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ABSTRACT We deal with the single-server queueing system, in which an arriving job (packet, customer)
is not allowed to the queue with the probability depending on the queue size. Such a rejected job is lost
and never returns to the queue. The study is motivated, but not limited to, active queue management in
Internet routers. The exponential service times and general interarrival times are assumed, what makes the
model to be a generalization of classic G/M/1 and G/M/1/N queueing models. Firstly, a replacement for the
ρ < 1 stability condition, which is too excessive in the considered system, is proven. Then, several popular
performance characteristics are derived, including the distribution of the queue size, waiting time, workload
and the time to reach a given level, as well as the loss ratio. Finally, numerical examples are presented,
demonstrating the impact of the standard deviation of the interarrival time on the system performance, as well
as the performance of the system for different parameterizations of the dropping function.

INDEX TERMS G/M/1 queue, G/M/1/N queue, dropping function, active queue management, infinite
buffer, stability condition, queue size, workload, loss ratio.

I. INTRODUCTION
When exploiting a queueing system, we often want to
improve its performance. For instance, we may want to
reduce the average queue size. Obviously, this goal can be
accomplished by manipulating the arrival or service rate, as a
higher service rate or a lower arrival rate makes the queue
shorter on average. Several examples of systemswith variable
service or arrival rate have been studied in the queueing
literature, see e.g. [1]–[4].

However, inmany real queueing systems, the arrival stream
and the service time are difficult to manipulate, or cannot
be manipulated at all. The performance of such systems can
be adjusted in other way – by rejecting some arriving jobs.
One of the most popular schemes of this type is based on
the dropping function. Namely, an arriving job is not allowed
to the queue (dropped) randomly, with the probability being
a function of the queue size at the arrival epoch of this job.
A dropped job is lost and never returns to the queue.

The practical usage of the dropping function started a
quarter of century ago, when a simple linear dropping func-
tion was used in management of queues of packets in
Internet routers, [5]. Since then, several different dropping
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functions have been proposed for packet queueing, including
the doubly linear function, [6], the exponential function, [7],
the quadratic function, [8], the cubic function, [9], and the
newest mixture of cubic and linear functions, [10]. The ben-
efits of usage of the dropping function in routers are well
understood - they include not only the reduction of the queue
size and queueing delay, but also mitigation of the interflow
synchronization, improvement of the interflow fairness, and
other.

The active queue management in Internet routers is still
the most important area of application of queues with the
dropping function. However, other applications have been
proposed to date. For instance, in some call centers, it is
perhaps better to reject the caller immediately when the queue
is long, rather than to keep him waiting for a long time.

It should be stressed, that the queueing system with the
dropping functions have universal sense and great potential
of applicability. First of all, the system generalizes classic
infinite-buffer and finite-buffer queues. Namely, if the drop-
ping function is always 0, we obtain the classic single-server
queuewith the infinite buffer. If the dropping function is equal
to 1 for queue sizes above N , and 0 otherwise, we get the
classic queue with the finite buffer of size N . The potential of
applicability of the dropping function follows from that fact,
that it can be used to obtain an arbitrary value of arbitrary
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performance characteristic, at least in the range limited by
the infinite buffer-model. For instance, it is a simple matter
to obtain an arbitrary average queue size or loss ratio. In fact,
much more than that can be achieved, including optimization
of an objective function which depends on a few performance
characteristics (see e.g. [11]).

In this paper, we deal with the single-server queue with the
dropping function, infinite buffer, general distribution of the
interarrival time and exponential distribution of the service
time. In other words, we deal with the G/M/1 model with
the addition of the dropping function. As argued above, such
model incorporates the classic G/M/1 and G/M/1/N models,
and the G/M/1/N model with the dropping function, i.e. such
that the dropping function is 1 for queue sizes above some
threshold. In the considered model, the dropping function
can have an arbitrary form. The general distribution of the
interarrival time enables modeling of arrival streams of varied
characteristics, for instance having a large, or a very small
variance of the interarrival time. This is in contrast with
Poisson-arrival models, in which this variance is just 1

λ2
and

cannot be altered.
When studying an infinite-buffer queueing system, it is

obligatory to ask about its stability. Unfortunately, the classic
stability condition, ρ < 1, where ρ is the load of the system
(see Section III), is not very useful when the dropping func-
tion is used. Obviously, the condition holds true, but becomes
far too excessive, as there are many useful and stable systems
with the dropping function and ρ ≥ 1. For this reason, an easy
to use and much more general condition sufficient for the
system stability is proven in Section IV.

Having settled the system stability, we can analyze its
performance using different characteristics. Several popu-
lar characteristics are derived in this paper, including the
steady-state distributions of the queue size, waiting time
and workload, as well as the loss ratio. These steady-state
characteristics are accompanied by two transient ones: the
distribution of the time to reach a given level by the queue
size, and, closely related, the probability that in a time interval
of length t the queue size does not reach a given level.
The theorems and formulas are illustrated via numerical

examples. We first focus on the possibility of modeling a
large standard deviation of the interarrival time distribution.
In particular, the impact of this deviation on all derived
performance characteristics is depicted by using gamma-
distributed interarrival time as an example. Secondly, we use
a parameter-dependent class of dropping functions to demon-
strate possibilities of altering performance characteristics of
the system.

The remaining part of the paper is structured in the fol-
lowing manner. In Section II, the related work is recalled.
In Section III, a formal description of the queueing model and
the notation used in the paper are introduced. In Section IV,
a condition sufficient for the system stability is presented
in Theorem 1. Then, in Section V, several mentioned above
performance characteristics are derived and gathered in
Theorem 2. In Section VI, numerical examples are shown

and discussed. Finally, conclusions and some suggestions of
future work are presented in Section 7.

II. RELATED WORK
To the best of the author’s knowledge, the results presented
herein are new. The performance of queues with the dropping
function have been studied before either with the Poisson
arrival stream, or under the finite-buffer assumption.

Analytical studies of queues with finite buffers and Poisson
arrivals began with [12], where an approximate analysis of
the system with the linear dropping function was carried out.
An exact solution of the model with batch Poisson arrivals,
the exponential service and the general dropping function,
was given in [13]. The steady state and transient analysis
of the M/G/1/N model with the general dropping function
was performed in [14] and [15], respectively. In [16], a sys-
tem with Poisson arrivals and multiple service channels was
studied.

Queues with finite buffers, general interarrival times and
exponential service times were studied in [17] and [18].
Namely, in [17] an approximate solution in the steady state
was presented, while in [18], the transient analysis was car-
ried out.

Finally, in [19], [20] finite-buffer systems with the arrival
process governed by a modulating Markov chain, were ana-
lyzed. Namely, [19] dealt with the Markov-modulated Pois-
son process, while [20] – with the batch Markovian arrival
process.

The infinite-buffer queue with the dropping function has
been studied so far in [21] and [11], with Poisson arrivals only.
In both of these papers, a stability analysis was performed
first, then followed by derivations of the most important
performance characteristics and numerical examples. In par-
ticular, in [21] the M/M/1 model with the dropping function
was studied, while in [11] – the M/G/1 model. The presented
herein study on the G/M/1 model is complementary to those
papers. The main stability condition, (8), is common in all
the mentioned models. Unfortunately, a separate proof has to
be given in the G/M/1 case, as the previous proofs rely on
the memoryless property of the interarrival time, which is not
present herein.

The G/M/1 queue without the dropping function is
well known and discussed in most queueing theory text-
books, e.g. [22]–[24].

III. QUEUEING MODEL AND NOTATION
In what follows, P denotes probability, E denotes the average
value of a random variable or probability distribution, while
D – its standard deviation.

We consider herein the G/M/1 queueing model with the
dropping function. Namely, jobs arrive according to the
general renewal process with the interarrival time distribu-
tion G(t). The service time distribution function is 1 − e−µt

and the standard independence assumptions are made. The
waiting room (buffer) is infinite, thus the queue size can be
arbitrarily large.
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Additionally, every arriving job may not be allowed to
the queue with the probability d(n), where n is the queue
size upon arrival of this job (including the service position,
is occupied). The dropping function, d(n), n = 0, 1, 2, . . . , is
not further specified, except from the fact that d(0) < 1. (The
latter requirement eliminates trivial, always empty systems).
A job not allowed to the queue leaves the system and never
returns.

The queueing discipline is FIFO, but it matters only when
the waiting time distribution is computed. For the remaining
characteristics, it can be LIFO or any other, non-preemptive
discipline. This is due to the fact, that the waiting time is
computed from the point of view of a job, thus it matters
where in the queue it is placed upon arrival. The remaining
characteristics are functions of the number of jobs in the
queue only, thus the jobs can be arbitrary ordered, without
affecting those characteristics.

It is assumed that G(t) is not a lattice distribution and

EG =
∫
∞

0
tdG(t) <∞. (1)

The standard deviation of the interarrival time distribution is
denoted by DG, the arrival intensity is:

λ =
1
EG

, (2)

while the load of the system:

ρ =
λ

µ
. (3)

In derivations, we will be using the Laplace-Stieltjes trans-
form of the interarrival time distribution:

g(s) =
∫
∞

0
e−stdG(t), s ≥ 0. (4)

Finally, X (t) denotes the queue size at time t , including the
service position, if occupied. We adopt the convention that
X (t) is left-continuous, i.e. X (t) = X (t−).

IV. STABILITY
We say that a queueing system is stable if and only if for every
n = 0, 1, . . . , the following limit exists:

lim
t→∞

P(X (t) = n) = pn, (5)

and numbers pn fulfill:
∞∑
n=0

pn = 1. (6)

Theorem 1: If

c = lim sup
n→∞

ρ(1− d(n)) < 1, (7)

then the system is stable.
Proof: The proof consists of two parts. The first part is

devoted to proving that the limit in (5) exists for every n.
It exploits the renewal theory and ends after (12) is obtained.
The second part is devotedmainly to proving thatm occurring
in (12) is finite. From this, (6) is easily obtained.

If (7) holds, then there exists a natural number, N , such
that:

ρ(1− d(n)) <
c+ 1
2

< 1, n > N . (8)

Without loss of generality, we may assume that t = 0 is
an arrival time and X (0+) = N + 1. Let τk , k = 0, 1, 2, . . .,
denote a sequence of arrival times in which the queue size
increases from N to N + 1. Formally, we have:

τ0 = 0,
τk = inf{t > τk−1 : X (t) = N ,X (t+) = N + 1}, k ≥ 1.

(9)

Let us define random variables Tk ’s as follows:

Tk = τk − τk−1, k = 1, 2, . . . . (10)

From the memoryless property of the exponential distribu-
tion, it follows that each τk is a regeneration point of the
queue size process. This means that the evolution of the
queue size from time τk is exactly the same, as from time
τk−1. Therefore, variables Tk are independent and identically
distributed, while moments τk constitute a renewal process
with the renewal function:

H (u) =
∞∑
k=0

Fk∗(u),

where

F(x) = P(Tk < x) = P(T1 < x),

F0∗(u) = 1, Fk∗(u) =
∫ u

0
F (k−1)∗(u− v)dF(v), k ≥ 1.

Then we have:

P(X (t) = n)

=

∞∑
k=0

P(X (t) = n, τk ≤ t < τk+1)

=

∞∑
k=0

∫ t

0
P(X (t) = n, τk ≤ t < τk+1|τk = u)dFk∗(u)

=

∞∑
k=0

∫ t

0
P(X (t−u)=n, τ1 > t−u|X (0+)=N+1)dFk∗(u)

=

∫ t

0
P(X (t−u) = n, τ1 > t−u|X (0+) = N+1)dH (u).

(11)

The third to last formula is obtained from the second to
last using the regeneration property of τk times. Namely,
the queue size process between τk and τk+1 is replaced by
the same process between τ0 = 0 and τ1.
Applying the key renewal theorem (see e.g. [23], p. 102)

to (11) yields:

pn = lim
t→∞

P(X (t) = n)

=
1
m

∫
∞

0
P(X (t) = n, τ1 > t|X (0+) = N+1)dt, n ≥ 0,

(12)
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where

m = E(τ1|X (0+) = N + 1). (13)

In this way, we have proven that the limit in (5) exists for
every n. Therefore, we are left with the task of proving (6).
Firstly, we need to prove that:

m <∞. (14)

Otherwise, (12) would be 0 for every n.
To prove (14), we can use a G/M/1 system with the same,

as previously, interarrival and service time distributions, but
with a simplified dropping function, d̃ . It is defined as
follows:

d̃(n) =

{
q, if n > N ,
r, otherwise,

(15)

q =
2λ− cµ− µ

2λ
, r = max{d(n) : n = 0, 1, . . . ,N }.

(16)

Every characteristic of the new system will be denoted with
tilde, e.g. X̃ (t), m̃, τ̃k , to distinguish it from the analo-
gous characteristic of the original system. As previously,
we assume that t = 0 is an arrival epoch and X̃ (0+) = N+1.
Moreover, without loss of generality, we may assume that
r < 1. (In the case r = 1, we simply have the finite-buffer
system, which is well known to be stable).

We will show now that:

m̃ = E(τ̃1|X (0+) = N + 1) <∞. (17)

Let α̃ be the first time, when the queue size reaches the
level N , i.e.:

α̃ = inf{t > 0 : X̃ (t) = N }. (18)

If η̃ denotes the first arrival time after α̃, then τ̃1 can be
expressed as:

τ̃1 = η̃ + θ̃ , (19)

where

θ̃ = τ̃1 − η̃. (20)

Hence to prove (17), it suffices to prove Eη̃ < ∞ and
E θ̃ <∞.
To prove Eη̃ < ∞, note that from (15) it follows that for

queue sizes above N , the dropping probability is constant.
Thus the arrival process is a thinned renewal process with
thinning probability q. It is well known that the thinned
renewal process is again a renewal process, with the inter-
arrival time distribution Gq(t) given by the Laplace-Stieltjes
transform:

gq(s)=
∫
∞

0
e−stdGq(t)=

qg(s)
1− g(s)+qg(s)

, s≥0, (21)

where g(s) is the transform of G(t) (see e.g. [25]). Therefore,
for queue sizes above N , the new system operates in exactly

the same way as the classic G/M/1 system without the drop-
ping function, but with the interarrival time distribution given
by (21) and the average value:

EGq =
EG
1− q

=
2

µ(c+ 1)
<∞. (22)

The load, ρq, of this G/M/1 system equals:

ρq =
1

µ EGq
=
c+ 1
2

< 1. (23)

Thus this classic system is underloaded and stable. It is easy to
see that η̃ is simply the duration of the busy cycle of this clas-
sic G/M/1 system. Therefore, we can use some known results.
In [22], p. 97, it is shown that under conditions (22) and (23),
the distribution of η̃ is proper, and for its expected value we
have:

Eη̃ =
1
ρqy0

<∞, (24)

where y0 is the largest positive solution of the equation:

y = µ− µgq(y), (25)

which is known to exist. This finishes the proof of Eη̃ <∞.
To show E θ̃ <∞, we note that for queue sizes shorter than

N + 1, the dropping probability is constant again. Therefore,
before the queue size reaches N +1, the arrival process in the
system with d̃ is yet another thinned renewal process, with
thinning probability r and the interarrival time distribution
Gr (t) given by the transform:

gr (s)=
∫
∞

0
e−stdGr (t)=

rg(s)
1− g(s)+rg(s)

, s≥0, (26)

and the average value:

EGr =
EG
1− r

<∞. (27)

Denote X̃ (η̃+) = K . Obviously, 1 ≤ K ≤ N + 1.
If K = N+1, then η̃ = τ̃1 and θ̃ = 0, thus E θ̃ <∞. Assume
now 1 ≤ K ≤ N . In this case, random variable η̃ is simply the
time of growth of the queue size from the level K to N + 1,
in the classic G/M/1 system, with the interarrival distribution
given by (26) and the service rate µ. Therefore, we can use
known results again. Applying Theorem 6.2 of [26], after
simple algebra we obtain:

Eθ̃ =
N∑
l=0

(
N+1∑
k=1

RN+1−kzk,l −
K∑
k=1

RK−kzk,l

)
, (28)

where

R0 = 0, R1 =
1

gr (µ)
, (29)

Rk+1 = R1(Rk −
k∑
i=0

ai+1Rk−i), k ≥ 1, (30)

and

ak =
∫
∞

0

e−µt (µt)k

k!
dGr (t), k ≥ 0, (31)
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zk,l

=



EGr −
∑k−1

i=0

∞∫
0

e−µt (µt)i

i!
(1− Gr (t))dt,

if l = 0,
∞∫
0

e−µt (µt)k−l

(k − l)!
(1− Gr (t))dt,

if 0 < l ≤ k,
0,

otherwise.

(32)

From (27), it follows that all integrals in (31) and (32) are
finite for every k and l. Therefore (28) is finite, as a finite sum
of finite summands. This completes the proof of Eθ̃ <∞.
Now we can proceed to showing that m < ∞ in our main

system, with the dropping function d(n). From (15) and (16)
it follows that:

d̃(n) ≤ d(n), n > N , (33)

d̃(n) ≥ d(n), 0 ≤ n ≤ N , (34)

From (33) and (34) we obtain:

Eη ≤ Eη̃ <∞, (35)

Eθ ≤ Eθ̃ <∞, (36)

respectively. Therefore, we have:

m = Eη + Eθ <∞. (37)

This completes the proof of m <∞ in the main system.
To prove (6), it suffices to notice that:

m =
∫
∞

0
P(τ1 > t|X (0+) = N + 1)dt. (38)

Now, combining (12) with (38) and (37) we get:
∞∑
n=0

pn =
1
m

∞∑
n=0

∫
∞

0
P(X (t) = n, τ1 > t|X (0+) = N+1)dt

=
1
m

∫
∞

0
P(τ1 > t|X (0+) = N + 1) = 1, (39)

which completes the proof of Theorem 1. �

V. PERFORMANCE CHARACTERISTICS
In this section, a theorem on several important performance
characteristics of the system will be proven. In the steady
state, distributions of the queue size, workload and waiting
time, with their average values, and the job loss ratio, will be
derived. In the transient case, the probability that the queue
size does not reach a given level in some interval, and the
average time to reach a given level, will be found.

The loss ratio, L, is defined as the fraction of jobs rejected
in a long time interval, i.e. as t → ∞. It characterizes
a system with losses, like the one studied herein. The loss
ratio is especially important in networking, where the lost
packets influence profoundly the communication quality. The
loss ratio in systems without the dropping functions has been
studied extensively using measurements (e.g. [27]–[29]) and

mathematical modeling (e.g. [30], [31]). Finally, the proba-
bility that the queue size does not reach a given level can be
especially useful when the dropping function is used, as one
of the main reasons to use the dropping function is to keep
the queue size low.

The system workload at time t is defined as the time that
a job entering the queue at time t would spend in the queue,
before service. It will be denoted by v(t), while its distribution
in the steady state by V (x), i.e.:

V (x) = lim
t→∞

P(v(t) < x). (40)

The actual waiting time of the n-th arriving job will be
denoted by wn, while the distribution of the waiting time in
the steady state by W (x), namely:

W (x) = lim
n→∞

P(wn < x). (41)

We adopt the convention, that rejected jobs are not counted
in the distribution of the waiting time. To take into account
rejected jobs, one has to simply add their fraction, L, with the
waiting time 0.

The probability that the queue size does not reach the level
M in a time interval of length t , if it starts from the level n,
will be denoted by Qn,M (t). Formally, we have:

Qn,M (t) = P
(
Rn,M > t

)
, (42)

where

Rn,M = inf{t > 0 : X (t)=M |X (0+) = n}, 0 ≤ n < M .

(43)

We may notice that Qn,M (t) is also the tail of the distri-
bution of the time of hitting the level M , starting from the
level n. Thus having Qn,M (t), we can easily compute the
average value of the hitting time, ERn,M .

The function Qn,M (t) will be computed in terms of the
Laplace transform:

qn,M (s) =
∫
∞

0
e−stQn,M (t)dt, s ≥ 0. (44)

Finally, let Xn denote the queue length just before the
n-th arrival time. It is easy to see that Xn constitutes a Markov
chain. Let pi,j denote the transition probability of chain Xn:

pi,j = P(Xn+1 = j|Xn = i), (45)

while βn – its stationary distribution:

βn = lim
k→∞

P(Xk = n), n = 0, 1, . . . . (46)

This distribution is not hard to find in a stable system – at the
end of this section it will be shown how to do this effectively.
For now, we assume that βn is known.
Theorem 2: If the system is stable, then the loss ratio

equals:

L =
∞∑
n=0

βnd(n), (47)
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the distribution of the queue size in the steady state:

pn = ρ(1− d(n− 1))βn−1, n = 1, 2, . . . , (48)

p0 = 1− ρ + ρL, (49)

the average queue size:

EX = ρ
∞∑
k=1

n
(
1− d(n− 1)

)
βn−1, (50)

the distribution of the waiting time:

W (x)

0,
if x ≤ 0,

1−
1

1− L

∑
∞

n=1
∑n−1

i=0 (1− d(n))βn
e−µx(µx)i

i!
,

if x > 0,

(51)

the average waiting time:

EW =
EX

(1− L)λ
−

1
µ
, (52)

the distribution of the workload:

V (x)

=



0,
if x ≤ 0,

1−ρ
∑
∞

n=1
∑n−1

i=0 (1−d(n−1))βn−1
e−µx(µx)i

i!
,

if x > 0,

(53)

and the average workload:

EV =
EX
µ
. (54)

Moreover, no matter if the system is stable or not, the trans-
form of the probability that the queue size does not reach the
level M in an interval of length t is:

qM (s) = A−1M (s) 1
1− g(s)

s
, (55)

where, (56)–(59), as shown at the bottom of this page, while
the average time to reach the queue size M starting from the
queue size m:

ERn,M = lim
s→0+

[
A−1M (s) 1]n−1

1− g(s)
s

, n < M , (60)

where []n denotes the n-the element of a vector.
Proof: Formula (47) follows immediately from

definitions of L, Xn and βn.
To show (48), we can use the rate conservation law (see

e.g. [24], p. 218). Namely, in a long time interval of length σ ,
there are σpnµ jumps of the process X (t) from the level n to
the level n−1, where n ≥ 1. On the other hand, in this interval
there are clearly σλβn−1(1−d(n−1)) jumps of X (t) from the
level n−1 to n. From the rate conservation law we know that
these numbers must be equal in a stable system. Therefore we
have:

pnµ = λβn−1(1− d(n− 1)), n = 1, . . . , (61)

which completes the proof of (48).
To show (49), we can use (6) and (48). We have:

p0 = 1−
∞∑
n=1

pn = 1− ρ
∞∑
n=1

βn−1 + ρ

∞∑
n=1

d(n− 1)βn−1,

(62)

which finishes the proof of (49).
Formula (50) follows directly from (48).

qM (s) = [q0,M (s), . . . , qM−1,M (s)], (56)

1 = [1, . . . , 1]T , AM (s) = [ai,j(s)]i=0...M−1,j=0...M−1, (57)

ai,j(s) =



1− b0(s)d(0), if i = 0, j = 0,
−b0(s)(1− d(0)), if i = 0, j = 1,
1− b1(s)+ b1(s)d(0)− b0(s)d(1), if i = 1, j = 1,
−bi(s)d(0), if 1 ≤ i ≤ M− 1, j = 0,
−b0(s)(1− d(i)), if 1 ≤ i ≤ M− 2, j = i+ 1,
−bi(s)+ bi(s)d(0)−bi−1(s)d(1), if 2 ≤ i ≤ M−1, j = 1,
1−b1(s)+b1(s)d(i−1)−b0(s)d(i), if 2 ≤ i ≤ M−1, j = i,
−bi−j+1(s)+ bi−j+1(s)d(j−1)−bi−j(s)d(j),

if 2 ≤ i ≤ M−1, 2 ≤ j ≤ i−1,
0, otherwise,

bk (s) =
∫
∞

0

e−(µ+s)u(µu)k

k!
dG(u), (58)

bk (s) =
∞∑
i=k

bi(s) = g(s)−
k−1∑
i=0

bi(s), (59)
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To prove (51), let us derive the probability W (x), that the
waiting time of an arbitrary accepted job exceeds some x,
where x > 0. Firstly, the system cannot be empty upon the
arrival of this job. (Otherwise its waiting time would be 0).
Secondly, if there are n ≥ 1 jobs in the system upon the
arrival of the new job, its waiting time in the queue is a
sum of n exponentially distributed service times. Due to the
memoryless property of the exponential distribution, it does
not matter that one of the jobs has been already partially
completed. Summarizing these considerations, we obtain:

W (x) =
1

1− L

∞∑
n=1

βn
(
1− d(n)

)(
1− (1− e−µx)n∗

)
, (63)

where n∗ denotes the n-fold convolution of a distribution
function with itself. Note that the need for normalization 1

1−L
follows from the fact, that we do not take rejected jobs into
account when deriving W (x).
Now the proof of (51) can be easily completed using (63),

the fact W (x) = 1−W (x) and the relation:

(1− e−µx)n∗ = 1−
n−1∑
i=0

e−µx(µx)i

i!
. (64)

Formula (52) can be obtained directly from (51). Namely,
we have:

EW =
∫
∞

0
(1−W (x))dx

=
1

1− L

∞∑
n=1

n−1∑
i=0

βn(1− d(n))
∫
∞

0

e−µx(µx)i

i!
dx

=
1

(1− L)µ

∞∑
n=1

nβn(1− d(n))

=
1

(1− L)µ

( ∞∑
n=0

(n+ 1)βn(1− d(n))

−

∞∑
n=0

βn(1− d(n)
)

=
1

(1− L)µ

(EX
ρ
− 1+ L

)
=

EX
(1− L)λ

−
1
µ
. (65)

Formula (53) can be proven in a similar way as (51), i.e. by
deriving the probability V (x) that the amount of unfinished
work at arbitrary time exceeds x > 0. Reasoning in the same
way about the remaining service time and using the queue
size distribution at arbitrary time, pn, we obtain immediately:

V (x) =
∞∑
n=1

pn
(
1− (1− e−µx)n∗

)
, (66)

Now (53) follows from (48), (64) and the fact
V (x) = 1− V (x).

To obtain (54), we can use simply the memoryless property
of the exponential service time, which assures that if the
queue size at time t is n, then the average workload at this
time is n/µ, no matter if one job is already in progress at time
t . (A direct integration of 1− V (x) leads to the same result).

To show (55), we can first note that for 1 ≤ n ≤ M − 1:

Qn,M (t)

=

∫ t

0

n−1∑
k=0

(µu)ke−µu

k!
d(n− k)Qn−k,M (t − u)dG(u)

+

∫ t

0

∞∑
k=n

(µu)ke−µu

k!
d(0)Q0,M (t − u)dG(u)

+

∫ t

0

n−1∑
k=0

(µu)ke−µu

k!

(
1−d(n−k)

)
Qn−k+1,M (t−u)dG(u)

+

∫ t

0

∞∑
k=n

(µu)ke−µu

k!

(
1− d(0)

)
Q1,M (t − u)dG(u)

+1− G(t), (67)

where QM ,M (t) is 0 by definition. Equation (67) is obtained
using the formula of total probability, where the first two
summands in (67) cover the case, in which there is an arrival
in the interval (0, t) and the arriving job is rejected. The
third and the fourth summand cover the case, in which there
is an arrival in (0, t) and the arriving job is accepted. The
last summand, 1 − G(t), covers the case in which there are
no arrivals in (0, t). In this case, obviously, Qn,M (t) = 1.
Reasoning in a similar way for n = 0 we obtain:

Q0,M (t) =
∫ t

0
d(0)Q0,M (t − u)dG(u)

+

∫ t

0

(
1− d(0)

)
Q1,M (t − u)dG(u)+ 1− G(t).

(68)

Applying the Laplace transform to (67) and (68) yields:

qn,M (s)

=

n−1∑
k=0

d(n− k)qn−k,M (s)bk (s)

+d(0)q0,Mbn(s)+
n−1∑
k=0

(
1− d(n− k)

)
qn−k+1,M (s)bk (s)

+
(
1− d(0)

)
q1,M (s)bn(s)+

1− g(s)
s

, 1 ≤ n ≤ M − 1,

(69)

and

q0,M (s) = d(0)q0,M (s)g(s)+
(
1− d(0)

)
q1,M (s)g(s)

+
1− g(s)

s
, (70)

respectively. Clearly, (69) and (70) constitute now a sys-
tem of M linear equations. Collecting unknowns qn,M (s) on
one side and using the matrix notation, this systems can be
rewritten as:

AM (s)qM (s) = 1
1− g(s)

s
, (71)

from which (55) is obtained immediately.
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Finally, (60) follows from (55) and the fact that:

ERn,M =
∫
∞

0
Qn,M (t)dt = lim

s→0+
qn,M (s). (72)

This completes the proof of Theorem 2. �
In order to use Theorem 2 in practice, we have to compute

the vector:

β = (β0, β1, β2, . . .), (73)

which is the stationary vector for Markov chain Xn defined
above. Fortunately, transition probabilities for this chain are
rather easy to obtain. Namely, we have:

pi,j =



(1− d(i))bi+1(0)+ d(i)bi(0) if i ≥ 0, j = 0,
(1− d(i))bi−j+1(0)+ d(i)bi−j(0),

if i > 0, 0 < j < i+ 1,
(1− d(i))b0(0), if i ≥ 0, j = i+ 1,
0, if i ≥ 0, j > i+ 1,

(74)

where bk (0) and bk (0) are given in (58) and (59), respectively.
Note that bk (0) and bk (0) are well known in queueing theory
and are either easy to calculate symbolically (for several
popular distributions) or suitable for numerical integration.

Now, having the transition matrix:

P = [pi,j]i,j=0,1,..., (75)

in a stable system β can be computed using the well-known
equations:

βP = β, (76)
∞∑
j=0

βj = 1. (77)

The system (76), (77) is infinite. Fortunately, it has been
widely studied as a popular tool in the Markov chain theory,
and is well understood now. In particular, in [32] it was
shown, that the solution (n)β of the truncated system:

(n)β(n)P = (n)β, (78)

converges elementwise to β as n → ∞, where (n)P is the
n×n northwest corner truncation of thematrixP. Thus we can
calculate the vector β with a high precision using a solution
of a finite linear system.

Finally, to obtain numbers from (55), a method for numer-
ical inversion of the Laplace transform has to be used. Many
such methods can be found in literature. In the following
numerical examples, the Zakian method is used, [33].

VI. EXAMPLES
In the examples, the following gamma-distributed interarrival
time is used:

G′(t) =
aa

0(a)
ta−1e−at , a > 0. (79)

It can be easily verified that EG = 1 and DG = 1/
√
a. Thus

manipulating a, we can manipulate the standard deviation of

the interarrvial time, keeping its average value equal to 1. It is
assumed that µ = 1, which gives ρ = 1.

Finally, the following class of dropping functions is used:

dr (n) = r


1
2
e
n−50
10 , if n ≤ 50,

1−
1
2
e
50−n
10 , if n > 50.

(80)

where r ∈ (0, 1] is a parameter. A few functions from this
class are depicted in Fig. 1.

FIGURE 1. Dropping function dr (n) for r = 0.1, 0.2, . . . , 1, counting from
the bottom.

From Theorem 1 it follows immediately, that the system is
stable for every r ∈ (0, 1]. It is also clear, that it would have
been unstable without the dropping function.

A. DEPENDENCE ON THE STANDARD DEVIATION
In this set of examples, we check the influence of the standard
deviation of the interarrival time on the performance of the
system.

Firstly, the values of characteristics derived in the previous
section are presented in Table 1, for three values of DG
and the function d0.5. In particular, results for DG = 1
(i.e. Poisson arrivals) are shown in the second column, while
in the next two, the standard deviation is multiplied twice by
the factor of 5.

As we can see, DG has a profound impact on the queueing
performance, even when ρ is unaltered, as in our case. The
performance for Poisson arrivals is pretty good; we have a
small queue size, even smaller its standard deviation, low loss
ratio (2.7%), and a very long average time to reach length 50.
IncreasingDG 5 times, we observe a moderate increase in the
queue size and its deviation (twice), but other characteristics
deteriorate more visibly – the loss ratio increases 6 times
(to 16.6%), while the average time to reach length 50 is
17 times shorter. Increasing DG 5 times once more, to 25,
we can see that the queue size deteriorates rather severely
(5 times), and its standard deviation even more (10 times).
Other characteristics also get far worse.

Comparing the results forDG = 1 with those forDG = 25
we can see, how misleading is usage of a simplified traffic
model (e.g. Poisson), in modelling of a real system, when the
real deviation of the interarrival time is far from 1/λ.
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TABLE 1. Detailed performance characteristics for three different values of the standard deviation of the interarrvial time, DG, and the dropping
function d0.5.

FIGURE 2. Performance characteristics versus the standard deviation of the interarrival time for the dropping function d0.5 (dashed lines) and
d1 (continuous lines).

TABLE 2. Detailed performance characteristics for three different values of parameter r and DG = 4.

In general, this effect was to be expected, as a strong
dependence of the system performance on DG occurs also
in systems without the dropping function. However, herein
the detailed performance of the system depends also on the
shape of the dropping function, in a complicated way. For
instance, using a more aggressive dropping function, we can
improve some poor characteristics, occurring due to the high
DG, at the cost of some other characteristics.

In Fig. 2, the average queue size, its standard deviation,
and the loss ratio are depicted as functions of DG, for the
dropping function d0.5 (dashed lines) and the function d1
(continuous lines). In the case of d0.5, the queue size grows
quickly with DG. The standard deviation grows even more
quickly. In the case of the more aggressive d1, the queue size
decreases withDG from some point, what is a totally different
behaviour. This is, however, at the cost of the increased
number of losses, which is visible on the right hand side
of Fig. 2.

B. DEPENDENCE ON THE DROPPING FUNCTION
In these calculations, we check the influence of the param-
eter r of the dropping function on the system performance.
In every case, DG = 4 is used.

In Tab. 2, various characteristics are presented for three
values of r , i.e. r = 0.1 (mild dropping), r = 0.5 (mod-
erate dropping) and r = 1 (aggressive dropping). Clearly,
every performance characteristic gets improved as r grows,
except for the loss ratio. Additionally, in Fig. 3 the aver-
age waiting time, the loss ratio and the probability that the
queue does not reach size 75 in first 1000s, are depicted as
functions of r .
We can draw at least two conclusions from these results.

Firstly, manipulating r we can manipulate the value of each
characteristic in a relatively wide range. Secondly, there are
decreasing and increasing functions depicted in Fig. 3, thus
we can clearly solve optimization problems with respect to
r , using a cost function. Such cost function can have an
arbitrary form and may depend on EW , L,Qn,M (t), and other
characteristics. For example, we may want to minimize the
cost function:

C = a EW + b L, (81)

or

C = a L − b Q0,75(1000), (82)
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FIGURE 3. Performance characteristics versus the parameter r of the dropping function.

FIGURE 4. The cost C1 versus parameter r .

or

C = EW aLb, (83)

with respect to r , or any other.
For instance, assume that we want to minimize the cost

function:

C1 = 5L − Q0,75(1000). (84)

This means, that we want to have the loss ratio as small as
possible, and at the same time, the probability of not reaching
the length 75 in 1000s as high as possible. Moreover, the
former goal is 5 times more important than the latter.

In Fig. 4, the cost C1 is presented as a function of r .
It reaches a minimum for r = 0.81.

VII. CONCLUSION
In the paper, an analysis of the queue with the dropping func-
tion and non-Poisson arrivals has been carried out. A stability
condition has been proven and accompanied with deriva-
tions of several steady-state and transient characteristics.
Numerical examples, which illustrated the influence of the
interarrival time variance on the system behaviour, as well as
the possibility of adjusting the performance of the system by
varying the dropping function, have been presented.

As the general form of the dropping function has been
assumed, the considered model incorporates the classic
G/M/1 and G/M/1/N models without the dropping function,
and the G/M/1/N model with the dropping function.

In the future work, a few different research directions can
be explored.

First of all, the G/G/1 model with the dropping function
can be studied. As it does not have the convenient embedded
Markov chain structure, an approximate analysis may be
useful.

As for the G/M/1 queue with the dropping function,
the analysis can be extended to the time-dependent distribu-
tion of the queue size, workload and the number of losses.
Finally, an alternative stability condition can be searched for.
For instance, in [21] it was proven that theM/M/1 systemwith
the dropping function is stable if

lim
n→∞

ρ

n∏
i=1

n
√
1− d(i− 1) < 1, (85)

or

lim
n→∞

n
1− ρ(1− d(n))
ρ(1− d(n))

> 1. (86)

It is not sure, whether condition (85) or (86) works in the case
of the G/M/1 model as well.
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