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ABSTRACT Accurate tooth segmentation is an essential step for reconstructing the three-dimensional tooth
models used in various clinical applications. In this paper, we propose a convolutional neural network (CNN)
based method for fully-automatic tooth segmentation with multi-phase training and preprocessing. For
multi-phase training, we defined and used sub-volumes of different sizes to produce stable and fast con-
vergence. To deal with the cone-beam computed tomography (CBCT) images from various CBCT scanners,
we used a histogram-based method as a preprocessing step to estimate the average gray density level of the
bone and tooth regions. Also, we developed a posterior probability function. Regularizing the CNN models
with spatial dropout layers and replacing the convolutional layers with dense convolution blocks further
improved the segmentation performance. Experimental results showed that the proposed method compared
favorably with existing methods.

INDEX TERMS Cone-beam computed tomography, convolutional neural network, network regularization,
posterior probability, tooth segmentation.

I. INTRODUCTION
Cone-beam computed tomography (CBCT) has been widely
used for dental diagnosis and treatment planning. CBCT
provides three-dimensional tooth models that can be recon-
structed for clinical applications, including orthodontic diag-
nosis [1]–[3] and implant dentistry [4]–[6]. In particular,
many implant operations are performed in local dental clin-
ics, where CBCT is often used due to the cost and size
factors. CBCT can be used to design surgical guides to
minimize angular deviations and displacements between the
planned and placed implants. Figure 1 shows an exam-
ple of a surgical guide. Accurate dental implant surgical
guides can address both functional and aesthetic demands [7].
To reconstruct a three-dimensional tooth model, tooth seg-
mentation is an essential step and is typically performed
manually by a professional operator. Labeling tooth regions
is a time-consuming task and accuracy depends on the opera-
tors. Thus, fully-automatic tooth segmentation methods have
become an important issue.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuan Zhang .

FIGURE 1. An example of surgical guide.

However, CBCT tooth segmentation faces two main chal-
lenges. One challenge arises from dental anatomy. The root
areas of the teeth are surrounded by alveolar bone and peri-
odontal ligaments. The thickness of the periodontal ligaments
is usually around 0.12mm [8], which is too thin to be detected
in many CBCT images due to the low spatial resolution
of typical CBCT scanners [9]. Using a global thresholding
method that considers the radiodensities of alveolar bone and
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teeth can be a solution since the radiodensities of the alveolar
bone of maxillae and mandibles range from 800 to 1580 HU
(Hounsfield unit) [10] whereas those of tooth components
such as dentin and cementum show slightly higher values.
However, in practice, the gray density values of teeth and
alveolar bone are similar in the root areas. Moreover, even for
objects with the same radiodensity, gray levels may appear
differently according to their relative positions [11]. There-
fore, teeth and their surrounding structures cannot easily be
separated by a simple thresholding method [12]. To address
this problem, some approaches have utilized adaptive thresh-
olding methods [13], [14]. However, these approaches have
some limitations since they require manual selection of the
reference slice to select the initial contours. Also, themethods
may not be used for CBCT images with metal artifacts.
On the other hand, level-set based methods have shown
more promising performance [15]–[17]. These methods are
semi-automatic and require a manually selected initial con-
tour or a seed point for each tooth.

Also, a starting slice where all the teeth are clearly
separated must be manually selected, which may not be
possible for CBCT data sets with severe metal artifacts.
A graph cut based algorithm [18] also requires background
and foreground initializations.

Another challenge is metallic objects that can produce
severe streak artifacts. These artifacts can result in degraded
CBCT image quality since transmitted X-rays are signifi-
cantly attenuated or scattered by metallic objects [19]–[21].
Moreover, lower radiation doses in CBCT images cause
more severe artifacts [20]. For tooth segmentation, the metal
artifact problem is one of the most challenging problems.
To solve this problem, several metal artifact reduction (MAR)
methods have been developed [22]. Many MAR methods
are based on sinograms that contain raw two-dimensional
projections used in CBCT imaging. The back-projection of
sinograms produces the reconstruction of the CBCT images
and the reverse method is known as forward projection. The
linear interpolation method [19] is a simple algorithm that
replaces manually segmented metal objects with its neigh-
boring objects in the sinogram domain. The normalizedMAR
method was introduced in [23], which utilizes an additional
normalization method before linear interpolation for smooth
approximation. As deep learning has shown good perfor-
mance across many applications, several approaches based
on deep convolutional neural networks (CNN) have been
proposed. In [24], uncorrected and pre-corrected images were
used as input and target images for fine-tuning pre-trained
networks. In this method, the fine-tuned networks were used
to predict a CNN prior image from an uncorrected image
and the back-projection of the CNN prior image was used
for the correction of the sinogram. Although there have
been efforts to develop the MAR methods, there are still no
solutions for irregularly shaped and highly attenuating metal
objects [22]. Some researchers have studied CNN-based
tooth segmentation methods for two-dimensional panoramic
radiographs [25], three-dimensional mesh data [26] and

FIGURE 2. Three different sub-volumes of a CBCT volumetric data set:
(a) teeth sub-volume, (b) teeth-containing slices, and (c) the entire CBCT
volume.

detection algorithms [27]. Recently,Ma proposed a tooth seg-
mentation method based on CNN and level-set methods [28].
However, this method was proposed mainly for dental root
segmentation. Cui proposed ToothNet for tooth segmentation
and classification in CBCT [29]. The method first extracts
edge maps using a CNN model. Then, the method per-
forms ROI extraction, segmentation, and classification using
another CNN model that uses the edge maps.

In this paper, we proposed a fully automated CNN-based
tooth segmentationmethod based on the U-Net structure [30].
For reliable training with a limited number of training sam-
ples, we proposed a multiphase learning method. In the pre-
processing step, we proposed a histogram-based method to
normalize the intensity differences to produce robust per-
formance. Then, we computed the probability that a voxel
belongs to the tooth region and defined a posterior probability
map (PPM), which was inputted to the CNN to improve
performance.

The rest of this paper is organized as follows. The
multi-phase training method is proposed in Section II.A.
The histogram-based preprocessing method and the poste-
rior probability map (PPM) are presented in Section II.B.
Section III shows the experimental results with over
100 CBCT data sets. Finally, some conclusions are presented
in Section IV.

II. METHODOLOGY
A. TRAINING STRATEGY: MULTI-PHASE TRAINING
It has been reported that the number of tooth voxels is
about 1% to 3% of the total voxels of CBCT data. Also,
some CBCT slice images do not have any tooth voxels.
This imbalanced class distribution can slow down the net-
work convergence during training. A possible solution is
to under-sample the major class (i.e. the non-tooth voxels).
Since tooth voxels in the CBCT volume are locally concen-
trated, data sets can be easily under-sampled by cropping the
volume. However, networks trained with only under-sampled
data can produce many false positives in the non-tooth
regions. To solve this problem, we propose multi-stage train-
ing. We first defined three different sub-volumes (sa: teeth
sub-volume, sb: teeth-containing slices, sc: entire CBCT
volume) and sequentially used them to train the networks.
We assumed that the CBCT data set had D slices of
W × H pixel images (Figure 2(c)), which represents the
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entire CBCT volume. The teeth-containing slice (Dc) has at
least one tooth voxel (Figure 2(b)). The teeth sub-volume
is defined as a smaller sub-volume containing all the tooth
voxels (in Figure 2(a)). These three different volumes (teeth
sub-volume, teeth-containing slices, and the entire CBCT
volume) were sequentially used to train networks, starting
first with the teeth sub-volume images. The network was
first trained using the slices from volume sa. Then, the slices
from volume sb were used to further train the network. Then,
volume sc was used. In the three phases, we used the same
patch size (192 × 192) and the patches (2D slices) were
randomly cropped from the different volumes.

B. PREPROCESSING
As described in [16], the intensity prior is one of the
most important factors for tooth segmentation in traditional
approaches such as level-set based methods. In this section,
we describe the preprocessing method we used to auto-
matically integrate the intensity prior to the CNN models.
This method consists of CBCT normalization and posterior
probability estimation.

1) CBCT NORMALIZATION
We used 102 CBCT data sets, obtained by using 14 different
CBCT scanner models from 7 different manufacturers. Most
of the data sets were low-dose data sets since low-dose CBCT
is typically used for dental implant planning. Due to the
wide range of CBCT scanner models and low-dose CBCT,
the image quality varied greatly in terms of resolution and
quality. Some images were of poor quality.

Most CBCTdevices use the gray density value scale, which
is similar to the HU scale. The difference between the HU
scale and the gray density value scale is that the HU values
are absolute whereas the gray density values are not. Thus,
CBCT device manufacturers have their ways of interpreting
gray density values as HU-like values. Also, CBCT imaging
quality differs depending on the types of X-ray emitters and
sensors, scan time, types of field-of-view (FOV), voxel size,
etc. Moreover, the parameters used for CBCT scanners can
be adaptively chosen according to the patient’s conditions.
To minimize the gray level differences between the CBCT
data sets, we used a normalization technique.

The goal of this normalization technique was to find the
soft tissue HU value and the global contrast value of each
CBCT data set.

Once these two values are estimated, the HU values
of other objects can be easily calculated. To adaptively
find the appropriate HU values for soft tissues, we used a
histogram-based method. For each CBCT data set, a 256-bin
histogram was computed (blue curves in Figure 3(a-d)). The
histograms usually had two peaks and one spike, as shown
in Figure 3(a). Two peaks near -1000 HU and 100 HU rep-
resent the air and soft tissue regions, respectively. Spikes
occurred since the voxels outside of the field of view (FOV)
had almost the same gray level. On the other hand, there were
no peaks for bone, tooth, and metal artifacts. However, as can

FIGURE 3. Four types of CBCT histograms with their corresponding CBCT
slice images (Blue: histogram, Red: normalized histogram): (a) a spike
outside of two peaks, (b) a spike between two peaks, (c) a spike at the
tail of one peak, and (d) a spike far from a peak.

be seen in Figure 3(b-d), the spikes appeared anywhere on the
histograms. After these spikes were suppressed bymedian fil-
tering, the histograms were renormalized (SR-hist, red lines
in Figure 3). Then the soft tissue HU value (xs) was obtained
by finding the center of the soft tissue peak. It is reported that
the soft tissue radiodensity is around 20-40 HU and that the
bone radiodensity is around 1000 HU [31]. Thus, the bone
HU xb,fixed was calculated as follows:

xb,fixed = xs + d (1)

where d represents a constant that denotes the difference
between the soft tissue and bone HU. Although the bone HU
values of CBCT showed some variations, we observed that
d = 950 was applicable to most of the CBCT data sets.

However, there were some data sets in low contrast so that
the HU differences between bone and soft tissue regions were
relatively small compared to other data sets. To address this
problem, we estimated the global contrast of each CBCT data
set. Since the HU values for air and water are defined as -
1000 HU and 0 HU, the image contrast can be estimated
by the HU difference between air and water. Alternatively,
the air and soft tissue HU values of the SR-hist can be used
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FIGURE 4. Some examples of image thresholding results with fixed and
adaptive bone HUs. (a) Well segmented, (b) under-segmented, and
(c) over-segmented examples with original CBCT slice images (left),
segmentation results with fixed bone HUs (middle) and adaptive bone
HUs (right).

for the estimation. However, as discussed above, there were
some cases when the air peaks were blurred or invisible.
Since ‘‘soft tissue peaks’’ existed for all cases, we conjectured
that the HU range of the soft tissue voxels may be narrow if
the global image contrast is low. Therefore, in the proposed
method, the Gaussian function was used for the soft tissue
peak estimation:

f (x) =
1

√
2πσ 2

e−
(x−b)2

2σ2 (2)

where b represents the mean of the peak and σ denotes the
standard deviation. We checked the following conditions:

(1) There were two peaks for the air and soft tissue
(2) The peak difference between the air and soft tissue was

1000-1100 HU.
If the CBCT set met these conditions, the bone HU

value (xb) was calculated as follows:

xb,adapt = xs + ρdc (3)

where ρc = σ
µc

is the estimated relative contrast and µc
denotes the mean of σ of the CBCT data sets in normal condi-
tions. In this paper, µc = 131.7647 was used. Figure 4 shows
some examples of thresholding results when a fixed bone
HU (the middle column) and adaptive bone HUs (the right
column) were used. Applying the adaptive method to the
CBCT data sets produced more stable performance.

2) POSTERIOR PROBABILITY ESTIMATION
The bone and tooth radiodensities (except for the pulp tissue
in a tooth) were relatively higher than those of other objects
(Figure 5(a)). The bone and tooth components are similar in

FIGURE 5. Examples of CBCT image slices. (a) Individual teeth appear
clearly in tooth neck area. (b) Teeth with a jaw bone (mandible) in tooth
root area.

radiodensity values as those shown in Figure 5(b). On the
other hand, enamel and metal objects have higher values than
any other objects. Thus, the probability that a voxel belonging
to tooth regions was high if its HU value was high.

For an arbitrary CBCT data set, consider a random vari-
able s, which denotes the category of a voxel where s = t
for teeth and s = tc for non-teeth. We let P(t) be the prior
probability that a voxel belongs to the tooth region and p(x)
denote the probability density function of x. Then, p (t|x) can
be computed using the Bayes formula:

p (t|x) =
p (x|t)P(t)

p(x)
(4)

The probability density functions p(x) and p (x|t) were esti-
mated by SR-hist (Section II.B.1) and the teeth histogram.
A CBCT data set was regarded as a set of observations
(voxels) {xi}i=1,2,··· ,N of a random variable X where N rep-
resents the number of voxels. Then, the n-bin histogram with
the bin width h is defined as:

f̂n(x) =

N∑
i=1

1{xa ≤ xi < xb}

Nh
(5)

where xa = x − h/2, xb = x + h/2, and 1{·} denotes the
indicator function. Then, p (x|t) was estimated as follows:

p (x|t) ≈ f̂n(x|t) =

M∑
i=1

1{xa ≤ xi < xb}

Mh
. (6)

whereM represents the number of voxels in the tooth region.
Then, by substituting (5) and (6) into (4),

p (t|x) ≈ p̂ (t|x) =
f̂n(x|t)P(t)

f̂n(x)
=

M∑
i=1

1{xa ≤ xi < xb}

N∑
i=1

1{xa ≤ xi < xb}

(7)

Figure 6 shows some examples of f̂n(x), f̂n(x|t), and p̂ (t|x).
For a given CBCT data set, only f̂n(x) is given and the other

functions (f̂n(x|t), P(t), and p̂ (t|x)) were unknown unless the
teeth ground-truth is available. In other words, there is no
prior information about voxels.
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FIGURE 6. Histograms of HU values for tooth voxels and the entire CBCT
with their estimated posterior probabilities computed with (a) the
training set and (b) the validation set.

To resolve this problem, we assumed that f̂n(x) was a
mixture of the weighted Gaussian distributions of the various
objects in a CBCT data set:

f̂n(x) =
∑
i

win (x;µi, σi) (8)

where wi is a weight of category i and n (x;µi, σi) denotes
the Gaussian distribution with the meanµi and standard devi-
ation σi. Here, the category includes air, soft tissue, bone (b),
teeth (t), etc. Then, f̂n(x|t) can be written as:

f̂n(x|t) = n (x;µt , σt) (9)

By substituting (8) and (9) into (7),

p̂ (t|x)=

n (x;µt , σt)
(
wt/

∑
i
wi

)
∑
i
win (x;µi, σi)

=
wtn (x;µt , σt)∑
i
win (x;µi, σi)

(10)

since P(t) = wt/
∑
i
wi = wt by the definitions. Then (10) is

written as:

p̂ (t|x) =
1

1+
∑

i6=teeth

win(x;µi,σi)
wtn(x;µt ,σt )

. (11)

Since the radiodensities of bone and teeth (dentin and cemen-
tum) are similar, µt and µb may be similar. We assumed that
the effect of the air and soft tissue for p̂ (t|x) was ignorable
and σt ≈ σb ≈ σ . Then, (11) was simplified as:

p̂ (t|x)≈
1

1+
wb exp

(
−(x−µb)2/2σ 2

)
wt exp

(
−(x−µt )2/2σ 2

) =
1

1+ exp (−k (x − x0))

(12)

FIGURE 7. Logistic functions with various values of k where x0 = 0.

where k = log wb
wt
·
µt−µb
σ 2

, x0 =
µt+µb

2 . From (12), we mod-
eled the posterior probability p (t|x) as a logistic function
L(x; xo, k):

L(x; x0, k) = 1/ (1+ exp (−k (x − x0))) (13)

p (t|x) ≈ p̂ (t|x) = L(x;µt , k) (14)

where x0 and k denote the midpoint and steepness of the
logistic curve. Figure 7 shows some examples of the logis-
tic functions with various values of k with x0 = 0. The
logistic functions were used for the estimation of p̂ (t|x) (red
dashed curves in Figure 6(a-b)). We set L(x0; x0, k) = 0.5,
which led to normalization effects. Using the estimated soft
tissue HU and contrast values computed in Section II.B.1,
µt and µb were estimated. However, the calculation of k
required wb, wt , and σ , which are unknown. Thus, k was
empirically selected.

3) POSTERIOR PROBABILITY MAP
To use the posterior probability in CNNs, a posterior prob-
ability map (PPM) was computed by applying the logistic
function to all the voxels in the CBCT volume. Figure 8 shows
an original CBCT slice image and the corresponding PPMs
with various k values.
When high k values were used, image contrast was

enhanced, which improved tooth segmentation. Mandibles,
cervical vertebrae, and teeth appeared more discernible for
k ≥ 10. Air regions and soft tissue regions almost disap-
peared when k = 20 and k = 50.
To evaluate the potential benefits of multi-channel inputs,

experiments were conducted using different settings. Along
with the original U-Net used in Section III.A, we also tested
the U-Net with two-channel inputs, which used the original
images and the normalized images:

fnorm(x) = ρc (x − µt)+ dt (15)

where µt and ρc are defined in Section II.B.1, and dt denotes
the HU mean difference between the soft tissue regions and
teeth under normal conditions.

Figure 9 shows a performance comparison. The red and
green boxes show the U-Net performance with different
numbers of input channels. Increasing the number of input
channels was effective for the first phase with the volume
sa whereas there were negligible differences between the
U-Nets with one and two-channel inputs in the second and
third phases. It appears that using fnorm(x) was helpful for the
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FIGURE 8. CBCT examples after applying logistic functions with various k
values.

FIGURE 9. Performances of the U-Net with different inputs with the
training set (left) and the validation set (right).

first and second phases. On the other hand, the U-Net with
the PPM showed improved performance.

We also conducted experiments with various k valueswhile
keeping the other parameters unchanged. Figure 10 shows the
dice coefficient values. It appears that using k = 20 may be
the best solution. Therefore, we used k = 20 in this paper.

4) ADDITIVE UNIFORM NOISE FOR NETWORK STABILITY
In the real world, input images are prone to various types of
noise, which may lead to inaccurate estimations of µt . Such
inaccurate estimations may cause performance degradation.
To understand the effects of inaccurate estimations, we added

FIGURE 10. U-Net performances with different k values with the training
set (left) and the validation set (right).

FIGURE 11. U-Net performances with different additive noise factors ν0
(blue box: the network trained with the added noise, red box: the
network trained without the added noise).

additive noise to µt as follows:

L(x;µt , k, ν0) = 1/ (1+ exp (−k (x − (µt + ν0)))) (16)

where ν0 is the noise factor.
The red boxes in Figure 11 show how performance was

affected by the noise. As expected, performance was sig-
nificantly degraded as |ν0| increased. To solve this prob-
lem, we added noise of various levels (uniform distribution:
U (−200, 200)) during the training process. Figure 11 shows
the performance of the network trained with the added noise.
The network trained with the added noise showed stable
performance even when the noise levels were high.

C. NETWORK ARCHITECTURE: UDS-NET
The proposed network is based on the U-Net
architecture [30].

As shown in Figure 12, the dense blocks and spatial
dropout layers are the main differences between the U-Net
architecture [30] and the proposed network. In the pro-
posed network, some convolutional layers were replaced with
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FIGURE 12. The proposed network.

dense blocks. Spatial dropout layers were inserted between
the dense blocks and up-convolution layers in the extractive
path. Also, spatial dropout layers were added to skip connec-
tions between the contractive and extractive paths. Compared
to the original U-Net, the proposed UDS-Net (U-Net+ dense
block+ spatial dropout) achieved better segmentation perfor-
mance with a reduced number of parameters.

1) DENSE BLOCK
Dense connectivity, introduced in [32], has shown perfor-
mance improvement in several image classification tasks
using fewer parameters compared to other methods such as
ResNet [33]. In a dense block, a convolutional layer receives
features of its preceding layers. In the UDS-Net method,
the dense blocks improved tooth segmentation and reduced
the number of parameters. Figure 13 shows the dense block
used in the proposed method where 1 × 1 convolutions with
192 output channels and 3 × 3 convolutions with 48 output
channels were applied. Then, the output features were com-
bined with the input features by concatenation.

2) SPATIAL DROPOUT
In U-Net [30], the output features from the contrac-
tive path were cropped and concatenated with the expan-
sive path. Since overfitting sometimes occurred, the spatial
dropout [34], a network regularization technique, was applied
to the proposed UDS-Net method (Figure 12).

FIGURE 13. Dense block used in the proposed UDS-Net.

III. EXPERIMENTAL RESULTS
A. DATABASES
In the experiments, we used 102 CBCT data sets, obtained
using 14 different CBCT scanner models produced by seven
different manufacturers (including unknown scanner models
and manufacturers). Each CBCT data set consists of multiple
two-dimensional CBCT slices (16-bit data) in the DICOM
file format. The width and height were identical, which
ranged from 264 to 800 pixels. The number of slices ranged
from 264 to 727 slices. Also, the physical sizes of a voxel in
terms of width, height, and depth were always the same (from
0.15 mm to 0.30 mm).

We manually labeled all the tooth voxels for two sets
(CBCT_#1, CBCT_#19). From the other 100CBCTdata sets,
we selected and manually labeled five slices (5-slice sets):

1) A slice containing mandibles but not teeth.
2) A slice containing mandibular teeth surrounded by

mandibles.
3) A slice containing maxillary teeth surrounded by the

maxilla.
4) A slice containing mandibular teeth but not surrounded

by mandibles.
5) A slice containing maxillary teeth but not surrounded

by the maxilla.
Since some CBCT data sets failed to satisfy all the five
conditions, they might have a fewer slices.

First, all the CBCT image slices were resized to 0.4 mm
in the direction of the sagittal and coronal axes. For example,
a 264 × 264 pixel image with a voxel size of 0.30 × 0.30
was resized with 264 × (0.3/0.4) = 198 pixels in each
direction. Since both the U-Net and UDS-Net methods had
four 2× 2 max-pooling layers, we resized the images so that
both the width and height were multiples of 16. For example,
d198/16e × 16 = 208 pixels. For training, missing pixels
were extrapolated with the mirrored images. For evaluation,
missing pixels were zero-filled.

B. EXPERIMENTS ON TRAINING METHODS
1) SELECTING THE SEQUENCE OF VOLUMES FOR
MULTIPHASE LEARNING
Multi-stage training provided stable and faster convergence.
The proposed training method was tested using the U-Net
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FIGURE 14. Performance of U-Net with multi-phase training
〈
sa, sb, sc

〉
on training and validation set for the four learning rate schedules.

FIGURE 15. Performance of U-Net with multi-phase training 〈sa, sc , sc 〉
on training and validation set with different learning rate combinations:
[10−4,10−5,10−5], [10−5,10−5,10−5].

FIGURE 16. Performance of U-Net with multi-phase training
〈
sb, sc , sc

〉
on training and validation set with different learning rate combinations:
[10−4,10−5,10−5], [10−5,10−5,10−5].

architecture [30]. We used the Adam optimizer [35], which is
commonly used in several biomedical segmentation methods
based on U-Net [36]–[39]. To evaluate the multi-phase train-
ing method, we conducted preliminary tests. We compared
four different sequences of multi-phase training: 〈sa, sb, sc〉
(Figure 14), 〈sa, sc, sc〉 (Figure 15), 〈sb, sc, sc〉 (Figure 16)
and 〈sc, sc, sc〉 (Figure 17). For each phase, the number of
iterations was set to 6000 and the learning rates were set
to either 10−4 or 10−5. Depending on the learning rate, the
network may not have converged.

To find the working range of learning rates, we tested
several combinations of different learning rates. In particular,

FIGURE 17. Performance of U-Net without multi-phase training
〈sc , sc , sc 〉 on training and validation set: [10−5,10−5,10−5].

FIGURE 18. Some modifications of the UDS-Net.

we tested four learning rate schedules: [10−4, 10−4,
10−4], [10−4, 10−4, 10−5], [10−4, 10−5, 10−5], and [10−5,
10−5, 10−5]. Each experiment was conducted 10 times.
Figures 14-17 show performance comparison. The networks
that failed to converge were not shown in the Figures. For
example, 〈sc, sc, sc〉 converged only for [10−5, 10−5, 10−5]
(Figure 17). Based on these results, we used 〈sa, sb, sc〉 and
[10−4, 10−4, 10−5].

2) ABLATION STUDY ON DENSE BLOCKS
AND SPATIAL DROPOUT
To evaluate the benefits of the dense blocks and spatial
dropout layers in the proposed UDS-Net method, several
experiments were conducted with different modifications to
the proposed UDS-Net method. Figure 18(a) represents a
part of the proposed UDS-Net method and Figure 18(b-d)
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TABLE 1. Tooth loss statistics of the data.

TABLE 2. Statistics of metal artifacts (MA).

FIGURE 19. Performance comparison of the modifications (dice,
precision, recall). (a) the proposed UDS-Net, (b) the dense blocks are
replaced with convolutional layers, (c) the spatial dropout layers are
replaced by dropout layers, (d) without dropout layers.

shows some modifications. First, the dense blocks in the
proposed UDS-Net method were replaced with convolutional
layers (Figure 18(b)), which is the same as the original U-
Net architecture except for the spatial dropout layers. Also,
the spatial dropout layers in Figure 18(a) were replaced by
dropout layers (Figure 18(c)). The networks without dropout
layers were also tested (Figure 18(d)). For all the cases,
five experiments were conducted. As shown in Figure 19,
the proposed UDS-Net method (Figure 18(a)) showed the
best performance.

C. PERFORMANCE ANALYSIS OF TOOTH SEGMENTATION
The CBCT data sets were divided into three sets: training,
validation, and test. For training, we used CBCT_#1 and the
5-slice sets from CBCT_#35 to CBCT_#102 (69 datasets,
1066 images). CBCT_#19 was used for validation (1 dataset,
400 images). We used the 5-slice sets from CBCT_#2 to

FIGURE 20. Some examples of tooth segmentation results with different
CNN models (red: baseline, green: baseline with PPM and multi-phase
training, blue: proposed method).

CBCT_#18 and from CBCT_#20 to CBCT_#34 for test-
ing (32 datasets, 151 images). We also applied the trained
network to the entire slices of CBCT_#2∼CBCT_#18 and
CBCT_#20∼CBCT_#34 data sets.
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TABLE 3. Detailed information of network training with or without multi-phase training.

TABLE 4. Performance comparison with combinations of the proposed methods.

Generally, patients who need implant operations are likely
to be elderly and they may have experienced multiple tooth
losses. Table 1 shows the tooth loss statistics of the data used
in this paper. All the patients had at least one tooth loss. Also,
many patients had tooth decay treatments and other dental
treatments, which might have left some metal structures.
Some patients already had implant operations. Consequently,
metal artifacts were observed in most patients. Table 2 shows
the statistics of metal artifacts. Ma’s method was proposed
for tooth root segmentation and may not be suitable for tooth
segmentation for implant planning. Also, due to missing teeth
and heavy metal artifacts, Cui’s method might need to be
significantly modified for this kind of application, which
performs segmentation and classification using edge maps.

Thus, for performance comparison, we implemented two
methods. The first one was a level-set based method based
on [15], which requiredmanual selection of initial conditions.

We also modified the original U-Net method [30] for tooth
segmentation and used it as the baseline method. There were
four training phases used in the training (Table 3).

After the three phases of multi-phase training with
CBCT_#1, the 5-slices sets of the training set (CBCT_#35 to
CBCT_#102) were used for the fourth phase training.

Different sub-volumes and different learning rates were
used (Table 3).

We used data augmentation methods: translations (±5%),
resize (±30%), vertical flip and horizontal flip. In other
words, the translations and image resizing were limited to 5%
and 30% of the original image size, respectively.

For all the networks, the Adam optimizer [35] with β1 =
0.9 and β2 = 0.999 was used and the mini-batch size was

FIGURE 21. Performance comparison for each CBCT data set.

set to 2. Also, the binary cross-entropy function was used as a
loss function. TensorFlow [40] and Keras [41] libraries were
used for network implementation. We used an Intel R©Xeon
E5-2620v3 CPU and an NVidia Titan X (Pascal) with 12GB
graphic RAM and 48GB RAM.

Table 4 shows the evaluation results on the validation and
test sets. The level-set based method showed inferior per-
formance compared to CNN based methods (the dice value
was 0.820 for the validation set and 0.790 for the test set).
Although the baseline method showed relatively good recall
performance (0.953 for the validation and 0.938 for the test
set), it produced many false positives (validation precision:
0.833; test precision: 0.848).

The proposed method noticeably improved the precision
performance. In Table 4, we also tested the proposed method
without one of the three key features (PPM,multi-phase train-
ing, spatial dropout). Also, the proposed UDS-Net method
produced better performance while using fewer parameters
than the baseline method.
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FIGURE 22. Examples of false positives and false negatives. Red areas
represent the tooth segmentation results. The green arrow indicates false
positives whereas the blue arrow indicates false negatives.

Figure 20 shows some segmentation results (red: baseline,
green: baseline with PPM and multi-phase training, blue:
proposed method). The false positives were significantly
reduced in the proposed method. Also, errors due to metal
artifacts were noticeably reduced in the proposed method
(Figure 20(d)), though we did not perform specific operations
to remove metal artifacts. It appears that the posterior proba-
bility map might provide additional pixel-wise information to
the network, which could be helpful for discriminating teeth
from metal artifacts.

Figure 21 shows the performance comparison of all the test
data. The proposed method produced noticeably improved
segmentation performance. Some examples of false positives
and false negatives are shown in Figure 22. Red areas rep-
resent the tooth segmentation results. The green arrow indi-
cates false positives whereas the blue arrow indicates false
negatives. Some portions of the wisdom teeth were usually
undetected (Figure 22 (a)), mainly because they were not
labeled in the ground truth images. On the other hand, false
positives usually appeared on the mandible (Figure 22(b)),
maxilla (Figure 22(c)), and streak artifacts (Figure 22(a)).

IV. CONCLUSION
In this paper, a fully automated CNN based tooth segmenta-
tion method was proposed for dental CBCT images. In the
proposed method, a multi-phase training strategy was used to
gradually expand the target volume of the CBCT images. As a
preprocessing step, a histogram-based method was proposed

to calculate the HU values for the bones and teeth in various
CBCT data sets. Based on this information, the posterior
probability of a voxel being in a tooth region was estimated
when the voxel’s HU value was given. Then we defined the
posterior probability map (PPM) and used it along with the
original CBCT images. We used the spatial dropout tech-
nique. With dense block and spatial dropout layers, the pro-
posed method showed improved performance compared to
the conventional U-Net architecture.
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