DMOS comparisons between the proposed algorithm and HM-16.20.

TABLE 8. Average of DMOS comparisons.

B. SUBJECTIVE PERFORMANCE EVALUATIONS
Subjective quality assessment was performed to compare
the proposed algorithm and HM-16.20 for all the test
sequences by following the double stimulus continuous
quality scale (DSCQS) method [55]. There are 18 observers
among which 11 are in the relative field, and the rest are naïve
in image processing. Before the test, we conducted simple
demonstrations for the observers to introduce the evaluation

process. For each participant, the reconstructed frames from
the proposed algorithm and HM-16.20 were randomly shown
twice with all the QP values. Then, the observers were asked
to provide MOS values in the continuous scale ranging from
1 to 5. Finally, we processed the MOS values to produce the
DMOS scores betweenMOSPRO andMOSHM , which denotes
the luma MOS quality of the proposed algorithm and the
anchor, respectively. DMOS scores are defined by

DMOS = MOSpro −MOSHM (21)

Table 7 shows the DMOS of all the test sequences under
LDP and RA configurations. For convenience, we introduced
the average of DMOS per each sequence for all the QP values
to see visual quality judgments of the generated reconstruc-
tion frames. Minus values indicate that the video quality of
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TABLE 9. BD-rate-SSIM comparisons of the proposed algorithm and other existing algorithms.

FIGURE 11. DMOS comparisons of Xiang’s, Yeo’s, and the proposed algorithms.

the proposed algorithm is subjectively worse than that of the
anchor ones. As presented, DMOS scales for the entire test
sequences are quite close to 0. It means that the proposed

algorithm can code nearly visually identical output over
those by HM-16.20. For several video sequences, as shown
in Table 7, the visual quality of the proposed algorithm is even
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slightly better than that of the anchor, such as in ‘PeopleOn-
Street’, ‘BQTerrace’, ‘BQMall’, and ‘BQSquare’, primarily
when they are generated under the RA coding structure. This
similarity in video quality between the proposed algorithm
and HM-16.20 can be seen for all the video sequence classes.
We can see that the proposed algorithm degrades visually
based on the DMOS test very slightly compared to its anchor,
by only about −0.05 and −0.04 for LDP and RA configura-
tions, respectively, as shown in Table 8.

C. COMPARISONS WITH EXISTING ALGORITHMS
After we presented both objective and subjective comparisons
between the proposed algorithm and HM-16.20, we can
conclude that the perceptual adaptive QP at the frame-level
demonstrates its capability to maintain visual quality with
better coding efficiency performances in the perceptual
term. In this sub-section, we present the same compar-
isons (objective and subjective comparisons) of the proposed
algorithm against other existing algorithms. Table 9 shows
the SSIM-based BD-rate comparisons of Yeo et al. [40],
Xiang et al. [42], and the proposed algorithms. As both
existing algorithms were integrated into HM-16.0, we also
implemented the proposed algorithm in the same software
version tomeet fair comparisons. As shown in Table 9, we can
see that the proposed algorithm in the downgraded version
can still outperform two existing algorithms in perceptual
coding efficiency. Overall, we can achieve a coding gain
of approximately −14.44%, while Xiang’s and Yeo’s are
−4.51% and −3.56%, respectively. Note that all the pre-
sented results in Table 9 were generated under random-access
configuration with all the quantization parameter values.

Furthermore, we also performed the MOS test to eval-
uate the subjective visual quality of all the algorithms.
Fig. 11 presents the average DMOS results of Xiang’s, Yeo’s,
and the proposed algorithms in the RA structure. The per-
formance of the baseline, which refers to the HM software,
is set to zero for the visual similarity evaluation of the three
algorithms. DMOS scores that are close to the zero baseline
indicate visual similarity to the anchor. From the experi-
mental results, most of the test sequences tested under the
proposed algorithm can stand more DMOS points closer to
zero, followed by the Xiang’s and Yeo’s algorithms. This
means that the proposed algorithm can give better quality
subjectively than the two existing algorithms.

V. CONCLUSION
In this work, we propose a perceptual adaptive QP algo-
rithm at the frame-level to obtain better subjective coding
performance for HEVC. The proposed algorithm utilizes a
predefined model of the VGG-16 network for feature extrac-
tions from the original and previously reconstructed pictures.
We designed the proposed algorithm by developing a percep-
tual loss function based on the extracted features. The pro-
posed algorithm adaptively determines perceptual QP values
for different picture types of the hierarchical coding structure
in HEVC. Results of approximately−21% and−14% coding

gains in SSIM, are yielded by the proposed algorithm, com-
pared with the HM-16.20, for LDP and RA, respectively.
The subjective quality evaluation shows that the proposed
algorithm can produce comparable visual quality against the
anchor with significant bitrate-saving.
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