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ABSTRACT The salp swarm algorithm (SSA) is a bio-heuristic optimization algorithm proposed in 2017.
It has been proved that SSA has competitive results compared to several other well-known meta-heuristic
algorithms on various optimization problem. However, like most meta-heuristic algorithms, SSA is prone to
problems such as local optimal solution and a slow convergence rate. To solve these problems, a chaotic
salp swarm algorithm based on opposition-based learning (OCSSA) is proposed. The application of
opposition-based learning (OBL) guarantees a better convergence speed and better develops the search
space. The chaotic local search (CLS) method is also introduced, which can improve the performance of
the algorithm to obtain the global optimal solution. The performance of OCSSA is compared with that
of the original SSA and some other meta-heuristic algorithms on 28 benchmark functions with unimodal
or multimodal characteristics. The experimental results show that the performance of OCSSA, with an
appropriate chaotic map, is better than or comparable with the SSA and other meta-heuristic algorithms.

INDEX TERMS Salp swarm algorithm, global optimization, meta-heuristic algorithms, opposition-based

learning, chaotic local search.

I. INTRODUCTION

Meta-heuristic algorithms have become popular due to their
advantages of simple and easy implementation, effective
avoidance of local optimization, and good scalability. Many
meta-heuristic algorithms have shown efficient and powerful
performance in solving high-dimensional and nonlinear opti-
mization problems [1].

Without considering its structure, a meta-heuristic algo-
rithm can to some extent be divided into the two main phases
of exploration and exploitation [2]. In the exploration phase,
algorithms conduct random expansion exploration on the
whole search space to increase the diversity of solutions.
Following this, the exploitation phase aims to improve the
quality of the solution by performing local searches around
promising areas that have been identified during the explo-
ration phase. It is important to maintain a good balance
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between exploration and exploitation to avoid a suboptimal
solution that is locally optimal.

Meta-heuristic algorithms can be divided into evolution-
ary and swarm intelligence algorithms. They are designed
in accordance with the collective and intelligent behav-
ior of insects, animals, humans, and other social creatures.
Among the most prominent are particle swarm optimiza-
tion (PSO) [3], the whale optimization algorithm (WOA) [4],
the artificial bee colony algorithm (ABC) [5], and the grey
wolf optimizer (GWO) [6], [7]. Meta-heuristic algorithms
that have emerged in recent years include the butterfly
optimization algorithm (BOA) [8], the vampire bat opti-
mizer (VBO) [9], and the salp swarm algorithm (SSA) [10].

Mirjalili et al. recently proposed a bio-inspired meta-
heuristic algorithm, SSA, that mimics salp swarm mech-
anisms. It has the advantages of simple implementation,
few parameters, and low computational cost. In terms of
optimal solution accuracy and convergence rate, SSA pro-
vides better results than common methods such as PSO,
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genetic algorithm (GA) [11], firefly algorithm (FA) [12], and
bat algorithm (BA) [13]. One of the key works on SSA was
conducted by Sayed et al. in [14]. The authors proposed a new
chaotic SSA (CSSA) to deal with feature selection tasks. The
simulation result demonstrated that the CSSA can be regarded
as a good optimizer compared to some previous methods.
Asaithambi and Rajappa [15] integrated SSA with sin cosine
algorithm (called HSSASCA) to improve the convergence
performance with the exploration and exploitation stage.
The simulation results revealed that the proposed algorithm
achieves the best accuracy with least runtime in comparison
with other meta-heuristics. SSA was also applied in electric
engineering, Singh et al. [16] proposed a hybrid SSA to
optimize the sizing of a CMOS differential amplifier and the
comparator circuit. The experiment showed that the proposed
SSA with CMOS analog IC designs outperformed other exist-
ing methods. However, SSA still has its own limitations, it is
more prone to exploitation phase, so it cannot always conduct
global search well and, in some cases, cannot find the global
optimal solution [14]. Furthermore, although SSA has a com-
petitive performance in single- objective problems, it still
has room for improvement in dealing with multi-objective
problems.

The chaotic local search is one of the most com-
mon method employed to boost the performance of meta-
heuristic algorithms [17]. Many researchers have applied
chaotic local search techniques to different optimization algo-
rithms [18], [20]. Arora and Anand [18] introduced chaotic
local search into the grasshopper optimization algorithm,
which effectively balances development and exploration, and
reduces the rejection or attraction between grasshoppers in
the optimization process. Similarly, Kohli and Arora [19]
added many chaotic maps to the grey wolf algorithm,
adjusting key parameters to control the exploitation and
exploration phases in the optimization process. Jordehi [20]
combined with chaos theory and bat swarm optimization
algorithm, using the ergodicity and non-repetition of chaotic
functions diversified the bat population and mitigated the
problem of premature convergence. Additionally, the the-
ory of opposition-based learning has been confirmed by
Tizhoosh [21] that the opposite number is closer than a
random number to the optimal value and can enhance the
search ability and accelerate convergence. This mathematical
method was widely used by many researchers in different
meta-heuristic algorithms [22], [25]. Kang et al. [22] intro-
duced the opposition-based learning in his letter, aiming to
solve the problem of premature convergence and low popu-
lation diversity in traditional PSO. Zhang et al. [23] used the
elite opposition-based learning to improve the performance
of original gray wolf optimizer, the experiment results show
the efficiency of their proposed algorithm compared with the
original GWO and other meta-heuristic algorithms in terms
of convergence rate and search ability.

The major contributions of this work are as follows.

1) A hybridization approach based on SSA, chaotic local

search, and opposition-based learning is proposed.
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2) Ten widely used chaotic maps are integrated into SSA,
and their performance is compared with the original
SSA.

3) The performance of the best opposition-based learn-
ing chaotic SSA is compared with various metaheuris-
tics that have shown excellent performance on various
benchmark functions.

The rest of the paper is arranged as follows: Section 2
presents the original SSA algorithm, mainly introducing its
mathematical model. Section 3 describes the detail of pro-
posed algorithm OCSSA. Also, the concepts of opposition-
based learning and chaotic local search are illustrated in
this section. Section 4 discusses the experimental results on
global benchmark problems. Finally, a brief conclusion and
recommendations for future work are offered in Section 5.

Il. AN OVERVIEW OF SSA

SSA is one of several random population-based algorithms
proposed in 2017, based on the population mechanism of a
salp swarm foraging in the ocean. In the deep sea, a salp
swarm usually forms a long chain. At the front of chain is the
leader, whereas the rest of salps are considered as followers.

A. MATHEMATICAL MODEL OF SSA

The optimization process of SSA is determined by the three
steps of population initialization, leader position updating,
and follower position updating, which basically mimic the
real clustering behavior of a salp swarm in the ocean. The
operation of SSA is discussed in the next three sections.

1) POPULATION INITIALIZATION

Let the predation space be an N x D dimensional Euclidean
space, where N is the scale of the salp swarm, and D is the
spatial dimension. There is a food F = [Fy, F», - - -, FplT
in space, and the salp position can be expressed as x, =
[Xn 1% 2,0, Xn ,D]T,n =1,2,---, N. The upper bound of
the search space is expressed as ub = [uby , ubs, - - -, ubD]T,
and the lower bound is Ib = [Iby, Iby, -+, Ibp]T. We randomly
initialize the population:

Xnxp = rand (N, D) x (ub — Ib) + Ib x ones (N, D) (1)

In the population, the states of leaders and followers in
d — th dimension are x14 and X4, respectively, where
m=2,3,---,N.

2) LEADER POSITION UPDATE

The leader of a salp swarm is responsible for searching for
food in the environment and guiding the movement of the
whole group. Its position is updated randomly by

_ ) Fa+ci1((ubg — Ibg) c2 + Iba),

c3>0.5 @)
Fyq —c1 ((ubg — Ibg) c2 + 1by) ,

X1,d
c3 < 0.5,

where ¢ and c3 are random numbers in the interval [0, 1].
The parameters enhance the randomness of leader movement,
the global search ability, and the individual diversity, and ¢
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is the main parameter in (2) which exists in all meta-heuristic
algorithms and often called the convergence factor. It bal-
ances the exploration and exploitation ability of the algo-
rithm in the iterative process. When the convergence factor
is greater than 1, the algorithm performs global exploration.
In contrast, when the factor is less than 1, the algorithm starts
to develop the local part and obtains the accurate estimation
value. To make the algorithm search globally in the first half
of the iteration and develop accurately in the second half of
the iteration, the value of the convergence factor is usually
a decreasing number from 2 to 0. The expression of the
convergence factor c1 in SSA is

2
o = 20 (ms) | 3)

where [ is the current iteration number, and /;,x 1S the maxi-
mum number of iterations.

3) FOLLOWER POSITION UPDATE

In SSA, there is no random movement of followers; they
follow in a chain sequence. Therefore, the position of fol-
lowers is only related to their initial position, motion speed,
and acceleration. The motion mode conforms to Newton’s
law of motion, so the motion distance R of followers can be
expressed as

1 2
R= 5az + vot. 4

Because the time ¢ is called iteration in optimization
process, the discrepancy between iterations is equal to 1,
i.e. t = 1. v is the follower speed, which is O at the begin-
ning of each iteration; and a is the acceleration of the fol-
lowers between the beginning and end of an iteration, i.e.
a= (Vﬁ'nal — vo) / t, since a follower only follows the salp
immediately in front of it. So, the movement speed Ve =

<xrln—l,a' - xrln,d) /t, where t = 1, vo = 0, hence

L/ I
R= B (xmfl,d _xm,d> ’ ®)
and the update equation of follower location is

1
I+1 I 1 1
X, d = Xm,d +R= E (xm,d +xm—l,d) ’ (6)

where xrln’ 4 18 the d dimensional position of the m—th follower
in the [ — th iteration, and xrlnf; is the follower location in the
(I + 1) — th iteration. Algorithm 1 provides the pseudo-code

of the standard SSA.

ill. THE PROPOSED OCSSA

This section introduces opposition-based learning (OBL) and
chaotic local search (CLS), which are used to enhance SSA
algorithm performance, and then the improved OCSSA is
described.
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Algorithm 1 Salp Swarm Algorithm
1. Initialize the randomly generated population of the salp
swarm X; (i=1,2,...,n).
2. Calculate the fitness value of each salp.
3. X* = the best search agent.
4. while stopping criteria not reached
. Update ¢ by (3)
. for each salp
. if(n ==1)

Update the position of the leader salp by (2)
else
0. Update the position of the follower salp
by (6)
11. end if
12. end for
13. Compute the fitness value of every salp.
14. Update X ™ if there is a better solution.
15. end while
16. return the best solution X* and its fitness value.

5
6
7
8
9
1

A. OPPOSITION-BASED LEARNING

Traditional meta-heuristic algorithms start the search process
by using a set of randomly generated numbers as the initial
solution. The convergence rate of the algorithm is not stable
and will be slow in most cases. To avoid these problems,
opposition-based learning is introduced, and both randomly
generated and reverse solutions are considered. The OBL
properties are defined as follows. Let P = (y1,y2, -+, YD)
be a point in D space, where y1, y2, - - -, yp € R, yi € [a;, b;],
Vi € {1,2,---,D}. Then the opposite point of P is OP =
(0y1, 0y2, - - -, 0ya), where oy; = a; + b; — ;.

B. CHAOTIC LOCAL SEARCH

To improve the performance of SSA in obtaining the global
optimal solution, a chaotic local search method based on
search strategy is introduced, which accelerates the search
process and forces it to advance to a region where the optimal
solution is more likely to be obtained, enhancing the ability of
algorithm exploitation [26]. CLS ends when a better solution
or local search termination condition is reached.

Chaos is a common phenomenon in nonlinear systems in
nature, and its ergodic property, namely traversing all states
within a certain range without repetition, is frequently used
as an optimization mechanism to escape from local optimum.
In this paper, 10 chaotic maps, as shown in Table 1, are used
to generate corresponding chaotic sets. The initial point of
these chaotic mappings can be any number between 0 and 1.
The initial value of the chaotic map used here is set to 0.7.
We adopted the initial values as in [27].

C. PROPOSED OCSSA

OCSSA adds chaotic local search and opposition-based
learning to solve the problem of local optimal solution and
low convergence speed. Because chaotic local search has
the characteristics of not repeatedly traversing the search
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TABLE 1. Details of chaotic maps applied on OCSSA.

No. Map Name Map Equation

1 Logistic map ¢y =4c,(1-¢,)

2 Cubic map Cop =2.59¢,(1-¢})

3 Sine map €y =Sin(ze,)

4 Sinusoidal map Couy = 2.3¢] sin(re,)

5 Singer map €. =1.073(7.86¢, —23.31c; +28.75¢;

-13.302875¢})

6 Tent map e /04, 0<c¢, <04
c"”{ (1-¢,)/0.6,04<c, <1

7 Gaussian map 0, ¢, =0
Gt = { (1/¢,)mod(1),c, #0

8 Chebyshevmap ¢, =cos(0.5c0s ¢,)

9 Bernoulli map ¢, /0.6, 0<c, 0.6
G :{ (¢, —0.6)/04,0.6<c, <1

10 Circle map

Cny =€, +0.5 7Esin(27rck )mod(l)
r

area and opposition-based learning can bring the algorithm
closer to the global optimal solution, the performance and
convergence speed of OCSSA will be improved into various
degrees compared to SSA. The next two sections describe the
improvement scheme of parameter initialization and a leader
position update stage.

1) IMPROVED POPULATION INITIALIZATION

SSA uses the random generation of salp population position
for population initialization; hence, its performance is unsta-
ble. If the generated initial population position is close to that
of the global optimal solution, then the convergence speed
of the algorithm and its ability to obtain the global optimal
solution will be good. But randomly generated initial solution
positions are rarely ideal. Therefore, the OCSSA algorithm
adds chaotic local search, which can provide a more reliable
initial population position when the population of salps is
initialized, so as to ensure that the convergence speed of
the algorithm will not fluctuate greatly, and to improve the
performance of the algorithm to a certain extent. The salp
population X is built by the chaotic local search using the
following equation:

Xij = l,‘j + Chl‘j * (u,/ - l,‘j) 7)

where x; € X,i = 1,2,...,N,j = 1,2,...,d, l; and
u; represent the lower boundary and the upper boundary
of the salp x; € X,respectively. The ch;; is the chaotic
map value constructed using the equation listed in Table 1.
In addition, adding opposition-based learning in the popula-
tion initialization can make the function of chaos more pow-
erful. By comparing the fitness value of the initial population
position before and after the change of chaotic local search,
the better individual position can be selected to improve the
performance of the algorithm in terms of convergence speed.
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Algorithm 2 OCSSA
1. Initialize the randomly generated population of the salp
swarm Xj,; (ini = 1,2, ..., n).

2. Using chaotic maps to form new population of the salp
swarm X; (i = 1,2, ...,n).

3. Calculate opposite point X,,; of X;.

4. Calculate the fitness value f (X;), f (X,;) of X; and X,;.
5.6 f (Xo)) < f (Xi)

6. Xi = Xoi

7. end if

8. Calculate the fitness value of X;.

9. X* = the best search agent.

10. while stopping criteria not reached

11. Update ¢ by (3)

12. for each salp

13. if(n==1)

14. Update the position of the leader salp by (2)

15. else

16. Update the position of the follower salp by (6)

17. end if

18. end for

19. Compute the
Xi(i=1,2,...,n).
20. Update X* if there is a better solution.

21. Using chaotic maps and opposition-based learning to
form another new solution X7, .
22. Calculate the fitness value f (X*) , f (X,,) of X* and
X}’TEW'

23.iff (X;,,) < f (X")

24.X* =X,
25. end if

26. end while

27. Return the best solution X* and its fitness value f (X™).

fitness value of every salp

2) IMPROVED LEADER POSITION UPDATE

Equation 2 shows that the position of leaders in the population
changes according to the position of food, while the position
of followers is adjusted according to the position of leaders.
So, the position of the leader is critical to the algorithm. If the
algorithm has ideal exploration ability, the leader’s position
is equal to the food position, i.e., the algorithm achieves the
global optimal solution. Food processing also differs signifi-
cantly between OCSSA and SSA.

To optimize the position of leaders, OCSSA introduces
chaotic local search and opposition-based learning. If the
leader position remains the same or changes only slightly,
the algorithm will fall into a local optimal solution. OCSSA
uses chaotic local search to escape this issue. At this stage
we set a threshold to control the number of CLS, and use
the equation 7 to change the position of food. When a bet-
ter position is found or the search upper limit is reached,
the algorithm ends the chaotic search and performs the OBL
phase. X*  updates its position according to the descrip-

new
tion in this paragraph. If the algorithm is always in a
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TABLE 2. The definition of CEC2005 benchmark.

Function Range GM
Unimodal benchmark functions
F(x)=Yx [-100,100] 0

i=1
@(X)=an\x,\+l_l[x, [-10,10] 0
B (x) =2 [-100,100] 0
F, (x) =max (x|, 1<i <) [-100,100] 0
F(x)=31100(x,, - ) +(x,-1)'] [-30,30] 0
F(x)=3(x+05)7 [-100,100] 0
Fy(x)= Y ix! +random]0,1) [-1.28,1.28] 0
Multimodal benchmark functions
F (%)= ~xsin({f[x]) [-500,500] -8379.658

i=1
F,(x) = Y[ ~10cos (27x,) +10] [-5.12,5.12] 0
F, (x)=—20exp[—0.2 ,li xf]—exp[li cos(Zﬂ'x,)j+ 20+e [-32,32] 0

nois nois
1 n n x
F,(x)= mgxf —l;[cos[—‘ij+l [-600,600] 0
n-1 n

F,(x) =5{10sin(;zyI )+ 2 (v, —1) [1+10sin’ (zy,,,) ]+ (», —1)2}+2u(x,,10,100,4)

n i=1 =l [—50,50] 0

N +1
¥, 2
k(x,-a)", x>a
u(x;,a,k,m)=40, —a<x<a 0
k(-x,—a)",x,<-a

Fn(x)zO‘I{Sin2(3ﬂxl)+i(x,. =1)"[1+sin” (37, +1) |+ (x, —1)" [ 1+sin’ (27x, )]}+iu(x/.,5,100,4) [-50,50] 0

nonconvergent state, it can more quickly reach the position
near the global optimal solution, to improve the convergence
speed and accuracy. Algorithm 2 is the pseudo-code of the
improved salp swarm algorithm.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENT PLATFORM

All the algorithms compared in this section are performed on
MATLAB 2017 installed over Windows 10 (64bit) operating

VOLUME 8, 2020

system that runs on a core i5 personal computer with 8GB
RAM.

B. INTRODUCTION OF BENCHMARK FUNCTIONS

1) THE CLASSICAL CEC2005 BENCHMARK FUNCTIONS

We selected a set of 13 functions from the CEC2005 bench-
mark functions to compare the performance of the pro-
posed algorithm with original SSA and other well-known
algorithms. This benchmark functions can be divided into
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TABLE 3. The definition of CEC2015 benchmark.

No. Types Name Optimum
F1(CEC) Unimodal functions Rotated high conditioned elliptic function 100
F2(CEC) Rotated bent cigar function 200
F3(CEC) Simple multimodal ~ Shifted and rotated HGBat function 300
functions

F4(CEC) Shifted and rotated Weierstrass function 400
F5(CEC) Shifted and rotated Ackleys function 500
F6(CEC) Shifted and rotated HappyCat function 600
F7(CEC) Shifted and rotated Griewanks function 700
F8(CEC) Shifted and rotated Rastrigins function 800
F9(CEC) Shifted and rotated Sphere function 900
F10(CEC) Hybrid functions Hybrid function 1 (N=3) 1000
F11(CEC) Hybrid function 2 (N=4) 1100
F12(CEC) Hybrid function 3 (N=5) 1200
F13(CEC) Composition functions Composition function 1 (N=3) 1300
F14(CEC) Composition function 2 (N=3) 1400
F15(CEC) Composition function 3 (N=5) 1500

Search range: [-100,100]

Dimension: Dim=50

two types; one is called the unimodal functions (F1-F7)
which can be used to examine the optimization accuracy and
convergence rate of an algorithm. These functions have only
one extreme value in the search area. The other is multimode
functions (F8-F13) and they are used to evaluate the ability
of an algorithm to avoid local optimal solutions. They have
more than one extreme value in the given area domain. The
mathematical formulas and related properties of these func-
tions are listed in Table 2. The dimension of each function is
set to 20.

2) THE CEC2015 BENCHMARK FUNCTIONS

From the CEC2015 functions, we selected a set of 15 func-
tions as a second benchmark to test the performance of algo-
rithms which are used in this paper. They can be used to
deal with the competition on single objective optimization
problems. In addition to the 2005 test functions, these test
functions include some new features, such as new basic prob-
lems, the shifted and rotated problems. A brief description of
these benchmark problems is listed in Table 3.

C. PARAMETER SETTING

All algorithms used in the paper have a population of 30 and
the maximum number of iterations is 500. For the statistical
analysis, each benchmark function is carried out for 50 inde-
pendent runs to minimize the statistical error of the results.

36490

The relevant parameters in WOA, GWO and ABC algo-
rithms adopt the values set in the original algorithm. The
mutation probability in DE is 0.5 and the weight factor value
is 0.9. The learning factor value of PSO is 2, the inertia factor
is 0.6, and the maximum velocity of particle is 10, which is
as same as OCSSA’s step distance.

D. COMPARISON OF OCSSA AND ORIGINAL SSA

In this part, we compare the SSA and the proposed OCSSA
algorithm on 13 classical benchmark functions in terms of
numerical characteristics (mean, standard deviation, and sta-
tistical best), algorithm diversity and algorithm computa-
tional complexity and runtime. The specific information is
described in the following sections.

1) NUMERICAL CHARACTERISTICS

A set of 13 functions from CEC2005 benchmark is used
in this section to evaluate the performance of origi-
nal SSA and the proposed algorithm OCSSA. OCSSAI,
OCSS2, ..., OCSSAI10 correspond to the 10 chaotic maps
listed in Table 1. The comparison results for original SSA
and ten versions of OCCSA using the unimodal and the
multimodal functions are shown in Tables 4-5.

Table 4 displays the results of the original SSA and
different chaotic versions of OCSSA on the unimodal
functions. The simulation results in this table show that
OCSS A4 has the best mean value and statistical best among 6
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TABLE 4. Results of unimodal benchmark functions.

F1 Best Mean Std F2 Best Mean Std
SSA 2.95E-09 6.63E-09 1.83E-09 SSA 2.91E-04 1.87E-01 2.57E-01
OCSSALl 4.97E-47 6.10E-42 2.80E-41 OCSSA1 9.27E-25 3.14E-09 1.75E-08
OCSSA2 1.12E-52 1.20E-38 6.67E-38 OCSSA2 2.08E-27 3.71E-20 2.06E-19
OCSSA3 2.56E-49 1.22E-41 3.79E-41 OCSSA3 2.16E-25 2.43E-17 1.35E-16
OCSSA4 0.00E+00 0.00E+00 0.00E+00 OCSSA4 2.01E-230 1.57E-179 0.00E+00
OCSSAS 3.09E-116 8.12E-28 4.51E-27 OCSSAS 9.18E-55 1.64E-05 9.09E-05
OCSSA6 1.42E-110 6.19E-102 2.12E-101 OCSSA6 1.45E-57 1.54E-31 8.57E-31
OCSSA7 2.95E-108 4.48E-94 2.40E-93 OCSSA7 9.05E-58 1.18E-51 5.29E-51
OCSSAS 0.00E+00 4.29E-34 2.31E-33 OCSSA8 3.96E-197 3.18E-06 1.77E-05
OCSSA9 3.57E-110 6.08E-98 1.83E-97 OCSSA9 2.80E-55 1.73E-23 9.64E-23
OCSSA10 1.05E-10 1.24E-09 1.39E-09 OCSSA10 6.61E-06 1.27E-04 4.28E-04
F3 Best Mean Std F4 Best Mean Std
SSA 1.02E+01 1.09E+02 1.06E+02 SSA 1.78E-01 2.80E+00 3.51E+00
OCSSA1 2.74E-11 5.39E-02 1.55E-01 OCSSA1 6.69E-13 3.42E-12 2.80E-12
OCSSA2 8.60E-10 1.13E-02 2.48E-02 OCSSA2 2.50E-20 1.82E-18 1.97E-18
OCSSA3 2.03E-20 2.59E-02 7.42E-02 OCSSA3 1.79E-13 1.42E-12 1.96E-12
OCSSA4 0.00E+00 0.00E+00 0.00E+00 OCSSA4 8.75E-235 4.21E-208 0.00E+00
OCSSAS 1.25E-09 9.04E-01 2.56E+00 OCSSAS 1.20E-63 9.58E-47 2.91E-46
OCSSA6 2.92E-52 6.97E-10 1.90E-09 OCSSA6 1.29E-47 4.89E-44 1.40E-43
OCSSA7 7.86E-71 2.20E-10 5.68E-10 OCSSA7 9.40E-42 1.45E-37 4.58E-37
OCSSAS 4.49E-241 6.23E-03 1.73E-02 OCSSA8 1.41E-233 3.19E-198 0.00E+00
OCSSA9 1.77E-145 3.49E-85 1.00E-84 OCSSA9 3.31E-39 9.29E-38 1.09E-37
OCSSA10 1.07E-09 6.21E+00 1.70E+01 OCSSA10 5.26E-06 8.12E-06 1.75E-06
F5 Best Mean Std F6 Best Mean Std
SSA 1.73E+01 5.55E+01 1.70E+03 SSA 3.85E-09 8.30E-09 3.02E-09
OCSSAl 1.86E+01 1.86E+01 3.04E-02 OCSSA1 6.21E-10 2.97E-09 1.44E-09
OCSSA2 1.85E+01 1.86E+01 3.71E-02 OCSSA2 1.32E-09 4.43E-09 1.63E-09
OCSSA3 1.86E+01 1.86E+01 2.45E-02 OCSSA3 3.71E-10 2.20E-09 1.06E-09
OCSSA4 9.41E-09 1.52E+01 6.95E+00 OCSSA4 3.26E-14 1.04E-10 1.81E-10
OCSSAS 2.28E-07 1.57E+01 6.34E+00 OCSSAS 1.35E-09 5.24E-09 1.75E-09
OCSSA6 1.86E+01 1.86E+01 3.11E-02 OCSSA6 3.75E-10 2.24E-09 1.24E-09
OCSSA7 1.86E+01 1.86E+01 3.19E-02 OCSSA7 1.12E-11 1.76E-09 1.56E-09
OCSSAS 1.85E-07 1.75E+01 3.34E+00 OCSSA8 8.43E-11 4.05E-09 1.87E-09
OCSSA9 1.86E+01 1.87E+01 2.64E-02 OCSSA9 8.50E-12 1.20E-09 9.70E-10
OCSSA10 1.49E+01 2.95E+01 2.68E+01 OCSSA10 3.82E-09 7.92E-09 2.39E-09
F7 Best Mean Std
SSA 2.53E-02 6.45E-02 2.56E-02
OCSSALl 2.04E-06 6.28E-04 7.36E-04
OCSSA2 7.00E-06 4.34E-04 6.05E-04
OCSSA3 8.96E-06 3.96E-04 5.62E-04
OCSSA4 7.20E-06 5.18E-04 6.90E-04
OCSSAS 1.46E-07 3.46E-05 2.23E-05
OCSSA6 1.61E-06 6.82E-04 6.87E-04
OCSSA7 9.78E-06 5.75E-04 6.13E-04
OCSSAS 1.13E-05 4.95E-04 7.89E-04
OCSSA9 5.48E-06 2.43E-04 2.93E-04
OCSSA10 1.91E-05 1.85E-02 1.94E-02
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TABLE 5. Results of multimodal benchmark functions.

F8 Best Mean Std F9 Best Mean Std
SSA -6360.384 -5100.721 537.607 SSA 5.97E+00 2.92E+01 8.73E+02
OCSSALl -21777.578 -12304.429 3402.744 OCSSA1 0.00E+00 1.34E+00 2.85E+00
OCSSA2 -17624.573 -10567.805 3418.340 OCSSA2 0.00E+00 0.00E+00 0.00E+00
OCSSA3 -14301.474 -12155.986 2163.005 OCSSA3 0.00E+00 2.49E-01 6.34E-01
OCSSA4 -26072.400 -11567.622 5019.843 OCSSA4 0.00E+00 0.00E+00 0.00E+00
OCSSAS -20970.766 -11363.730 4055.461 OCSSAS 0.00E+00 0.00E+00 0.00E+00
OCSSA6 -14301.449 -11523.506 2611.771 OCSSA6 0.00E+00 3.42E-01 8.78E-01
OCSSA7 -8379.658 -8379.658 0.000 OCSSA7 0.00E+00 4.97E-01 1.43E+00
OCSSAS -20473.338 -11424.895 4154.301 OCSSAS 0.00E+00 0.00E+00 0.00E+00
OCSSA9 -14300.685 -10097.616 2540.583 OCSSA9 0.00E+00 0.00E+00 0.00E+00
OCSSA10 -16857.835 -13571.517 2249.651 OCSSA10 6.40E-11 8.05E+00 1.46E+01
F10 Best Mean Std F11 Best Mean Std
SSA 1.28E-05 9.69E-01 2.91E+01 SSA 7.14E-08 2.29E-02 2.11E-02
OCSSALI 8.88E-16 6.44E-15 5.63E-15 OCSSA1 0.00E+00 0.00E+00 0.00E+00
OCSSA2 8.88E-16 7.44E-15 5.60E-15 OCSSA2 0.00E+00 0.00E+00 0.00E+00
OCSSA3 8.88E-16 4.55E-15 2.59E-15 OCSSA3 0.00E+00 0.00E+00 0.00E+00
OCSSA4 8.88E-16 1.11E-15 6.38E-16 OCSSA4 0.00E+00 0.00E+00 0.00E+00
OCSSAS 8.88E-16 2.81E-08 7.98E-08 OCSSAS 0.00E+00 1.08E-09 2.84E-09
OCSSA6 8.88E-16 4.33E-15 2.15E-15 OCSSA6 0.00E+00 0.00E+00 0.00E+00
OCSSA7 8.88E-16 2.89E-15 1.76E-15 OCSSA7 0.00E+00 0.00E+00 0.00E+00
OCSSAS 8.88E-16 1.55E-15 1.32E-15 OCSSA8 0.00E+00 6.73E-18 1.99E-17
OCSSA9 8.88E-16 1.44E-15 1.21E-15 OCSSA9 0.00E+00 0.00E+00 0.00E+00
OCSSA10 4.71E-06 1.01E-05 4.55E-06 OCSSA10 3.63E-10 1.87E-03 4.39E-03
F12 Best Mean Std F13 Best Mean Std
SSA 4.64E-01 3.56E+00 1.87E+00 SSA 1.04E-07 1.05E-01 4.11E-01
OCSSAl 3.06E-11 1.14E-01 1.66E-01 OCSSA1 1.23E-10 1.28E-09 1.50E-09
OCSSA2 4.50E-11 1.26E-01 1.90E-01 OCSSA2 1.36E-10 1.71E-08 4.73E-08
OCSSA3 1.31E-11 5.90E-02 8.47E-02 OCSSA3 1.15E-11 3.18E-10 2.18E-10
OCSSA4 1.34E-14 1.55E-12 1.56E-12 OCSSA4 6.03E-17 3.36E-02 1.60E-01
OCSSAS 8.50E-11 7.26E-02 1.30E-01 OCSSAS 1.67E-10 1.32E-03 7.10E-03
OCSSA6 4.65E-12 1.71E-02 4.15E-02 OCSSA6 1.43E-13 2.48E-10 2.58E-10
OCSSA7 2.04E-13 3.11E-11 3.76E-11 OCSSA7 5.89E-11 3.20E-01 6.54E-01
OCSSAS 4.60E-11 3.98E-04 9.85E-04 OCSSA8 1.51E-11 1.51E-08 3.81E-08
OCSSA9 3.48E-15 3.71E-12 3.88E-12 OCSSA9 3.89E-14 3.00E-11 2.53E-11
OCSSA10 1.00E-09 6.93E-01 1.14E+00 OCSSA10 6.51E-09 4.78E-03 7.65E-03

functions (F1-F6), OCSSAS5 has one best mean value
on F7. From the perspective of standard deviation,
OCSSA4 achieved the 5 best results, and OCSSA3 and
OCSSAS each has an optimal standard deviation on 7 test
functions. It is worth mentioning that OCSSA4 has achieved
theoretical optimal values on the F1 and F3 test function.
Table 5 shows the performance of the original SSA and
the proposed algorithm on multimodal functions. In terms of
mean value, OCSSA4 performed the best, achieving 4 statis-
tical bests on 6 test functions (F9-F12), OCSSA9 ranked sec-
ond, and achieved 3 optimal values (F9, F11, F13), OCSSA2
(F9, F11) and OCSSA7 (F8, F11) both have two optimal
mean value, while OCSSAS5 and OCSSAS both obtain the
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best average value on F8. From the perspective of standard
deviation and statistical optimality, OCSSA4 is still the best
performing improved algorithm.

It can be seen from the results of Table 4 and Table 5 that
OCSSA4 which combined with the sinusoidal chaotic map
performs best among many different improved versions of
OCSSA algorithm. The improved algorithm has better opti-
mization effect than the original SSA algorithm in both uni-
modal and multimodal functions.

2) DIVERSITY OF THE ALGORITHMS
In order to evaluate the effect of chaotic local search and
opposition-based learning on the exploration and exploitation
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FIGURE 1. The diversity of the proposed algorithm and SSA on F3, F5, F10, F12 benchmark functions (CEC2005).
TABLE 6. Results of algorithm runtime.
SSA OCSSA4 SSA OCSSA4
F1 Time 0.404 0.848 F8 Time 0.432 0.810
SR 0 100 SR 6.67 100
F2 Time 0.446 0.794 F9 Time 0.438 0.934
SR 0 100 SR 0 100
F3 Time 0.844 1.429 F10 Time 0.505 1.328
SR 0 100 SR 0 96.67
F4 Time 0.400 0.983 F11 Time 0.489 1.056
SR 0 100 SR 0 100
F5 Time 0.447 0.960 F12 Time 0.795 1.358
SR 0 18 SR 0 60
Fo6 Time 0.337 0.861 F13 Time 0.782 1.312
SR 20 100 SR 26.67 96.67
F7 Time 0.514 1.132
SR 0 100

of OCSSA, diversity plots are presented in Figs.1. The diver-
sity plots represent the average distance between each search
agent in the optimization process. large average distance
between search agents indicates high population diversity and
vice-versa [28]. As can be analyzed in Figs.1, OCSSA4 can
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keep high population diversity in the initial phases of opti-
mization process. this allows OCSSA4 to avoid the local
optimal solution phenomenon, and make the algorithm con-
verge to the global optimal solution direction to obtain a
more accurate solution. At the same time, OCSSA4 has a
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TABLE 7. Simulation results of best OCSSA versus other metaheuristics on CEC 2005 benchmark functions.

Functions DE WOA PSO ABC GWO OCSSA4
Best 5.01E-04 2.82E-86 2.13E-06 4.37E-08 3.66E-37 0.00E+00
F1 Mean 8.58E-03 5.37E-72 1.56E-05 1.41E-07 6.22E-36 0.00E+00
Std 1.59E-02 1.77E-71 1.14E-05 9.16E-08 1.01E-35 0.00E+00
Best 1.12E-02 2.38E-57 3.76E-04 2.07E-05 9.47E-23 1.85E-237
F2 Mean 3.53E-02 3.08E-51 2.05E-03 6.73E-05 1.10E-21 3.27E-199
Std 4.66E-02 8.66E-51 1.92E-03 3.99E-05 8.46E-22 0.00E+00
Best 2.89E+01 1.22E+03 1.61E+00 4.65E+03 3.91E-14 0.00E+00
F3 Mean 1.03E+02 7.70E+03 4.54E+00 7.91E+03 9.33E-11 0.00E+00
Std 6.32E+01 3.73E+03 2.76E+00 1.72E+03 1.49E-10 0.00E+00
Best 2.68E+00 1.43E-02 2.08E-01 1.63E+01 8.61E-11 3.45E-235
F4 Mean 5.44E+00 1.35E+01 3.37E-01 2.37E+01 7.26E-10 4.39E-210
Std 1.94E+00 1.88E+01 1.21E-01 6.16E+00 8.66E-10 0.00E+00
Best 1.50E+01 1.69E+01 1.12E+01 9.97E+00 1.60E+01 1.16E-07
F5 Mean 4.75E+01 1.75E+01 3.72E+01 2.13E+01 1.68E+01 1.19E+01
Std 4.07E+01 4.79E-01 2.94E+01 9.20E+00 7.47E-01 8.55E+00
Best 1.17E-03 1.20E-02 3.61E-06 4.67E-08 1.74E-05 3.46E-13
F6 Mean 1.32E-02 1.73E-01 2.71E-05 9.55E-08 2.05E-01 8.08E-11
Std 2.97E-02 1.47E-01 2.75E-05 8.44E-08 1.75E-01 1.76E-10
Best 2.40E-02 1.39E-04 2.31E-02 1.03E-01 1.22E-04 5.69E-05
F7 Mean 3.41E-02 3.56E-03 4.37E-02 1.43E-01 1.03E-03 1.62E-04
Std 9.39E-03 3.66E-03 1.60E-02 3.71E-02 5.80E-04 1.60E-04
Best -4331.929 -8379.270 -4350.107 -6.98E+07 -4784.750 -22853.089
F8 Mean -3771.686 -6899.816 -3135.995 -1.90E+07 -4034.524 -11365.189
Std 327.686 1201.246 689.384 1.84E+07 557.128 5801.900
Best 1.08E+02 0.00E+00 1.20E+01 1.01E+00 0.00E+00 0.00E+00
F9 Mean 1.21E+02 5.68E-15 2.43E+01 2.17E+00 4.49E-01 0.00E+00
Std 6.74E+00 1.71E-14 7.43E+00 1.03E+00 1.35E+00 0.00E+00
Best 4.49E-01 8.88E-16 2.23E-02 5.99E-01 7.19E-14 8.88E-16
F10 Mean 1.29E+00 2.50E-15 8.18E-02 1.02E+00 8.42E-14 1.53E-15
Std 8.94E-01 1.78E-15 5.13E-02 2.67E-01 1.34E-14 1.42E-15
Best 1.98E-03 0.00E+00 4.19E-02 5.42E-04 0.00E+00 0.00E+00
F11 Mean 6.78E-02 2.00E-02 2.47E-01 6.54E-03 6.80E-03 0.00E+00
Std 7.49E-02 4.39E-02 4.33E-01 7.77E-03 8.62E-03 0.00E+00
Best 6.20E-05 1.90E-03 4.96E-08 3.55E-09 5.43E-06 5.67E-15
F12 Mean 9.14E-04 1.42E-02 4.24E-02 5.36E-08 2.21E-02 8.68E-13
Std 1.16E-03 7.34E-03 7.13E-02 8.35E-08 1.21E-02 1.04E-12
Best 5.44E-04 8.67E-02 1.70E-06 3.14E-08 2.82E-05 1.66E-15
F13 Mean 5.30E-03 2.43E-01 2.46E-03 1.20E-05 1.00E-01 1.98E-02
Std 5.58E-03 1.69E-01 4.32E-03 2.36E-05 8.41E-02 5.93E-02

smaller population diversity during the exploration stage,
which means that OCSSA4 can achieve higher accuracy than
original SSA. this conclusion is confirmed in the previous
section. it should be noted that during the exploration phase of
the algorithm, the diversity of OCSSA is lower than the origi-
nal SSA, which can be explained. because OCSSA introduces
chaotic local search and opposition-based learning during the
population initialization stage, which results in a population
that tends to be more optimal, which will reduce the diversity
of the population. although the convergence speed of the two
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is not much different from the Figs.1, from the perspective
of convergence accuracy, the performance of the proposed
algorithm is better, which means that the proposed algorithm
has a stronger ability to find the global optimal solution.

3) COMPUTATIONAL COMPLEXITY AND RUNTIME

The computational complexity of an optimization algo-
rithm is a key metric for evaluating the runtime of an
algorithm. The computational complexity can be defined
based on the structure of the algorithm. The computational
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TABLE 8. Simulation results of best OCSSA versus other metaheuristics on CEC 2015 benchmark functions.
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Functions ABC GWO WOA PSO DE OCSSA4

Best 9.52E+08 5.78E+08 4.58E+09 7.34E+09 9.23E+09 3.62E+08

F1 Mean 1.92E+09 3.97E+09 1.09E+10 1.23E+10 1.48E+10 6.03E+08

Std 6.23E+08 3.68E+09 4.31E+09 4.88E+09 3.87E+09 1.85E+08

Best 8.13E+10 1.04E+11 2.06E+11 1.78E+11 2.67E+11 3.69E+10

F2 Mean 1.06E+11 1.66E+11 2.79E+11 2.53E+11 3.19E+11 4.79E+10

Std 1.63E+10 2.07E+10 3.77E+10 3.79E+10 3.25E+10 7.89E+09

Best 320.7851 321.2041 321.1957 321.0532 321.4291 320.6450

F3 Mean 320.8792 321.3010 321.3085 321.2574 321.5082 320.8289
Std 0.0476 0.0423 0.0444 0.0965 0.0400 0.1036

Best 1.10E+03 9.33E+02 1.26E+03 1.34E+03 1.61E+03 8.77E+02

F4 Mean 1.20E+03 1.18E+03 1.49E+03 1.45E+03 1.75E+03 9.71E+02

Std 5.79E+01 9.15E+01 1.51E+02 8.27E+01 8.18E+01 4.76E+01

Best 1.05E+04 1.15E+04 1.41E+04 1.44E+04 1.67E+04 8.70E+03

F5 Mean 1.09E+04 1.42E+04 1.56E+04 1.53E+04 1.76E+04 1.01E+04

Std 2.74E+02 1.29E+03 8.20E+02 4.85E+02 5.22E+02 5.57E+02

Best 7.69E+07 1.07E+07 8.74E+07 3.43E+08 3.35E+08 2.89E+06

F6 Mean 2.23E+08 1.04E+08 6.84E+08 8.66E+08 1.60E+09 1.77E+07

Std 1.10E+08 7.01E+07 4.66E+08 4.54E+08 6.84E+08 1.21E+07

Best 1.47E+03 9.11E+02 2.28E+03 3.18E+03 5.06E+03 8.60E+02

F7 Mean 2.10E+03 2.51E+03 6.25E+03 5.62E+03 7.88E+03 9.42E+02

Std 5.61E+02 1.91E+03 2.25E+03 1.71E+03 2.98E+03 4.93E+01

Best 3.96E+07 4.40E+06 1.21E+08 8.91E+07 2.84E+08 1.49E+06

F8 Mean 1.16E+08 3.96E+07 3.71E+08 3.04E+08 7.39E+08 6.03E+06

Std 6.17E+07 4.42E+07 2.85E+08 1.98E+08 4.19E+08 2.22E+06

Best 1.32E+03 1.19E+03 1.67E+03 1.98E+03 1.96E+03 1.07E+03

F9 Mean 1.49E+03 1.71E+03 2.51E+03 2.70E+03 2.72E+03 1.10E+03

Std 7.43E+01 5.06E+02 4.50E+02 3.48E+02 2.91E+02 1.86E+01

Best 9.48E+07 1.93E+07 6.43E+07 2.05E+08 3.03E+08 2.23E+06

F10 Mean 2.63E+08 1.73E+08 6.06E+08 5.75E+08 1.39E+09 6.65E+06

Std 1.08E+08 1.26E+08 3.66E+08 3.59E+08 4.86E+08 3.34E+06

Best 2.85E+03 2.20E+03 3.64E+03 3.91E+03 4.23E+03 2.82E+03

F11 Mean 3.20E+03 3.75E+03 3.82E+03 4.90E+03 5.55E+03 3.18E+03

Std 1.34E+02 7.63E+02 1.11E+02 7.73E+02 1.13E+03 2.39E+02

Best 1.39E+03 1.44E+03 1.43E+03 1.52E+03 1.55E+03 1.34E+03

F12 Mean 1.42E+03 1.57E+03 1.52E+03 1.67E+03 1.69E+03 1.35E+03

Std 1.35E+01 7.15E+01 5.03E+01 5.51E+01 6.20E+01 6.92E+00

Best 1.54E+03 1.62E+03 1.55E+03 2.08E+03 1.99E+03 1.53E+03

F13 Mean 1.54E+03 4.80E+03 1.57E+03 5.81E+03 5.72E+03 1.54E+03

Std 2.32E+00 2.87E+03 3.06E+01 3.73E+03 2.66E+03 7.49E+00

Best 1.29E+05 1.49E+05 1.75E+05 2.80E+05 4.28E+05 6.92E+00

F14 Mean 1.47E+05 4.24E+05 2.72E+05 7.04E+05 8.58E+05 8.16E+05

Std 1.03E+04 2.97E+05 4.61E+04 2.97E+05 2.73E+05 1.83E+06

Best 1.70E+03 7.90E+05 4.05E+04 2.91E+05 4.13E+04 1.63E+03

F15 Mean 1.93E+03 2.55E+06 6.04E+04 7.45E+05 6.59E+05 1.65E+03

Std 1.51E+02 1.59E+06 1.27E+04 3.55E+05 6.41E+05 1.17E+01
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FIGURE 2. The convergence curves of proposed algorithm on CEC2005 benchmark functions.

complexity of SSA depends on the number of salps,
dimension of the problem and maximum number of itera-
tions. Overall, by analyzing the steps of algorithms, the com-
putational complexity of the original SSA algorithm is
O (¢t (d *n+ Cof *n)). OCSSA adds CLS and OBL during
the population initialization phase and iterative optimiza-
tion process, respectively. In the population initialization
phase, the time complexity of OCSSA is O (d * n 4+ Cof * n),
and the time complexity of the optimization iteration
process is O (¢ (d * (n + max C) + Cof % n)). Combine the
above two parts, the time complexity of OCSSA is
O (t (d * (n + max C) + Cof * n)), where ¢ is the number of
iterations, d shows the number of dimension, » indicates the
number of search agents, Cof is the cost of objective function,
and max C is the maximum iteration number of CLS.

It can be concluded that the limitation of the proposed
algorithm is still the computational complexity which needs
to be reduced. The reason for this complexity results from two
components 1) The OBL strategy 2) The CLS method, since
both are applied to the whole population.

In addition, we analyzed the results of the two algorithms
from the aspect of experimental execution time. The detailed
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results are shown in Table 6. In this table, the runtime of
algorithms is the average of 50 experimental results, and SR
represents the probability that algorithms can reach the ideal
global optimal value. From algorithms runtime of the 13 test
functions in the table, it can be seen that the execution time of
OCSSA4 is longer than the original SSA algorithm. The main
reason is that OCSSA algorithm adds two methods based on
the original algorithm, so the long runtime is unquestionable.
However, from the perspective of the optimal value obtained
by the algorithm, the effect of OCSSA is much better than the
original SSA algorithm. We sacrificed the execution time of
the algorithm to improve the accuracy of its optimization.

E. COMPARISON OF OCSSA AND ORIGINAL SSA

In this part, we use the two types of benchmark functions
(CEC2005 and CEC 2015 functions) to evaluate the perfor-
mance of the proposed algorithm and compare it with several
other algorithms which including ABC, DE, GWO, PSO,
WOA. Here we choose the fourth of 10 different versions
of OCSSA, that is, OCSSA4 as the algorithm of this paper
compared with other algorithms. Meanwhile, in order to add
further analysis to our results, a nonparametric Wilcoxon’s
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FIGURE 3. The convergence curves of proposed algorithm on CEC2015 benchmark functions.

rank sum (WRS) test is used to give a statistical value to deter-
mine if the two being compared are significantly different.
Experimental data and discussion are explained in detail in
the following sections.

1) NUMERICAL CHARACTERISTICS

The comparison results of OCSSA4 and other meta-heuristic
algorithms on the two types of benchmark functions are
shown in Tables 7-8, also, Figures 2-3 show the convergence
curves for the algorithms.

Table 7 shows the results of the OCSSA4 and other opti-
mization algorithms on the CEC2005 classical functions. The
best performing values in each evaluation criterion are bold.
The simulation results in Table 6 show that OCSSA4 has
the best mean value among the 11 benchmark functions
(F1,F2,...,F7,F9, ..., F12), and the WOA and ABC algo-
rithms rank second, respectively achieving the ideal mean
value in F8 and F12. From the perspective of optimal value,
OCSSA4 obtained the optimal value in 12 test functions
(F1-F7, F9-F12), and WOA and GWO obtained the optimal
value in four (F8-F11) and two (F9, F11) benchmark test
functions, respectively. Comparing the results of the standard
deviation, it can be found that OCCSSA4 still has a large
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advantage, while DE, ABC, and WOA each obtain the opti-
mal standard deviation in one test function.

Table 8 displays the performance of the OCSSA4 and
other optimization algorithms on the CEC2015 benchmark
functions. From an average point of view, OCSSA4 has the
best performance, achieving the best performance among 14
(F1-F13, F15) functions, and the second is the ABC algo-
rithm, which obtains the best average value on the F14 func-
tion. From this table, we can see that OCSSA4 obtained
the optimal standard deviation on 10 test functions (F1, F2,
F4, F6-F10, F12, F15). The second one was ABC, which
performed best on three test functions (F5, F13, F14). The
two algorithms WOA and DE were on F11 and F3, respec-
tively get the best standard deviation. In terms of the statisti-
cally optimal values that the algorithm can obtain, OCSSA4
performs best on the majority of test functions compared
to several other algorithms. The experimental results also
confirm the NFL (No Free Lunch) theorem [29] from the
side, i.e., an algorithm cannot perform optimally on all
optimization problems.

To clearly observe and analyze the convergence curves
of OCSSA and other algorithms, these algorithms were run
50 times independently, and the convergence performance of
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TABLE 9. The WRS test for CEC2005 benchmark functions.

Statistics DE WOA PSO ABC GWO
F1 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F2 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F3 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F4 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F5 p-value 9.63E-02 1.62E-01 9.63E-02 9.63E-02 1.62E-01
H 0 0 0 0
F6 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F7 p-value 1.57E-04 2.85E-04 1.57E-04 1.57E-04 2.85E-04
H 1 1 1 1
F8 p-value 3.81E-04 2.50E-03 2.12E-04 1.57E-04 6.70E-04
H 1 1 1 1
F9 p-value 1.57E-04 7.05E-01 1.57E-04 1.57E-04 8.15E-03
H 1 1 1 1
F10 p-value 1.57E-04 2.57E-01 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F11 p-value 1.57E-04 4.50E-01 1.57E-04 1.57E-04 5.88E-02
H 1 1 1 0
F12 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1
F13 p-value 2.50E-03 6.70E-04 2.50E-03 2.50E-03 1.15E-03
H 1 1 1 1
the algorithms was tested using two set of benchmark func- - N »
tions. Fig.2 shows the convergence performance of the algo- N
rithm on the CEC2005 test function. On unimodal functions i
(F1, F7), OCSSA’s convergence speed is better than several ".' D
other algorithms, and on multimodal functions (F9, F11), E
Although WOA and GWO can finally reach the I deal optimal 1't
value, the convergence speed of OCSSA is still the fastest. — i‘_‘i_

Fig.3 displays the convergence speed of the algorithm on the
CEC2015 test function. It can be seen from the figure that the
convergence speed of OCSSA is still relatively good.

By synthesizing the performance of OCSSA and several
other algorithms, it can be concluded that OCSSA performs
very well both in terms of convergence accuracy and con-
vergence speed. The main reason lies in the two methods
introduced, which perform chaotic transformation of the pop-
ulation position during the initialization stage. And OBL,
which makes the initial position of the population better than
the randomly generated location, which accelerates the con-
vergence rate to a certain extent, and during the optimization
process, CLS can avoid the algorithm from falling into the
local optimal solution, and OBL speeds up the convergence
speed of the algorithm.

2) STATISTICAL TEST

In order to prove that the performance of the OCSSA4 algo-
rithm is significantly different from several other algorithms
on the test function, this section introduces Wilcoxon’s rank
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FIGURE 4. The schematic of the compression spring.

sum test. The detailed results are shown in Tables 9-10 for the
CEC2005 and the CEC2015 benchmark functions, respec-
tively. These two tables show the p-values and H-values of
several comparison algorithms. When the P value is less
than 0.05, H = 1, which means the null hypothesis, that
is, the two have significant differences. Conversely, when
the p-value is greater than 0.05, the null hypothesis does
not hold, and H = 0, the difference between the two is not
obvious. From Table 9, it can be concluded that OCSSA4 has
significant differences in most test functions compared to
other algorithms except F5. On the CEC2015 from table
10 test functions, OCSSA4 also shows significantly different
performance from other algorithms.

F. REAL WORLD APPLICATIONS
This section applies the OCSSA proposed in this paper
to a real-world problem, the tension/compression spring
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TABLE 10. The WRS test for CEC2015 benchmark functions.

Statistics DE WOA PSO ABC GWO
Fl1 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.67E-05
H 1 1 1 1 1
F2 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.07E-06
H 1 1 1 1 1
F3 p-value 3.07E-06 3.07E-06 4.58E-06 5.38E-02 3.07E-06
H 1 1 1 0 1
F4 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 5.25E-05
H 1 1 1 1 1
F5 p-value 3.07E-06 3.07E-06 3.07E-06 1.60E-04 3.07E-06
H 1 1 1 1 1
F6 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 1.46E-05
H 1 1 1 1 1
F7 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 2.12E-05
H 1 1 1 1 1
F8 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 2.00E-03
H 1 1 1 1 1
F9 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.07E-06
H 1 1 1 1 1
F10 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.07E-06
H 1 1 1 1 1
F11 p-value 3.07E-06 1.76E-05 3.07E-06 2.13E-01 1.07E-02
H 1 1 1 0 1
F12 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.07E-06
H 1 1 1 1 1
F13 p-value 3.07E-06 1.25E-04 3.07E-06 5.34E-01 3.07E-06
H 1 1 1 0 1
F14 p-value 3.07E-06 3.07E-06 3.07E-06 3.07E-06 3.07E-06
H 1 1 1 1 1
F15 p-value 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04
H 1 1 1 1 1
TABLE 11. Comparative results for the tension/compression spring design problem.
Algorithm Optimum variables Op tipnum
d D N weight
OCSSA 0.051550 0.353381 11.490433 0.0126684
PSO(Ha and Wang) 0.051728 0.357644 11.244543 0.0126747
DE(Huang et al.) 0.051609 0.354714 11.410831 0.0126702
WOA (Mirjalili and Lewis) 0.051207 0.345215 12.004032 0.0126763
ABC(Akay and Karaboga) 0.051690 0.356737 11.288000 0.012665
GWO(Mirjalili et al.) 0.051690 0.356737 11.288850 0.0126663
Mathematical optimization 0.053396 0.399180 9.185400 0.0127303
Constraint correction 0.050000 0.315900 14.250000 0.0128334

design problem. The optimal solution obtained by the algo-
rithm should not violate many constraints.

The tension/compression problem consists of minimiz-
ing the weight (f (?)) of a tension/compression spring
(Fig.4) subject to constraints on minimum deflection, shear
stress, surge frequency, limit on outside diameter and on

design variables. This problem has three decision variables,
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namely average coil diameter D, the wire diameter d, and
number of effective coils N.

Formally, the problem can be expressed as:

Consider ¥ = [x; x2 x3] = [d D N1,

Minimize f (%) = (x3 + 2) x2x} (8)
3
) X5X3
Subjectto g (¥)=1— —2"_ <0 9
jectto g1 () 71758x% ®
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4x2 — x1x2 1
— 2
X )= + —-1=
& (¥)= 155 (r2x7—x3) | 5108x2
(10)
140.45x
g3(?):]—2—§0 (11)
X5X3
g4(?):m_150 (12)
1.5
Variable range:
0.05<x; <2
025<x <13 (13)
2<x3<15

This test case was solved using either mathematical
techniques (for example, constraints correction at constant
cost [30] and penalty functions [31]) or meta-heuristic tech-
niques such as PSO [32], WOA, DE [33], GWO, ABC [34].
The comparison of results of these techniques and GWO are
provided in Table 11. A different penalty function constraint
handling strategy was applied in order to perform a fair com-
parison with literature [35]. It can be seen from Table 11 that
OCSSA finds a design with the minimum weight for this
problem, and it performs better than most algorithms except
ABC and GWO.

V. CONCLUSION

In the present article, a novel OCSSA algorithm which com-
bines OBL and CLS strategies is proposed to solve the global
optimization problem. The OBL is introduced in the proposed
algorithm to approximate the closer candidate solution to
the global optima and CLS is employed for the exploitation
of promising search regions of search space. The simula-
tion results show that OCSSA performs better than SSA in
optimizing 28 benchmark functions (including CEC2005 and
CEC2015 functions) and maintains a fair balance between
exploration and exploitation, which makes it robust. It also
can be observed that the OCSSA algorithm combined with
Sinusoidal chaotic mapping has the strongest competition.
Moreover, the best-performing version of OCSSA is used
to compare with other meta-heuristics. The OCSSA algo-
rithm show the superiority over other algorithms in terms of
optimization accuracy and convergence speed. In addition,
we used Wilcoxon’s rank sum to statistically test the algo-
rithm, and the results indicate that the algorithm proposed
in this paper is significantly different from several other
algorithms in most benchmark functions. Finally, we apply
the OCSSA algorithm to classic engineering problems, and
the results show that the algorithm can solve real-world prob-
lem well. The future work may include adjusting SSA algo-
rithm control parameters to optimize algorithm performance.
In addition, more chaotic maps are also worth employed to
OCSSA.
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