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ABSTRACT Our study introduces a drone routing problem in which drones fly to capture photos for
surveillance purposes after a disaster. The drones perform observations on nodes and edges representing
populated areas and road segments of a network from multiple altitudes. Each target node and edge requires
observation at least once with a certain required quality. When the drones fly at a relatively high altitude,
they can simultaneously capture low-quality photos and a large number of observed target nodes and edges.
However, high-quality photos and narrow observation areas can be captured from a relatively low altitude.
Each drone has a limited battery capacity and thus must return to the depot for battery replacement. This
study routes the drones to satisfy the required photo quality of all target nodes and edges while minimizing
the makespan of the surveillance by all drones. Our study is the first to examine a multiple-drone routing
problem while considering flight altitude-dependent observation quality, battery replacement, node and
edge combination, and minimizing the makespan. Our problem is formulated as a mixed integer linear
programming (MILP) model. Firefly and adaptive–reactive tabu search algorithms are proposed. The latter
outperforms the former and obtains better solutions than those in the MILP model for small-sized instances
within a given short computation time.

INDEX TERMS Adaptive–reactive tabu search, altitude, battery replacement, drone routing, firefly algo-
rithm, photo quality, surveillance.

I. INTRODUCTION
As a type of unmanned aerial vehicles (UAVs), drones are
used for various purposes, such as parcel delivery, surveil-
lance, and entertainment purposes. Many studies have been
conducted on technologies that support the drone operations,
such as wireless technologies for communications within
drones or between drones and the depot [1], [2], various
energy sources [3], [4], vision algorithms [5], cooperative
routing between ground vehicles and drones [6], and human–
drone interaction system [7].

In this study, a multiple drone point-and-arc-routing prob-
lem for post-disaster surveillance is introduced. Each target
node and edge requires observation by taking photos with
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a certain quality (e.g., low, medium, and high) using the
drones. The drones can conduct these observations from
points or arcs at any multiple altitudes [8], [9]. When the
drones fly at a relatively low altitude, they can capture high-
quality photos but can only perform observations within a
small range. Conversely, flying the drones at a high altitude
can only capture low-quality photos but enables the drones
to observe more target nodes and edges simultaneously. The
surveillance time can be minimized by performing the obser-
vations at appropriate altitudes, such as relatively low alti-
tudes to reduce the required travel times and high altitudes
to observe more target nodes and edges simultaneously and
reduce the number of points requiring visits.

The limited drone battery must be considered during obser-
vations. When the battery level is critical, a drone must return
to the depot to replace its battery before departing for its
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next travel. Generating drone routes that allow observing
more target nodes and edges is necessary for an effective
observation within a short time.

Our study is the first to examine the drone routing problem
at more than one altitude for node and edge observation, con-
sidering the required observation quality and battery replace-
ment. In our new routing problem, different drone flight
altitudes determine the captured photo quality. Our problem is
different from a well-known vehicle routing problem (VRP)
and arc routing problem, in which vehicles must directly
travel to any target node or edge. In our problem, multiple
observations of target nodes and edges are possible from a
single point visited by a drone.

Our problem is formulated as a mixed integer linear
programming (MILP) model. Firefly and adaptive–reactive
tabu search (ARTS) algorithms are developed to solve the
problem. The initial version of the firefly algorithm was
introduced to solve problems with continuous decision vari-
ables [10]. The effectiveness of the firefly algorithm has
been demonstrated in [11], which stated that it has a better
success rate than particle swarm optimization and genetic
algorithm. The algorithm was modified to solve discrete
problems, including scheduling problems [12]–[14], travel-
ling salesman problems [15], [16], and VRPs [17], [18].
The discrete version of the algorithm was shown to outper-
form ant colony optimization [12]. The firefly algorithm can
effectively search for new solutions because of the automatic
subdivision process [19]. During their movements, the fire-
flies are attracted to other brighter fireflies and form groups
of fireflies around local optimal points in the search space.
Reactive tabu search (RTS) that allows dynamically changing
the tabu list size has also been demonstrated to solve VRP
effectively [20]. The tabu list size is updated based on the
frequency a solution is found during the search. An adaptive
tabu search mechanism that stores good solutions in an elite
solution list was used in [21] to solve a capacitated VRP
effectively. In our study, we combine both approaches to
produce an effective algorithm. Our study introduces some
new operators in the proposed firefly and ARTS algorithms.

Our paper is organized as follows: Section II reviews
the previous studies. Section III formally defines the prob-
lem. Section IV presents an MILP model. Section V shows
the developed algorithms. Section VI establishes numerical
experiments. Finally, Section VII provides conclusions.

II. LITERATURE REVIEW
In the problem, the drone movements are organized to visit
the points and arcs in the network. Some drone routing
studies only focus on visiting points. Mufalli et al. [22]
studied a drone routing problem, in which the type of sensor
(e.g., infrared cameras, video recording devices, and radia-
tion detectors) for each drone is selected, and the surveil-
lance benefit for the entire fleet is maximized. Each sensor
provides different levels of benefits for the observation
but can also result in additional travel time reduction due
to its weight. A mathematical programming model and

three heuristics were proposed for the problem. Yakıcı [23]
addressed a problem of assigning drones to depots and rout-
ing them to maximize the total score obtained from the
visited points. An integer linear program and an ant colony
metaheuristic approach were developed. Coelho et al. [24]
discussed a drone routing problem to collect and deliver pack-
ages while considering seven different objective functions.
An MILP model was developed and solved in a meta-
heuristic framework. Chowdury et al. [25] studied a com-
modity transportation problem in a disaster-affected region,
in which optimal distribution center (DC) locations with
their service regions and ordering quantities of the DCs
were determined while minimizing the total distribution cost.
The required holding reorder costs are calculated given the
ordering quantities. A probability was given to each demand
node to assess the accessibility of each road after the dis-
aster. Murray and Chu [26] discussed a delivery problem,
in which trucks and drones collaboratively distribute parcels.
MILP formulations and heuristics were developed and tested.
Ha et al. [27] studied another parcel delivery problem using
trucks and drones, in which the total transportation and wait-
ing times of the vehicles were minimized. The problem was
formulated mathematically and solved using a local search-
based algorithm and a greedy randomized adaptive search
procedure (GRASP). Alotaibi et al. [28] studied a drone rout-
ing problem in a threated area, in which some targets require
visits. The objective was to maximize the number of visited
points while satisfying the limit of travel time and allowed
threat exposure for each drone. Some point candidates were
generated to avoid the threats, and a branch-and-cut-and-
price algorithm was proposed.

Studies that consider observations or travels through the
arcs of a network are classified into arc routing problems.
Damodaran et al. [29] conducted a study about a hierar-
chical Chinese postman problem and proposed a method to
determine lower bounds in a short time. Prins et al. [30]
developed a tour splitting algorithm to divide a giant tour
of all customers into shorter trips to solve a capacitated arc
routing problem. A GRASP and an iterated local search were
constructed to solve the problem. Liu et al. [31] discussed a
capacitated arc routing problem thatminimizes the total travel
costs. A memetic algorithm with local search was developed
for the problem. Chow [32] studied a drone routing problem,
which requires multiple visits on arcs. A deterministic arc-
inventory routing model was formulated, and an approximate
dynamic programming algorithm based on the Monte Carlo
simulation method was developed to solve the problem. Our
study differs from Chow [32] in that each arc is monitored
once to assess its current condition in our problem, whereas
each arc was observed continuously during each time interval
in Chow [32]. The drone routing problem differs from general
VRP in that it must consider battery-restricted travels, pay-
load weight impact on battery consumption [33], and possible
travels at more than one altitude. The battery or travel time
limit levels require measurements to assure the feasibility
of the travels. The factor of battery is also considered in an
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electric vehicle transportation system [34]. Different from all
studies above, our study considers drone visits to points and
arcs simultaneously.

To the best of the authors’ knowledge, studies about
drone observation at more than one altitude are few.
Symington et al. [35] conducted an actual experiment using
drones to detect a target from various altitudes. They showed
that the altitude affects the target presence detection result.
Goodrich et al. [36] developed a computer vision algorithm
to obtain a stabilized image using photos taken from various
altitudes by a drone. Waharte and Trigoni [8] suggested the
altitude limit at which drones fly. The drones started perform-
ing the observation from the highest possible altitude and
then reduced the altitudes to refine the target presence esti-
mation. They proposed heuristic algorithms including greedy
and Markov-based heuristics to perform search and rescue
operations using drones. Zorbas et al. [37] studied an optimal
drone placement tominimize the cost while assuring the com-
plete surveillance of all targets. An integer linear and mixed
integer nonlinear optimization models were formulated, and
some centralized and localized heuristics were presented.
Zhen et al. [9] studied an observation problem using multiple
drones at more than one altitude. Zhen et al. [9] performed
observations for the square area. The proposed method might
be unfit when a high-quality observation is required for a
long target arc because the arc might be excluded in the
defined area. In addition, if the target nodes and arcs are
located sparsely, too many areas that can cause extensive
computational time must be defined. By contrast, we observe
specific target nodes and edges. A target edge can be observed
by a drone that travels through an arc located right above
the target edge. Our study handles a multiple altitude drone
routing problem.

Our study is the first to examine a multiple-drone routing
problem at multiple altitudes for node and edge observation
while considering the required observation quality and drone
battery replacement that minimizes the makespan of drone
travel.

III. PROBLEM DEFINITION
During a post-disaster period, supplies must be delivered
from distribution centers to residential areas of the refugees
[38]–[40]. Accordingly, surveillance is conducted by taking
photos using several drones to assess the availability of the
supplies at the distribution centers, the magnitude of the
disaster at residential areas, the number of people in those
areas, and the possibility to use the roads and intersections.
A network (S, E) consists of S = {1, 2, . . . , s} and E =
{1, 2, . . . , e} that represent sets of target nodes and edges
at a disaster area requiring observation. The nodes in S are
distribution centers, residential area, and road intersections,
whereas the edges in E are roads connecting the nodes.
The target nodes and edges must be observed by capturing
their photos. Various levels of photo quality are considered
in our study. In previous studies, two levels of observation
quality [8] and more than two levels [9] were considered.

High-quality photos of important target nodes and edges
must be captured, such as distribution centers, large res-
idential areas, main roads, and important road intersec-
tions. Conversely, less important ones can be sufficiently
observed using low-quality photos. During the observation,
the required photo quality for each target node and edge must
be satisfied.

The drones perform observations while traveling on a net-
work (N , A), where N is the set of the depot and points,
and A is the set of arcs. A drone’s route consists of one
or more subroutes. When two altitudes are considered, each
subroute starts and ends at the depot represented with 0 and
2s + 1, respectively. The sets of drone observation points
at the low and high altitudes are Slow = {1, 2, . . . , s} and
Shigh = {s+1, s+2,. . . ,2s}, respectively. Observation points
in Slow and Shigh are located at the same horizontal positions
with target nodes on the ground. Slow and Shigh sets form a
set of observation points (Sobserve). A set of arcs (A) consists
of a set of arcs for observation at low altitude (Alow), a set of
arcs for observation at high altitude (Ahigh), arcs connecting
both depot indices, arcs connecting depot indices with each
observation point, and arcs connecting observation points at
different altitudes.

FIGURE 1. Instance and a feasible solution.

Fig. 1 shows an example of an instance and a feasible
solution. An observation from a relatively low altitude allows
the drones to observe less number of target nodes and edges,
whereas drone movements at a relatively high altitude enable
the drones to capture photos of more target nodes and edges.
For example, Fig. 1(a) shows that Nodes 3 and 5 and Edge
(3,5) can be observed from Point 3, whereas a wider area,
which contains Nodes 2, 3, and 5 and Edges (2,3), (2,5),
and (3,5) can be observed from Point 8, when assuming that
the required observation quality of those nodes and edges is
satisfied. Some target edges cannot be observed from any
point. In that case, drones must fly through arcs above the
target edges to perform the observation. Each flight of a drone
is limited by its battery level. The drone can continue per-
forming its next flight after returning to the depot to replace
its battery. The makespan of the observation is minimized
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while considering the battery status of the drones. Fig. 1(b)
presents a solution example consisting of two drone routes.

Our study considers the following assumptions:
1) All target nodes and edges require observation at least

once with the requested observation quality.
2) The time required to capture a photo is negligible.
3) Travel times between points in the drone network are

deterministic (wind effects are not considered).
4) No photo storage limits are set for the drones.
The drone observation problem can be stated as follows:
• Input (given data)

(a) Sets of target nodes and edges are provided. The
required photo quality for each node or edge is
known.

(b) A set of drones is provided. Each drone has the
same initial full battery level and can have the
same number of maximum subroutes.

(c) A set of directed arcs that can be travelled
by the drones is provided. The required travel
time through each arc and the reduced battery
level after performing travel through each arc are
known.

(d) The time required for battery replacement at the
depot is provided.

(e) Sets of nodes and edges that can be observed at
each point are provided.

(f) A set of edges that can be observed during drone
travel through an arc is provided.

• Output (decision)
(a) Route of each drone is determined.
(b) Arrival time of each drone in each travel at each

depot or point is determined.
(c) Visited points or travelled arcs that cover each

target node and edge are determined.
(d) Battery level of each drone in each travel at each

depot or point is determined.
• Goal (objective)

The total observation time (makespan) must be minimized.

IV. MILP MODEL
An MILP formulation is developed for the problem. The
parameters are as follows:

c number of flight altitudes
d number of available drones
l maximum possible number of subroutes per

individual drone
s number of target nodes
e number of target edges
aij required time for a drone to travel from stop

(depot or point) i to stop (point or depot) j
b battery replacement time at the depot
f0,k initial battery level of a drone for subroute

k at depot 0
gij reduced battery level for movement from

stop (depot or point) i to stop (point or
depot) j

The sets are as follows:

R set of individual drones, R ={1,2,. . . , d}
K set of all drone subroutes,K ={1,2,. . . ,D(=

l × d)}
S set of target nodes, S ={1,2,. . . , s}
E set of target edges, E ={1,2,. . . , e},

(q, y) ∈ E
No set of observation points at all altitudes,

No ={1,2,. . . , B(= c× s)}
N set of stops (depot and possible observation

points), N ={0, B+1}+No
A set of directed arcs for observation at all

altitudes
Oi set of target nodes covered (with the

required quality) when a drone performs the
observation at point i, i ∈ No, Oi ⊆ S

Pi set of target edges covered (with the required
quality) when a drone performs the observa-
tion at point i, i ∈ No, Pi ⊆ E

πij set of target edges covered (with the required
quality) when a drone performs the observa-
tion at arc(i, j), (i, j) ∈ A, πij ⊂ E

The decision variables are as follows:

uk 1, if subroute k is used for performing obser-
vation; 0, otherwise, k ∈ K

xijk 1, if a drone travels from stop i to stop j in
subroute k; 0; otherwise, i ∈ N\{B + 1},
j ∈ N\{0}, i 6= j

z the latest arrival time of drones at depotB+1
tik the arrival time of a drone in subroute k at

the depot or point i, i ∈ N , k ∈ K
fik the battery level of a drone in subroute k at

the depot or point i, i ∈ N , k ∈ K
αh 1, if node h is covered by any drone;

0, otherwise, h ∈ S
γih 1, if node h is covered by a drone observation

at point i; 0, otherwise, i ∈ No, h ∈ S
ßqy 1, if edge (q, y) is covered by any drone; 0,

otherwise, (q, y) ∈ E
wqy 1, if edge (q, y) is covered by a drone visit

to any point (with required quality); 0, oth-
erwise, (q, y) ∈ E

εiqy 1, if edge (q, y) is covered by a drone obser-
vation at point i; 0, otherwise, i ∈ No,
(q, y) ∈ E

mqy 1, if edge (q, y) is covered by a drone obser-
vation through any arc (with required qual-
ity); 0, otherwise, (q, y) ∈ E

The formulated MILP is as follows:

min z (1)

s.t.

γih ≥ xijk ∀i∈No, j∈N\ {0} , k∈K , h∈Oi (2)

γih ≥ xjik ∀i∈No, j∈N \{cs+ 1} , k∈K , h∈Oi (3)

44128 VOLUME 8, 2020



I. K. Singgih et al.: Node and Edge Drone Surveillance Problem

∑
k

(∑
j∈N\{0}

xijk +
∑

j∈N\{cs+1}
xjik
)
≥ γih

∀i∈No, h∈Oi (4)

γih = 0 ∀i∈No, h∈S − Oi (5)

αh ≥ γih ∀h∈S, i∈No (6)∑
i∈No

γih ≥ αh ∀h∈S (7)

εiqy ≥ xijk ∀i∈No, j∈N\ {0} , k∈K , (q, y)∈Pi (8)

εiqy ≥ xjik ∀i∈No, j∈N\ {cs+ 1} , k∈K , (q, y)∈Pi
(9)∑

k

(∑
j∈N\{0}

xijk +
∑

j∈N\{cs+1}
xjik
)
≥ εiqy

∀i∈No, (q, y)∈Pi (10)

εiqy = 0 ∀i∈No, (q, y)∈E − Pi (11)

wqy ≥ εiqy ∀ (q, y)∈E, i∈No (12)∑
i∈No

εiqy ≥ wqy ∀ (q, y)∈E (13)

mqy ≥ xijk ∀ (i, j)∈A, (q, y)∈πij, k∈K (14)∑
k

∑
(i,j);(q,y)∈πij

xijk ≥ mqy ∀ (q, y)∈E (15)

βqy ≥ wqy ∀ (q, y)∈E (16)

βqy ≥ mqy ∀ (q, y)∈E (17)

wqy + mqy ≥ βqy ∀ (q, y)∈E (18)

αh ≥ 1 ∀h∈S (19)

βqy ≥ 1 ∀ (q, y)∈E (20)∑
j∈N\{0}

x0,j,k = 1 ∀k∈K (21)

∑
i∈N\{cs+1}

xi,cs+1,k = 1 ∀k∈K (22)

∑
i∈N\{cs+1}

ximk −
∑

j∈N\{0}
xmjk = 0

∀k∈K , m∈No (23)∑
i∈N\{0,cs+1}

∑
j∈N\{0}

xi,j,k ≥ uk ∀k∈K (24)

xi,j,k ≤ uk ∀i∈N\ {0,cs+ 1} , j∈N\ {0} , k∈K (25)
tik + aij ≤ tjk +M

(
1− xijk

)
∀i∈N\ {cs+ 1} , j∈N\ {0} , k∈K (26)
z ≥ tcs+1,k ∀k∈K (27)
fik − gij ≥ fjk −M

(
1− xijk

)
∀i∈N\ {cs+ 1} , j∈N\ {0} , k∈K (28)
tcs+1,r+wd + ur+(w+1)db ≤ t0,r+(w+1)d
∀r∈R, w∈ {0, 1, . . . ,l − 1} (29)
fik ≥ 0 ∀i∈N , k∈K (30)
αh, uk , xijk ,mqy,wqy, βqy∈ {0, 1}
∀h∈S, ∀k∈K , ∀i, j∈N , ∀ (q, y)∈E (31)
γih, εiqy∈ {0, 1} ∀i∈No, h∈S, (q, y)∈E (32)

The objective function (1) minimizes the total time
required to perform observations of all nodes and edges.
Constraints (2)–(7) check whether target nodes can be
observed from each observation point at its altitude.

Constraints (8)–(18) confirm whether target edges are
observed from each observation point or arc at its alti-
tude. Constraints (2)–(7) and (19) ensure that each node is
observed by at least one drone. Constraints (8)–(18) and (20)
enforce that each edge is observed by at least one drone.
Constraints (19) and (20) restrict that each target node and
edge must be observed and the photo quality must be satis-
fied. Constraints (21) and (22) indicate that each drone should
start and complete its travel at the depot. Constraints (23)
are the flow conservation constraints. Constraints (24)–(25)
identify whether or not subroute k is used to perform the
observation. Constraints (26) update the arrival time of drone
k at the depot or point j if the drone travels from the depot
or point i to the depot or point j. Constraints (27) obtain
the completion time of all drone operations. Constraints (28)
measure the battery level of drone k after its travel from depot
or point i to depot or point j. Constraints (29) ensure that
the next departure time of drone k is larger than its previous
arrival time at the depot and its required battery replacement
time. Constraints (30) assure that the drone battery capacity
is not violated. Constraints (31)–(32) are binary variable
constraints.

The drone surveillance problem is NP-hard.
Its NP-hardness can be easily proven via ‘‘proof by restric-
tion.’’ Garey and Johnson [41] state that

Proof by restriction is the simplest, and perhaps
most frequently applicable, of our three proof types.
An NP-completeness proof by restriction for a given problem
L∈NP consists simply of showing that L contains a known
NP-complete problem L as a special case.

If we restrict the drone surveillance problem as follows,
then the resulting special case is the same as the travel-
ing salesman problem, which is a well-known NP-complete
problem.
E = ∅
Oi = {h}, ∀i ∈ No, point i is the only corresponding
observing point of target node h
c = 1
d = 1
l = 1
f0,k = large number

FIGURE 2. Example of a solution.

V. PROPOSED ALGORITHMS
We propose firefly and ARTS algorithms to solve the prob-
lem. Both algorithms represent a solution in a sequence of
point indices as shown in Fig. 2. In the following examples,
two altitudes are considered. Point 0 represents the depot,
Points 1–5 are points located at the lower altitude of the
drone network, and Points 6–10 are points located at the
higher altitude. Two adjacently placed points form an arc;
for example, arc (0, 8) is constructed from points 0 to 8 and
is traveled by the drone. For each travel order, the subroutes
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of the drones are constructed. For example, Fig. 2 shows the
first subroute of drone 1 (0, 8, 2, 4, 11), first subroute of drone
2 (0, 5, 2, 1, 11), second subroute of drone 1 (0, 3, 1, 4, 11),
and second subroute of drone 2 (0, 1, 5, 11).

An initial population generation procedure (Algorithm 1)
is used in both firefly and ARTS algorithms. The definitions
of the notations are the same as those in Section IV.

Initially, pop solutions are generated. To generate
each solution, we assign points and arcs into subroutes
(Steps 3–18), which will eventually be assigned to the drones
(Step 19). Points and arcs are greedily assigned to subroutes
(Steps 4–17). When there are d drones available, d sub-
routes are generated simultaneously (Step 3) at each iteration.
We consider the balance of total travel times of the subroutes
in each d number of subroutes to minimize the makespan.
A point or arc is selected based on the additional number
of observed target nodes and edges and the required addi-
tional travel time to insert them into the subroutes (Step 9).
A point or arc insertion has a high probability if more new
nodes and edges can be observed and the required additional
travel time is less. The values are normalized to assure fair
considerations of both factors. The selected point or arc is
inserted into a subroute that can minimize the completion
time measured between subroutes in the considered group
(Step 12). When insertion is no longer possible, we continue
filling subroutes in the next group (Step 7). At the end of
all possible point and arc insertions, if all nodes and edges
are observed, then subroutes are assigned to the drones
(Step 19). Prior to assigning the subroutes to the drones,
we run remove_unnecessary_observations procedure to
remove unnecessary visits that cause redundant observations
of nodes and edges (Step 18). At the end of Algorithm 1,
the feasibility of a generated solution is guaranteed.

In the remove_unnecessary_observations procedure,
we continuously check whether any point or arc must be
visited. Every visited point or arc is checked whether it can
be removed. If the removal of a visited point or arc does
not affect the solution feasibility; that is, all the target nodes
and edges remain covered, and the effect of the removal is
calculated. Then, the best removal with the largest travel time
reduction is selected. The removal process is repeated until a
candidate for removal can no longer be found.

Sections V.A and V.B propose the firefly and ARTS
algorithms, respectively. In the algorithms, some opera-
tors are used to produce new solutions (e.g., higher alti-
tude point insertion, subroute combining, inversion, removal,
and arc-swapping operators) during the search for better
solutions. New produced solutions are modified further
(through a solution_modification procedure) as follows:
Step 1: Multiple visits of a point within a subroute are
removed. In this problem, a point can be visited at most
once in each subroute. This characteristic is represented
by variables fik and tik that are defined in Section IV.
Thus, in Step 1, duplicated points in each subroute are
checked. If a point is visited more than once within a sub-
route, then subsequent occurrences of the point are removed.

Algorithm 1 Initial Solution Generating Algorithm
1 : for a = 1 to pop do
2 : initialize: set of observed target nodes (S’) = Ø

and set of observed target edges (E’) = Ø
3 : generate d empty subroutes from depots {0, cs+1}
4 : while any_target_node_or_edge_is_unobserved do
5 : insert each unvisited point or arc that can be
inserted

into any subroute and can observe any
new target node or edge into cand_pointarc

6 : if cand_pointarc = Ø then
7 : proceed to Step 4
8 : else
9 : select the best subroute for each point or arc j

in cand_pointarc assuming it is inserted at the
end of the subroute, and calculate the score of
j as follows:

scorej=

(
additional number of observed nodes or edges after adding j

total number of nodes and edges

)
(

makespan in group
maximum time length of one travel

)
10: calculate the selection probability of each j

as follows: probj =
scorej∑

kεcand_pointarc scorek
11: m: = randomly select a point or arc from

cand_pointarc with the probability of Step 10
12: select the subroute that minimizes the longest

subroute duration into which m is inserted
13: add m into selected subroute
14: update the current battery level and total travel

time for the selected subroute, S’, and E’
15: if S’: = St and E’: = E then proceed to Step 18
16: end if
17: end while
18: run remove_unnecessary_observations procedure
19: assign nonempty subroutes to the drones using the

Longest Processing Time rule for Pm ||Cmax problem
in [42]

20: end for

Step 2: Redundant observations of any target node or arc
are removed using remove_unnecessary_observations pro-
cedure. Step 3: Battery capacity violation in any subroute is
resolved by removing the last point (repeatedly if needed)
at the end of each subroute. Step 4: If any target node or
edge remains unobserved, additional points or arcs are added
(Steps 4–17 in Algorithm 1). Step 5: Subroutes are reassigned
to the drones using the Longest Processing Time rule for the
Pm ||Cmax problem in [42].

At the end of the solution_modification procedure, a fea-
sible solution may be produced. If a feasible solution cannot
be produced after applying the operators, then the process
of generating the new solutions is repeated until a feasible
solution is obtained.

A. FIREFLY ALGORITHM
In the algorithm, multiple fireflies simultaneously search
within the solution space to effectively determine
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Algorithm 2 Higher Altitude Point Insertion Operator
1 : insert each point, which is not at the lowest altitude and

appears more times in the reference firefly j than the
current firefly, into a set of points (NLA1)

2 : while NLA1 is not empty do
3 : for each point l in NLA1do
4 : POl : = set of points and arcs in firefly i that

become unnecessary to visit if point l is inserted
into firefly i

5 : numl : = number of points in POl
6 : timel : = reduced travel time after replacing POl

with l
7 : if numl = then remove l from NLA1
8 : end for
9 : if NLA1 is empty then break
10: calculate the score of each point l in NLA1 as
follows:

scorel =

(
numl

total number of points in firefly i excluding depots

)
(

timel
total travel time of firefly i

)
11: calculate the selection probability of each point l as

follows: probl =
scorel∑

oεNLA1 scoreo
12: n: = randomly select a point in NLA1 with

probability
13: remove n from NLA1
14: replace POn in firefly i with n
15: end while

good solutions. The three main rules considered in the algo-
rithm [17], [18] are as follows:
• All fireflies are unisex; thus, a firefly can be attracted to
another firefly regardless of its sex.

• The attractiveness level of a firefly is determined by its
brightness. For any pair of fireflies, the less bright firefly
will fly toward the brighter one. The attractiveness level
is decreased as the distance between fireflies increases.
If no brighter firefly exists, then the considered firefly
flies randomly.

• The brightness of a firefly is affected by the landscape
of the objective function of the considered problem.

Fireflies move based on some improvements (called move-
ments on most firefly research papers) and mutation opera-
tors [15]. Improvement operators are used to generate new
better solutions by moving the selected firefly toward a
reference firefly. A firefly j is selected as a reference for
firefly i if firefly j has a better objective value than firefly i.
Mutation operators are used to modify a solution when no
reference firefly can be found.

We propose two types of improvement operators (higher
altitude point insertion and subroute combining) and two

Algorithm 3 Subroute Combining Operator

1 : given SUBik = k th subroute in firefly i, SUBjk = k th

subroute
in firefly j, ALLSUBi =

⋃D
k=1 SUBik , ALLSUBj =⋃D

k=1 SUBjk , and ALLSUB= ALLSUBi+ ALLSUBj,
calculate the score of each subroute m in ALLSUB as
follows:

scorem =

(
number of observed nodes or edges in subroute m

most number of observed nodes and edges in one subroute of fireflies iand j

)
(

total travel time of subroute m
longest total travel time of one subroute in fireflies i and j

)
2 : calculate the selection probability of each subroute m as

follows: probm =
scorem∑

oεALLSUB scoreo
3 : suppose that NEWSUBk is k th subroute of a new route,

k = 1, . . . ,D
4 : while any NEWSUBk is empty do
5 : n: = randomly select a subroute in ALLSUB

with probability
6 : m: = index of subroute n in firefly i or j
7 : if selected subroute n belongs to reference firefly j

or (NEWSUBm is empty and the selected subroute
n belongs to reference firefly i) then

8 : NEWSUBm: = selected subroute n
9 : end if
10: remove the selected subroute n from ALLSUB
11: end while

types of mutation operators (inversion and removal). Each
operator is thoroughly explained as follows. In the higher
altitude point insertion operator (Algorithm 2), points (not
at the lowest altitude in reference firefly j) are selected to
replace some points in firefly i if the same target nodes
and edges can be observed and the subroute travel time is
reduced. In the subroute combining operator (Algorithm 3),
we copy good subroutes of fireflies i and j to produce a
new solution. Good subroutes observe an additional num-
ber of target nodes and edges but have shorter total travel
times than the other subroutes. In the inversion operator,
two random positions in a firefly are selected, and then the
points between the selected positions are reversed. In the
removal operator, we remove points from a firefly that cause
a larger travel time reduction and observe less number of
target nodes and edges. The number of points to remove is
randomly chosen between [1, length of the firefly]. In each
operator, we normalize the travel time or the number of the
target node and edge factors when calculating the scores of
point, arc, or subroute candidate during the selection. For the
removal operator, given j as position index of each point in
the firefly (excluding the depots), the score of each point at
position j is calculated as scorej, shown at the bottom of the
previous page, scorej is set to 0 if the denominator equals to

scorej =

(
reduced travel time if point in position j is removed
longest total travel time of one subroute in firefly i

)
(
number of observed nodes or edges from point j, arc (j−1, j), and arc (j, j+1) if exist

most number of observed nodes and edges in one subroute of firefly i

)
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FIGURE 3. Example of higher altitude point insertion operator.

FIGURE 4. Example of subroute combining operator.

FIGURE 5. Example of inversion operator.

FIGURE 6. Example of removal operator.

0. The probability for removing point j is calculated based
on scorej. Figs. 3–6 show examples of improvement and
mutation operators.

After performing an operator, the solution_modification
procedure is executed to produce a feasible solution.
Algorithm 4 presents the proposed firefly algorithm.

A firefly represents a feasible solution. In the firefly algo-
rithm, many solutions that represent the movements of mul-
tiple fireflies are generated. The movements of a number
of fireflies (pop) are considered simultaneously within an
iteration. In the proposed firefly algorithm, the Tc number of
iterations is considered.

Initially, we generate fireflies for the initial population
(Step 1). In each iteration, we consider the movement of
each firefly i to find better solutions. During its movement,
the firefly searches for a reference firefly (the brightest
firefly) with a better objective value of the problem (Step 5)
and moves toward it (by applying an improvement operator)
(Steps 7–11). If no reference firefly can be found, then the

firefly moves randomly through the application of a mutation
operator (Steps 13–18).

Prior to searching for a reference firefly j for firefly i,
an improvement operator is randomly selected among the
higher altitude point insertion and subroute combining oper-
ators (Step 4). Among all fireflies with better makespan than
firefly i, we select a reference firefly with the highest attrac-
tiveness (Step 5). The attractiveness between both fireflies is
calculated using Equations (33)–(36).

r =
p′

np′
×10 (33)

r̄ =
p+ a
np+ na

×10 (34)

θ = θ0e−δr
2

(35)

θ̄ = θ0e−δr̄
2

(36)

Equations (33) and (34) are used to calculate the distances
between a reference firefly j and firefly iwhen higher altitude
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Algorithm 4 Firefly Algorithm
pop size of population
Tc number of iterations
v number of moves per firefly
Ui set of fireflies generated from firefly i
f_best objective value of the best solution
max_same_sol allowed number of the same consecutive

solutions
1 : generate pop initial population of fireflies using

Algorithm 1 (i = 1, 2, . . . , pop)
2 : for a = 1 to Tc do
3 : for i = 1 to pop do
4 : insert firefly i into Ui selected firefly: = null

selectmove: = a randomly selected improvement
operator (with equal selection probability for each
operator)

5 : run select_the_reference_firefly j for firefly i
6 : if firefly j 6= null then
7 : while n(Ui) < v+ 1 do
8 : newFirefly: = a firefly produced by moving

firefly i to firefly j using selectmove
9: apply solution_modification procedure to

newFirefly
10: if newFirefly is feasible then

insert the solution into Ui
11: end while
12: else
13: selectmutate: = a randomly selected mutation

operator
14: while n(Ui) < v+ 1 do
15: newFirefly: = a firefly produced by mutating

firefly i using selectmutate
16: apply solution_modification procedure to

newFirefly
17: if newFirefly is feasible then

insert the solution into Ui
18: end while
19: end if
20: select the best firefly in Ui to replace firefly i
21: end for
22: if f_best does not change in max_same_sol then stop
23: end for

point insertion and subroute combining operators are applied,
respectively, whereas Equations (35) and (36) are used to
calculate the attractiveness level between the fireflies based
on the distances. Parameter np’ refers to [the number of points
in firefly j that are not in the lowest altitude (NLA2 points)],
p’ to [the number ofNLA2 points that do not exist in firefly i],
r to [the distance between fireflies i and j], and θ to [the
attractiveness level between fireflies i and j based on the
distance r]. Parameter np refers to [the number of points in
firefly j], na to [the number of arcs in firefly j], p to [the
number of points that exist in firefly j but not in firefly i],
and a to [the number of arcs that exist in firefly j but not

in firefly i]. Variable r̄ refers to [the distance between both
fireflies] and variable θ̄ to [the attractiveness level between
fireflies i and j based on distance r̄].

When calculating the distance of the higher altitude point
insertion operator (Equation 33), we only assess the number
of NLA2 points because we insert those NLA2 points when
applying the operator.We count the number of points and arcs
regardless of their altitudes when calculating the distance of
the subroute combining operator (Equation 34) because we
deal with all points and arcs when applying the operator.

Parameter θ0 refers to [the attractiveness level between
fireflies i and j when the distance equals to 0] and δ to [the
light absorption coefficient]. The attractiveness is reduced
when the distance enlarges. The value of δ affects the attrac-
tiveness value of a firefly and the convergence speed of the
algorithm. Its value highly depends on the type of problem
to be optimized [43]. Multiplication with a constant in Equa-
tions (33) and (34) causes the distance values to be within
[0,10]. The value of δ is tested between [0.01, 0.15] to set the
attractiveness level of a firefly viewed from other fireflies to
follow the curve shown in Fig. 7 [15].

FIGURE 7. Relationships between distances and attractiveness of fireflies
when δ is set equal to 0.06.

In Steps 7–11, a fixed number of newfireflies are generated
from themovements of a single firefly [15]. In Step 8, we pro-
duce new fireflies using the selected improvement operator in
Step 4. Given the new firefly, a feasible solution is produced
using the solution_modification procedure.
If no reference firefly is found in Step 5, then we apply the

mutation operator to firefly i in Steps 13–18 to produce v new
fireflies. After producing newfireflies using the improvement
or mutation operators, we select the best firefly in Ui to
replace firefly i (Step 20). We continue the search until the
Tc number of iterations is reached or the best objective value
is not improved after several iterations (Step 22).

B. ARTS ALGORITHM
We propose an arc exchange-based ARTS (Algorithm 5)
that dynamically changes the tabu list size (tls) using an
RTS mechanism [20] and keeps track of the best solutions
during the search using an adaptive mechanism [21]. In the
RTS [20], tls is dynamically changed based on the quality of
the obtained solution. tls is increased when the same solutions
are repeated often and decreased to avoid conducting searches
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FIGURE 8. RTS mechanism.

only within a certain space. Gounaris et al. [21] used the
adaptive mechanism to identify a part of a solution that often
appears as a good solution. We keep track of good solutions
in an elite_list. When the best solution is not improved after
a certain number of iterations, a new solution is randomly
generated by combining two randomly selected solutions
from the elite_list.
The initial tls is calculated as α× combination given that

A = number of arcs in the solution and combination = AC2.
During the search, tls is dynamically updated using the RTS
mechanism after a search iteration is completed (Step 26) as
explained in Fig. 8 [20]. Notations used in Fig. 8 are:
• Chaotic: counter for the often-repeated sets of solutions
(initialized to 0)

• MovAvg: moving average for the detected repetitions
(initialized to 0)

• GapRept: gap between two consecutive identical solu-
tions (initialized to 0)

• LastChange: number of iterations since the last change
in tls value (initialized to 0)

• LasTimeRept: iteration number when last time an iden-
tical solution was noticed

• CurTimeRept: iteration number of the most recent repe-
tition (initialized to 0)

• REP: maximum limit for the often-repeated solutions
• Chaos: maximum limit for the sets of often-repeated
solutions

• Increase: percentage increase for the tls

• Decrease: percentage decrease for the tls
• GapMax: constant used to compare withGapRept to get
the moving average

To reduce the time for checking repetitions of a solution
in the RTS mechanism, we store all obtained solutions and
objective values in a hash table following the implementation
in [44]. If the same solution S is found consecutively within a
short number of iterations (GapRept < GapMax), then we
increase tls. Conversely, if tls is changed in a sufficiently
large number of iterations (LastChange > MovAvg), tls is
decreased. To avoid performing the search on only a certain
limited search space, when solution S is found too often
(Repetition of S > REP and Chaotic > Chaos), we clear the
tabu list and produce a new solution to restart the search using
the removal mutation. In addition to [20], we add our removal
mutation in Fig. 8. The value of tls is also changed propor-
tionally to the remaining computational time (Step 8). As the
computational time reaches the time limit, tls becomes 0. The
final iterations of the search focus on intensification rather
than exploration by decreasing the value. Every time tls is
updated in Steps 8 and 26 or a pair is added into the list in
Steps 12 and 17, we remove the earliest pairs from the list if
the number of pairs in the list is more than tls.
An adaptive mechanism is added by maintaining a

list of good (elite) solutions. The list is updated using
update_elite_list procedure (Step 27) [21] as follows: Let
R denote a solution set that is a candidate for insertion into
the elite solution list (elite), R’ be any reference solution of
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Algorithm 5 ARTS Algorithm
f (v) objective value of solution v
I set of arc positions in the solution
n(I ) size of I
point(i) arc at position i in the solution
tls size of tabu list
time_limit given computational time limit
max_same_sol allowed number of the same consecutive

solutions
1 : generate a set of solutions using Algorithm 1, and select

a solution (v) with the smallest f (v)
2 : initialize v_localbest: = v v_globalbest: = v

f_localbest: = f (v), f_globalbest: = f (v)
3 : while true do
4 : initialize new_localbest: = 0, v_nontabubest: = ∅

f_nontabubest: = a large number
5 : for i = to n(I ) − 1 do
6 : for j = i + 2 to n(I ) do
7 : if arc(i) = arc(j) then continue
8 : reduce tls based on the remaining time
9 : if the computational time exceeds time_limit

then
go to Step 22

10: v’ = swap(i, j) in v and run
solution_modification procedure for v’

11: if v’ is feasible and f (v’) ≤ f (v), then
12: add (arc(i), arc(j)) into tabu list
13: v_localbest: = v’ and f_localbest: = f (v’)

new_localbest: = 1
14: if f (v’) < f_globalbest then

set v_globalbest:= v’, f_globalbest:= f (v’)
15: end if
16: if (arc(i), arc(j)) is not in the tabu list and

v’ is feasible then
17: add (arc(i), arc(j)) into tabu list
18: if f (v’) ≤ f_nontabubest then

v_nontabubest: = v’, f_nontabubest: = f (v’)
19: end if
20: end for
21: end for
22: if new_localbest = 1 then

set v: = v_localbest f (v): = f_localbest
23: else if v_nontabubest 6= ∅

set v: = v_nontabubest f (v): = f_nontabubest
24: end if
25: if the computational time exceeds time_limit

then stop
26: update tls using RTS mechanism
27: run update_elite_list procedure
28: run restart_with_new_solution procedure
29: if f_globalbest does not change in max_same_sol

then
stop

30: end while

P, and RB and RW be the best and the worst of solutions
ofP, respectively. Given that f (R) refers to the objective value
of solution R, if f (R) < f (RB), then R replaces RW in P.
Otherwise, if R’ satisfying f (R) < f (R’) and diss(R,RB) >
diss(R’, RB) exists, then R replaces R’ in P. diss(R,RB) is
a dissimilarity distance between solution R and the current
best solution RB that is measured as the total difference of
arc occurrences between arcs that exist in RB but not in
R (broken-pair distance). In the restart_with_new_solution
procedure (Step 28), we calculate the gap of iterations when
any new_localbest is found. If the value is larger than
max_between_bests, then we generate a new solution using
the subroute combining operator presented in Algorithm 3.

In the ARTS, an acceptance rule in Ropke and Pisinger [45]
similar to the simulated annealing is used to accept worse
nontabu solutions for escaping from the local optima
(Step 16). A new worse sequence v’ is accepted with the
probability of e− (f (v’)−f (v))/T given the current solution v
and temperature T . The temperature T initially equals Tstart
and decreases by T = T × ξ for each iteration, where ξ is the
cooling rate. The value of Tstart is set to allow the acceptance
of a ρ% worse solution to be 50%.

TABLE 1. Network-related parameters (node, edge, and altitude) in data
sets.

VI. NUMERICAL EXPERIMENTS
Artificial and actual data sets with different characteristics
are considered (Tables 1 and 2). In the artificial data set, the
locations of target nodes and edges, required travel times, and
observation qualities are generated randomly. However, for
the actual data set, we set those values based on the actual
instances. The artificial data set is generated to show the
quality of the proposed methods compared with the optimal
solutions of theMILP, and the actual data set is utilized to test
the effectiveness of the proposed algorithms in solving real-
sized problems. In both data sets, λ is set to 60o as shown
in Fig. 1(a) [37].

The required photo qualities for target nodes and edges are
generated randomly for the artificial and actual data that are
0 (low-quality) and 1 (high-quality). Target nodes and edges
that can be observed from the points are listed through prepro-
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TABLE 2. Drone-related parameters in data sets.

FIGURE 9. Target nodes and edges in the western part of the Philippines.

cessing. A drone that travels through an arc can observe the
target edge located below the travelled arc. When generating
the drone networks, arcs that cannot be feasibly travelled due
to the travel time limit (from and to the depots) are removed.

Actual areas affected by natural disasters, such as
the Philippines [49], Mexico [50], and the Republic of
Korea [51], are considered the study cases in the actual data
set. The Philippines is divided into two. Fig. 9 shows the map
for the western part of the Philippines.

The algorithm parameters for the firefly and ARTS
are tuned via preliminary experiments on all data sets.

TABLE 3. Tuned parameters for firefly and ARTS algorithms.

Table 3 presents the obtained parameters in the firefly and
ARTS algorithms.

The MILP solutions are obtained using CPLEX 12.9.0.
All experiments were performed on an Intel R©CoreTM

i5-6400 CPU at 2.70 GHz with 8 GB RAM. Computational
time is limited to 1,800 s (for MILP) and 60 s (for each
algorithm). The computational time must be as short as pos-
sible considering that when disaster occurs, rapid observation
allows us to supply disaster relief aids (e.g., through land
and air) within a short period of time. Table 4 presents the
experiment results. The firefly algorithm and ARTS use the
same initial solution set. The best solution in the set is used
as the initial solution for MILP1 also. For each instance, each
algorithm is executed five times, and the average makespan is
obtained. Objective value gaps between the firefly algorithm
or ARTSwithMILP are defined as (zalgorithm−zMILP)/zMILP×
100. MILP1 can only obtain the optimal solution in instance
A1 and cannot find any feasible solution in most artificial and
actual instances.

For the artificial data sets, the proposed algorithms produce
better solutions than the MIP1 does, and the average gaps
between the firefly algorithm and ARTS with the MILP1 are
−3.6% and −0.5%, respectively. The proposed algorithms
produce acceptable solutions within a short computation time
(less than 60 s). The firefly algorithm and ARTS obtain solu-
tions with an average gap of −22.8% and −29.2%, respec-
tively than those of MILP1, for the actual data instances.

AlthoughARTS generates slightly worse solutions than the
firefly algorithm (35.9 vs. 35.1 in average z value) for the
artificial data sets, the computation time of ARTS (1.5 s) is
much shorter than that of the firefly algorithm (31.7 s). For the
actual data instances, ARTS outperforms the firefly in solu-
tion quality and computation time. The average makespan of
the solutions generated by ARTS is 442, whereas the one by
the firefly is 463. The average computation times of ARTS
and the firefly algorithm are 9.0 and 43.1 s, respectively.
In summary, ARTS outperforms the firefly algorithm.
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TABLE 4. Comparison of MILP (without and with initial solutions), firefly algorithm, and arts algorithms.

Table 4 also provides some Key Performance Indica-
tors (KPIs) for comparing both algorithms as follows:
(1) percentage of visited points and arcs at the higher

altitude (#alt2), (2) number of used drone subroutes (#sub)
for each drone (dr1, dr2), and (3) the average (avg) and stan-
dard deviation values (stdev) of the completion time by the
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drones (travD) that consider the battery replacement times
between subroutes. For the first term, we consider that #alt1
and #alt2 refer to the number of points or arcs at the lower
altitude and the higher altitude, in percentage (#alt2 points=
100 × number of points at the higher altitude / number of
points in the solution). We list only the #alt2 values. The last
term is used to assess the workload balance of the drones [52]
that is related to the makespan minimization. Gaps of the z
values are defined as (zARTS − zFirefly)/zFirefly× 100, whereas
the gaps of other KPIs are defined as (zARTS − zFirefly).
The ARTS obtains solutions with an average makespan gap
of 3.3% and−6.4% for artificial and actual data sets, respec-
tively, comparedwith those of the firefly algorithm. Drones in
solutions of both algorithms visit a similar number of points
and arcs at higher altitudes as shown by the #alt2 gap. Firefly
has lower averagemakespan in the artificial data andARTS in
the actual data when each algorithm produces less number of
drone subroutes (#sub), less average drone completion time
(travD, avg), and less deviation between drone completion
times (travD, stdev).

VII. CONCLUSION
A multiple drone routing problem at multiple altitudes is
discussed. The drones perform observations of target nodes
and edges that require different photo qualities. In addition,
the drones have a limited battery level and must return to
depot for a battery replacement process. The objective is to
minimize the total observation time. An MILP model, a fire-
fly algorithm, and an adaptive–reactive tabu search (ARTS)
algorithms are developed to solve the problem. Experiment
results show that the latter outperforms the former algorithms
when solving actual data instances. ARTS obtained better
solutions within less than 1 min than the MILP that uses the
same initial solutions with an average gap of 0.5% and 29.2%
for artificial and actual data instances, respectively.

For further studies related to drone routing, a drone net-
work design problem should be investigated. In the drone
network design, various decision variables, such as obser-
vation altitudes and horizontal positions of the observation
points at each altitude, can be considered. Identifying the best
observation altitude is also necessary to determine the best
observation range and the appropriate altitudes that allow the
drones to visit those points while performing the observations
in a short time. Possible collisions between the drones must
be avoided, especially if the visited points are located close
to one another.
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