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ABSTRACT In this paper, we introduce a modified Generalized Iterative Closest Point (GICP) algorithm
by presenting a coarse-to-fine strategy. Our contributions can be summarized as: Firstly, we use adaptively
a plane-to-plane probabilistic matching model by gradually reducing the neighborhood range for given
two point sets. It is an inner coarse-to-fine iteration process. Secondly, we use an outer coarse-to-fine
strategy to bridge the point-to-point and plane-to-plane registration for refining the matching. Thirdly, we use
the trimmed method to gradually eliminate the effects of incorrect correspondences, which improves the
robustness of the methods especially for the low overlap cases. Moreover, we also extend our method to
the scale registration case. Finally, we conduct extensive experiments to demonstrate that our method is
more reliable and robust in various situations, including missing points, noise and different scale factors.
Experimental results show that our approach outperforms several state-of-the-art registration methods.

INDEX TERMS Registration, modified GICP, trimmed method.

I. INTRODUCTION
In recent years, with the rapid development of artificial intel-
ligence and autonomous driving, the point set registration is
becoming more and more popular. The point set registration
problem aims to find the correspondence and transformation
between two point sets, and transform one point set to its
counterpart through accurate mapping [1]–[5].

Iterative Closest Point (ICP) [6], [7] is a classical point
set registration algorithm via alternate iteration to search
the correspondence and update the transformation. ICP algo-
rithms of point-to-point and point-to-plane versions are both
widely used for their simplicity and effectiveness. In prac-
tical applications, however, ICP still has many limitations.
The prominent problem is the uncertain correspondence and
the failure often induced by sampling, occlusion, outliers,
missing or noisy data.

To overcome this shortcoming, many methods have been
developed. Zhang proposed an outlier rejection strategy for
the correspondence via the distance threshold [8]. It can tick
out some unmatched point pairs and outside overlap regions
induced by obstructing, missing and outliers. Meanwhile, it is
hard to solve the uncertain corresponding problem caused
by discretized sampling via the point-to-point based method.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guitao Cao .

So some point-to-plane and plane-to-plane based methods
were introduced [1], [7], [9]. Among these, Generalized-ICP
(GICP) [1] proposed a framework by minimizing the plane-
to-plane distance. In addition, the point-to-point based and
point-to-plane ICP algorithm can also be viewed as a special
case of the GICP framework. Intuitively, they assume that the
data are locally planar; thus the searching regions to the clos-
est correspondences are wider than that of the standard point-
to-point ICP. So, plane-to-plane ICP obviously improves the
robustness against measurement noise.

Then, many modified plane-to-plane ICP methods have
been widely used for point cloud data alignment. Visual fea-
tures and descriptors are introduced into the plane-to-plane
error metric [10], [11]. Han et al. proposed a hierarchical
searching scheme for multi-resolution data to improve the
robustness with respect to the local minimum [12], [13].

However, GICP took the trade-off between the accuracy
and the robustness for measurement noise. We observe that
the final plane-to-plane distance cannot reach as low as the
point-to-point ICP. Secondly, GICP is also sensitive to the ini-
tial position and thus only achieves local minimum. Thirdly,
noise, occlusion andmissing points will often make GICP fail
to align.

Compared with GICP [1], the principal component anal-
ysis (PCA) pays more attention to global distribution. PCA
uses the Singular Value Decomposition (SVD) method [14]
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FIGURE 1. Flowchart of the proposed coarse-to-fine framework. This is
an inner and outer combined coarse-to-fine algorithm to balance the
tradeoff between the accuracy and the robustness to noise.

to obtain several principal axes of two point sets, then aligns
the centers and their principal axes [15]. This process can give
a better initial rigid transformation, even scalemapping. It can
be viewed as the roughest registration strategy.

To solve the problem of the local minimum caused by
missing and noise degeneration, Trimmed ICP (TrICP) [16]
was proposed, which ticks out outliers and then conducts ICP
byminimizing the Trimmed Squared Distance (TSD). On this
base, improved TrICP algorithms appeared by introducing
an objective function to estimate the overlap rate [17], [18].
Then, Peng et al. [19], Dong et al. [20] extended this trimmed
strategy to the nonrigid transformation. Du et al. [21], [22]
proposed an ICP algorithm based on the probability or cor-
rentropy for precise registration with outliers and noise.
Empirically, these methods can significantly improve the
performance in a variety of noise degenerations. However,
these methods only concern the point-to-point registration
problem.

In this paper, we use a coarse-to-fine algorithm combining
the inner and outer method to balance the trade-off between
the accuracy and the robustness to noise. The inner coarse-
to-fine GICP algorithm starts with a wide range of plane-
to-plane matching, and the range decreases gradually during
each iteration, which is less sensitive to the initial posi-
tion and more robust to measurement noise, while the outer
coarse-to-fine strategy bridges the point-to-point and plane-
to-plane registration for refining the matching, which can
further improve the accuracy. Moreover, we also propose an
adaptive pruning to reject incorrect correspondence in this
process, which can avoid the local minimum at the low over-
lap case caused by missing points and outliers. Finally, we
also consider extending the GICP from the rigid to the scale
transformation. The basic framework is illustrated in Fig. 1.

This paper is organized as follows. In Section II we intro-
duce the related work, which includes GICP algorithm and
the trimmed strategy. Then, we describe ourmethodology and
algorithm in Section III. In Section IV, we introduce the scale

stretch version of our method. Experiments and analysis are
shown in Section V. Section VI concludes the paper.

II. RELATED WORKS
Given two point sets, the source set X = {xi|i = 1, . . . ,m}
and the target set Y = {yj|j = 1, . . . , l}, our aim is to find the
best transformation T matching X to Y .

A. GICP ALGORITHM
The GICP algorithm proposed a plane-to-plane registration
method based on the Mahalanobis distance, i.e.,

T ∗ = argmin
T

M∑
i=1

d>i Mid i (1)

where

d i = T · xi − yc(i)
Mi = (CY

n,c(i) + RC
X
n,iR
>)−1.

Here d i is the corresponding Euclidean distance vector
between T ·xi and yc(i), c(i) represents the index of the nearest
point in Y corresponding to xi, CX

n,i and C
Y
n,c(i) are covariance

matrices calculated by n closest neighborhood points around
xi ∈ X and n closest neighborhood points around yc(i) ∈ Y ,
and R is the rotation.

To model the plane structure, [1] modified the covariance
matrix as:

CX
n,i = Uxi

 1 0 0
0 1 0
0 0 ε

U>xi (2)

CY
n,c(i) = Uyc(i)

 1 0 0
0 1 0
0 0 ε

U>yc(i) , (3)

where Uxi and Uyc(i) are obtained by the SVD of the orig-
inal covariance matrix. Here we assume that the singular
values are in descending order, the smallest singular value is
replaced by a small constant ε, and the remaining two singular
values are replaced by 1. When CX

n,i = 0 and CY
n,c(i) = I , it is

equivalent to the standard ICP.

B. TRIMMED STRATEGY
The trimmed strategy updates adaptively the overlap rate r
to trim out unmatched points by optimizing the following
objective function [17]–[20]:

r∗ = argmin
r

e(r)
eλ · m · rλ

,

where e(r) =
∑r×m

i=1 d2i is the Trimmed square dis-
tance (TSD), and λ is a parameter that decreases with
iterations.

III. THE PROPOSED COARSE-TO-FINE ITERATIVE
MATCHING ALGORITHM
PCA can roughly match point clouds and accelerate the con-
vergence rate, but it may also result in worse initial positions.
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FIGURE 2. PCA result. (a) The original PCA result, and (b) The result after
reversing axis.

Compared with ICP, GICP considers a plane-to-plane regis-
tration model that covers more local information and is less
sensitive to the noise. But the proper neighborhood range
is hard to determine. Furthermore, we need to trim out the
incorrect correspondences for the low overlap data or nois-
ing data. By synthesizing the advantages of these methods,
we propose a coarse to fine iterative closest point algorithm
to deal with these problems. The details of our algorithm are
given as follows.

Here we list some notations used in our algorithm. Let k−1
be the last iteration, Tk the current transformation consisting
of a rotation matrix, a translation vector {Rk , tk}, and nk the
updated neighborhood range for the k-th iteration.

A. PREPROCESSING
In this part, we aim to obtain an initial transformation and set
some initial parameters. In our algorithm, PCA is used to get
the initial transformation T0 and align two point sets roughly.
However, it may cause the mirror symmetry or distribution
center difference. In order to avoid the mirror symmetry
problem as displayed in Fig. 2(a), we use axis reversal to
detect and process as displayed in Fig. 2(b), where the target
points are in blue and the source points are in red.

B. ESTIMATING CORRESPONDENCES
Having the transformation Tk−1 fixed, for each point xi ∈ X ,
find its correspondence point yc(i) ∈ Y :

c(i) = arg min
j∈{1,2,...,l}

‖Tk−1 · xi − yj‖
2. (4)

C. CALCULATING THE OVERLAP RATE
Having the correspondences {(xi, yc(i))}

m
i=1 fixed, compute

the squared distances {d2k,i}
m
i=1

d2k,i = (Tk−1 · xi − yc(i))
>(Tk−1 · xi − yc(i)) (5)

and sort them in the ascending order.
Then we calculate the overlap rate according as:

rk = argmin
r

r×m∑
i=1

d2k,i
eλk · m · rλk

, (6)

where λk = λk−1 − ξ is a parameter of the trimmed strategy,
and the positive constants λ1 and ξ are defined in advance.

D. UPDATING TRANSFORMATION
In this part, we update the transformation by minimizing
the corresponding plane-to-plane distance. We use a large
neighborhood range n1 = nmax as the initial range parameter.
In each iteration, the plane scale changes with the number of
nearest neighbors.

Here we use D2
nk ,i to represent the plane-to-plane squared

distance:

D2
nk ,i = (T · xi − yc(i))

>Mk,i(T · xi − yc(i)), (7)

where

Mk,i = (CY
nk ,c(i) + RC

X
nk ,iR

>)−1, (8)

nk = nk−1 − δ is the updated neighborhood range, and the
constant δ is the parameter defined in advance. CX

nk ,i is the
modified covariance matrix corresponding to the current nk
nearest points of point xi ∈ X , CY

nk ,c(i)
is the modified covari-

ance matrix corresponding to the current nk nearest points of
point yc(i) ∈ Y . The covariance matrices are computed by (2)
and (3).

We use d2i to represent the point-to-point squared distance:

d2i = (T · xi − yc(i))
>(T · xi − yc(i)) (9)

Having the correspondences and overlap rate fixed, we
can get the Trimmed Mean Square Error (TMSE) for
plane-to-plane matching (10)

f (T ) =
1
mr

mr∑
i=1

D2
nk ,i, (10)

or point-to-point matching (11):

f (T ) =
1
mr

mr∑
i=1

d2i , (11)

where mr is the number of remaining points after trimming,
mr = rk × m.
For the optimization of transformation, we solve a

6-dimensional vector including rotation angles and transla-
tions. If nk ≥ nmin, we use the TMSE function (10) and solve
the nonlinear optimization problem by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [23]–[26], else we solve
the TMSE function (11) by SVD [14], since it degenerates
into a point-to-point situation when the scale is sufficiently
small. Then we update the transformation T ∗k :

T ∗k = argmin
T
f (T ). (12)

E. SUMMARY OF ALGORITHM
To summarize, our algorithm is listed as Algorithm 1.

Note that at the k-th iteration, before updating transforma-
tion, the error is

εk :=
1
mr

mr∑
i=1

‖Tk−1 · xi − yc(i)‖
2,
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Algorithm 1 An Adaptive Generalized-ICP Algorithm
Require: Source set X , target set Y and their multi-scale

covariance matrices;
parameters: Niter, nmax, nmin, δ, λmax, ξ ;

Ensure: Final transformation T ∗;
1: Initial n1 = nmax, λ1 = λmax;
2: Obtain initial transformation T0 by PCA.
3: for iteration k = 1 : Niter do
4: Estimate correspondences {(xi, yc(i))}

m
i=1 by (4);

5: Compute squared distance {d2k,i}
m
i=1 by (5);

6: Fix the correspondence, calculate the overlap rate rk
by (6);

7: Fix the correspondence and overlap rate, update trans-
formation T ∗k using D2

nk ,i or d
2
i ;

8: if nk ≥ nmin then
9: optimize the TMSE function (10) via BFGS algo-

rithm;
10: else
11: solve the TMSE function (11) by SVD;
12: end if
13: if the stopping condition is satisfied then
14: break;
15: else
16: nk+1 = nk − δ;
17: λk+1 = λk − ξ ;
18: continue;
19: end if
20: end for

where mr = m × r . Then, after updating transformation,
the new error becomes

Ek :=
1
mr

mr∑
i=1

‖Tk · xi − yc(i)‖
2.

In the algorithm, when any of the following conditions are
satisfied, the iteration stops.
1) The maximum iteration number Niter has reached;
2) The mean error Ek is sufficiently small;
3) |εk − Ek | is sufficiently small.

IV. ISOTROPIC SCALE REGISTRATION
In practice, the scale factor is ubiquitous in registration. For
example, scanning data from different perspectives and dis-
tances may have different scales. In order to match point sets
better, besides the rotation and translation, we need to solve a
scale parameter. Inspired by [15], [27], [28], to deal with the
scale registration, we extend our algorithm to the isotropic
scale case.

For the isotropic scale registration problem, the plane-
to-plane distance function can be written as:

f (s,R, t) =
1
mr

mr∑
i

(sRxi + t − yc(i))
>M (sRxi + t − yc(i)),

(13)

FIGURE 3. Point cloud data Turbine Blade, Dragon and Happy Buddha.

where s is the isotropic scale factor and M can be computed
by (8). Similarly, the point-to-point distance function can be
written as:

f (s,R, t) =
1
mr

mr∑
i

‖sRxi + t − yc(i)‖
2. (14)

When solving this optimization problem, we can add the
partial derivative of the scale factor accordingly. The solution
to other variables is similar to that mentioned above.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the performance of our algorithm, we com-
pare it with other algorithms, i.e., ICP, TrICP and GICP.
In addition, the results are also compared with our method
using PCA and not using PCA, which are called Adaptive
GICP (AGICP) and Modified GICP (MGICP), respectively.

A. DATASETS AND EVALUATION
We use the data Turbine Blade, Dragon and Happy Buddha
(Fig. 3) from the Large Geometric Models Archive.1

Firstly, the original data are regarded as the source set X ,
and the target set Y is generated with various transformations,
such as rotations from 10 degrees to 40 degrees. Then we
add some outliers to the source set. After that, we add some
random noise to the source set to generate data in noise
condition, or drop some points from the target set to generate
data in the missing data condition.

Here we suppose the estimated transformation is T̃ , and
the set Xtrans = T̃ · X is obtained by transforming the
original source set X . To evaluate our method, we calculate
the Root Mean Squared Distance (RMSD) between Xtrans and
the original target set Y .

B. POINT CLOUD REGISTRATION WITHOUT SCALE FACTOR
We perform experiments for Turbine Blade, Dragon and
Happy Buddha in two cases: the noise case and the missing
data case. In our experiments, we rotate the source data from
10 degrees to 40 degrees. For noise data, we add noise to
50% source points, and add 5% outliers. For missing data,
we generate data by dropping 10% to 40% points from the
target set and add 5% outliers.

Some visual results are shown in Fig. 4 to Fig. 10,
which indicates the registration results for Turbine Blade,
Dragon and Happy Buddha in the noise case and in the data

1https://www.cc.gatech.edu/projects/large_
models/
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FIGURE 4. Registration results of Dragon data with noise and outliers. (a) 3D view of two point sets before registration; (b) registration result of
GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 5. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 4.

FIGURE 6. Registration results of Happy Buddha data with noise and outliers. (a) 3D view of two point sets before registration; (b) registration
result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 7. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 6.

FIGURE 8. Registration results of Turbine Blade data with data missing and outliers. (a) 3D view of two point sets before registration;
(b) registration result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

missing case. In the figures, the source sets are shown in red
points and the target sets in blue circles. (a) is the 3D view of

point sets before registration. (b), (c), (d) and (e) are the 3D
views of four algorithm’s results.
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FIGURE 9. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 8.

FIGURE 10. Registration results of Dragon data with data missing and outliers. (a) 3D view of two point sets before registration; (b) registration
result of GICP; (c) registration result of TrICP; (d) registration result of MGICP; (e) registration result of AGICP.

FIGURE 11. (a), (b), (c) and (d) are the enlarged figures of (b), (c), (d) and (e) in Fig. 10.

TABLE 1. The result of RMSD error and iteration numbers for point cloud without scale factor.

Figs. 4 and 6 illustrate the registration results for Dragon
and Happy Buddha in the noise case. For data in Figs. 4 and 6,
we add noise to 40% source points, and add 5% outliers.
All four algorithms perform well in the noise condition.
However, when we enlarge the area marked by the black
circle (Figs. 5 and 7), our methods are better than other three
algorithms.

Figs. 8 and 10 illustrate the registration results for Turbine
Blade and Dragon in the data missing case. For data in Fig. 8,
we drop 30% points from the target set and add 5% outliers to
source points. For data in Fig. 10, we drop 40% points from

the target set and add 5% outliers to source points. Due to
the low overlap rate, Turbine Blade data, GICP and TrICP all
fail in matching. Contrary to these algorithms, our approach
performs very well, which can be viewed in the enlarged
figures (Figs. 9 and 11). Fig. 11 shows that our method with
PCA is better than that of without PCA.

Statistical results are shown in Table 1 and Figs. 12 and 13.
As shown in the table, our method almost gets the smallest
RMSD errors of all the datasets no matter in the noise case
or in the missing data case, which indicates that our algo-
rithm performs consistently better than ICP, GICP, and TrICP.
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FIGURE 12. Boxplot of RMSD error in various noise cases.

FIGURE 13. Boxplot of RMSD error in various missing data cases.

Table 1 shows that the results of our method with or without
PCA nearly have no difference in the noise case, but the
result with PCA will be better in the missing data case. The
average number of iterations with PCA is about 16, and the
average number of iterations is about 21 without PCA, which
is lower than ICP, GICP and TrICP. It illustrates that our
method converges faster.

In Figs. 12 and 13, we use boxplots to illustrate the RMSD
error for all data in Table 1. The boxplot can be interpreted
as: the x−axis represents four algorithms; y−axis represents
their respective errors; on each box, the central red mark
indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively;
the whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually
using the red ‘+’ symbol.

Fig. 12(a) to Fig. 12(c) are the results for data in various
noise situations. When the noise is small, due to the outliers,
ICP gets a bad result, GICP and TrICP get results with some
errors, and our results with or without PCA get a small RMSD
error. With the increment of noise, the error of ICP becomes
higher, but our results are still small. It indicates that our
method is robust to noise.

Figs. 13(a) and 13(b) are the results for data in various
overlap situations. When the overlap rate is 80%, the errors

of TrICP and our method are all small, compared with the
higher error in ICP andmore abnormal results in GICP. As the
overlap rate decreases, the abnormal results of ICP, GICP and
TrICP increase, while our method obtains more stable results,
which illustrates that our method is robust to missing data.

The boxplot figures reveal that our methods, nomatter with
or without PCA, nearly get the similar results in the noise
case; but in the missing data case, AGICP gets higher error
results.

We also compare the convergence rates of these algo-
rithms. We measure the convergence by the Root-Mean-TSD
(RMTSD) between Y and Xtrans = Tk · X in every iteration.
The RMTSD error is defined as√√√√ 1

mr

mr∑
i

‖Tk · xi − yc(i)‖2.

Figs. 14 and 15 display the RMTSD error and the overlap
rates of data illustrated in Figs. 4, 6, 8 and 10. In Fig. 14,
GICP converges fast, but easily falls into local minima, while
ICP and TrICP converges slowly. Our method accelerates the
convergence procedure by PCA, uses the multi-scale plane
matching in the early stage to avoid falling into the local
minima, and refines the results by point-to-point matching
in the later stage. Figs. 15, (a), (b), (d) show that TrICP and
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FIGURE 14. RMTSD error for every iteration of ICP, GICP, TrICP, MGICP and AGICP, (a) is Dragon Data, (b) is Happy Buddha data with noise in Figs. 4
and 6. (c) is Turbine Blade data, and (d) is Dragon Data with data missing in Figs. 8 and 10.

FIGURE 15. The estimation of the overlap rate for every iteration of TrICP, MGICP and AGICP for experiments in Fig. 14(a)-(d) corresponding to the
same data set. Their corresponding groundtruth of overlap rate are about 0.57, 0.57, 0.66 and 0.57.

FIGURE 16. Registration results of Dragon data with missing data. (a) 3D view of two point sets before registration;
(b) registration result of SICP; (c) registration result of GSICP; (d) registration result of TrSICP; (e) registration result
of MGICP; (f) registration result of AGICP.

our method with or without PCA all get good overlap rate
results. Fig. 15(c) shows that there is a little deviation in the
overlap rate of TrICP; as seen from Fig. 14, the RMTSD error
of TrICP achieves significantly small at last, but according
to the registration result, the final matching result is biased,
because TrICP gets a wrong overlap rate and retains the
incorrect matching pairs only according to the distance from
point to point. Our method can achieve a better result by plane
matching, which reduces the risk of mismatching.

C. POINT CLOUD REGISTRATION WITH ISOTROPIC SCALE
FACTOR
In this part, we conduct experiments for data at various scales,
from 0.9 to 0.6. At the same time, we also generate datasets
with noise and missing data.

We add the isotropic scale factor into the original ICP,
TrICP and GICP to generate SICP, TrSICP and GSICP, and
solve the registration problems by using SVDmethod for ICP
and TrICP, using BFGS method for GICP.

VOLUME 8, 2020 40699
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FIGURE 17. Registration results of Turbine Blade data with noise and outliers. (a) 3D view of two point sets
before registration; (b) registration result of SICP; (c) registration result of GSICP; (d) registration result of
TrSICP; (e) registration result of MGICP; (f) registration result of AGICP.

FIGURE 18. Local area enlarged figure for Figs. 16(f) and 17(f).

Some visual results are shown in Figs. 16 and 17, which
indicates the registration results for Turbine Blade and
Dragon in noise case or in data missing case. In the figures,
the source sets are shown in red points and the target sets
in blue circles. (a) is the 3D view of point sets before reg-
istration. (b), (c), (d), (e) and (f) are the 3D views of registra-
tion results of SICP, GSICP, TrSICP [19], [20], MGICP and
AGICP.

Figs. 16 and 17 illustrate the registration results for Dragon
in the scale registration with missing data and Turbine Blade
in scale registration with noise. For data in Fig. 16, we drop
30% points from the target set, and expand the source data so
that target data is 0.9 times the source data. For data in Fig. 17,
we add noise to 40% source points, add 5% outliers and
expand source data so that target data is 0.6 times source data.

SICP and TrSICP all trap in the localminima. On the contrary,
our method matches the two point sets with a correct scale,
and performs very good, which can be further observed by
enlarging the area marked by the black circle of our results in
Figs. 18(a) and 18(b).

Statistical results are shown in Table 2 and Fig. 19. In the
table, from the RMSD error result, ICP, GICP and TrICP
cannot deal with scale registration well without considering
the scale factor. Our method almost obtains the best result,
no matter with or without PCA method. SICP and TrSICP
need to iterate many steps to achieve the convergence, and the
results are not satisfactory. On the contrary, our results show
that the convergence can be achieved in a small number of
iterations, andwith the PCAmethod, we obtainmore accurate
results.
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TABLE 2. The result of RMSD error and iteration numbers for point cloud with scale factor.

FIGURE 19. Boxplot of RMSD error in various scale cases. (a) and (b) are the results for data with
missing data, (c) and (d) are the results for data with noise.

Fig. 19(a) to Fig. 19(d) are the results for data in various
scale situations with noise or missing data. Original ICP,
TrICP and GICP obviously fail to match because they do
not take the scale into account. SICP and TrSICP may fail
in the scale registration, and get higher error with the scale
decreasing. GSICP obtains the results with a low average
error but not robust, and our method gets stable results at
different scale factors no matter with PCA method or not.

In Figs. 20 and 21 we display the RMTSD error and the
overlap rate. For the scale registration, SICP and TrSICP get
high RMTSD errors, TrSICP also has a wrong overlap rate,
which almost takes all points into account. GSICP gets a
very small RMTSD error as the scale parameter decreases,

but it is a degenerate case. Because GSICP and our method
initially calculate the plane-to-plane distance, and ourmethod
calculates the point-to-point distance in the later stage, which
causes some fluctuations in our RMTSD results. After PCA
preprocessing, our method has greatly improved the calcula-
tion of scale and the overlap rate, so the correct convergence
results can be obtained quickly.

Our method gets an initial position after PCA, uses
multi-scaled plane-to-plane matching and trimmedmethod to
reject the influence of incorrect correspondences, and refines
the result by point-to-point matching finally. For the exper-
imental data, no matter what random noise, isotropic scale
factor, or the overlap rate in various rotation, our algorithm
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FIGURE 20. RMTSD error for every iteration of SICP, GSICP, TrSICP, MGICP and AGICP, (a) is Dragon data,
(b) is Turbine Blade in Fig. 16 and Fig. 17.

FIGURE 21. overlap rate for every iteration of TrSICP, MGICP and AGICP, (a) is Dragon data, (b) is Turbine
Blade in Figs. 16 and 17. Their corresponding groundtruth of overlap rate are about 0.7 and 0.57.

TABLE 3. The result of RMSD error and runtime comparison for Figs.4, 6 and 8.

can achieve satisfactory results. Experimental results demon-
strate that our method is robust to noise and missing data.

In addition, we add the computation time comparison
results in Table 3. The experimental results show that the
run time of AGICP is much less than that of point-to-point
methods, and comparable to GICP.

VI. CONCLUSION
In this paper, we have proposed a coarse to fine iterative
closest point algorithm by introducing a modified multi-scale
GICP algorithm to refine the matching accuracy, especially
for low overlap cases. We have adopted a multi-scale plane-
to-plane matching by using a gradually reduced neighbor-
hoods range, and trimmed method to reject the influence

of incorrect correspondences. The extensive experiments
demonstrate that our algorithm is more accurate and robust
in a variety of situations, including missing points and noise.
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