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ABSTRACT Genome-wide screening using microarrays of DNA will be of great use in the early diagnosis of
diseases such as cancer and HIV. It also makes use of gene discovery, pharmacogenomics, toxicogenomics,
and nutrigenomics for other applications. A DNA microarray image lays out an orderly arranged specific
gene regions called spots. Microarray image analysis consists primarily of preprocessing, spot area gridding,
spot segmentation, and intensity extraction. The first two phases are focused on this work: preprocessing
and gridding. The experiment is conducted on real composite cDNA microarray images. A composite
microarray image is formed by suitably stacking a red channel image and a green channel image acquired
from a microarray experiment either in the RGB domain or in the GRB domain. The blue channel is kept
as zero. In order to reduce the challenging problems of microarray images, an efficient preprocessing
algorithm is proposed here for these composite images. We have developed a fully automated gridding
algorithm integrating global subgrid gridding and local gridding of spots. This technique extracts the
structural information namely inter-subgrid spacing, inter-spot spacing and spot center position to achieve
efficient gridding. The traits of a microarray image are evaluated using three parameters namely Mean square
error, Naturalness quality image evaluator and degree of contrast. The accuracy of the experimental results
indicates that this combined preprocessing and gridding technique performs better than existing competitive
methods in SIB, GEO, SMD and DeRisi datasets which are most commonly used by the research community
for microarray image analysis techniques.

INDEX TERMS cDNA, composite microarray images, contrast enhancement, denoising, fully automated
gridding, genome-wide monitoring, global gridding, hybridized spots and non-hybridized spots, local

gridding, spot region extraction.

I. INTRODUCTION
Microarray is a cutting-edge bioinformatics technology of
today. cDNA microarray image analysis is an important part
of microarray experimental studies that can potentially have
a significant impact on subsequent analyzes such as cluster-
ing or detection of differential genes [1]. The basics of DNA,
cDNA, DNA chips and cDNA microarray image formation
are described in our earlier work [2]. A comprehensive virtual
laboratory experiment is available in [3], by which we can
investigate the differences between healthy cells and cancer
cells using DNA microarray.

Gridding is one of the most important steps in microar-
ray image analysis. This step includes Global gridding and
Local gridding. Global gridding assigns coordinates to the
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subgrids or sub-arrays in the entire image whereas local
gridding assigns coordinates to each of the hybridized or non-
hybridized spots within the sub-arrays. The located spot
region can be differentiated into the foreground spot region
and the background region using the various segmentation
rules. Practically, background intensity around the spot is
not zero. A suitable background intensity correction method
should be done either globally or locally before the extraction
of image intensities. Flagging is a procedure to be conducted
for removing or marking poor quality intensity features
after the spot segmentation. Finally, the generated intensity
values will pave the way for the clustering of differentially
expressed genes.

A preprocessing stage will enhance the accuracy of grid-
ding, segmentation, intensity extraction, and quantification
by reducing the common artifacts present in images. So this
stage is unavoidable. Hence we focused on an automated
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method for preprocessing combined with gridding of the
images. Automating this part of the procedure enables high-
throughput.

Over the past decades, numerous manual gridding, semi-
automatic gridding, and fully automatic gridding techniques
have been mentioned in the literature. In manual gridding
method, all the parameters mainly number of subgrids,
number of spots in each subgrid, and spot sizes required for
gridding are provided manually [4]-[7]. However, the semi-
automatic gridding method demands the user to input some
of the gridding parameters in order to limit the preset vari-
ables [8], [9]. Automatic gridding algorithms detect all spots
of microarray images without any preset parameters or user
intervention. Most automated gridding strategies proposed in
the literature are for the spot detection’s local grid.

Related works areas in this field are as follows. In 2003,
authors used morphological operators to provide horizon-
tal and vertical projections of the image in a morpholog-
ical mathematical model [10]. This method is simple and
computationally fast but susceptible to misalignment due
to noise and spurious or missing spots. In 2004, a grid
alignment technique [11] was implemented, which is data-
driven and uses statistical analysis of 1-D projections of
image directional edge features. The approach is stable to row
and column-spaced spots irregularly, independent of the spot
features and reduces the number of free parameters by algo-
rithms powered by data. The proposed 2006 hill-climbing
search [12] is intended to locate a local minimum (or maxi-
mum) that continually moves in the direction of the objective
function’s decreasing (or increasing) value. It is necessary
to initialize one or more starting pixels that will affect the
final result. In 2006, authors calculated the maximum a priori
grid estimate [13] for microarray image bayesian gridding.
Radon transform properties are used to obtain the positions
of the reference grid. The Genetic Algorithm (GA) [14], [15]
implemented in 2008 effectively define line segments, which
constitute the boundaries in an image between neighboring
subgrids or spots. Though no input parameters or user inter-
action are needed, GA computation is a slowpoke.

In 2010, authors of [16] found spot detection gridding
for M3G. The rotation of images is calculated using the
radon transform. The SVM classifier is used to create the full
grid line between the spot columns and the spot rows. Opti-
mal multilevel threshold gridding (OMTG) [17] established
in 2011, applies radon transform to adapt original images to
the rotation. The appropriate number of thresholds is found,
and a refinement process is used to improve the performance
of the system for efficient global gridding and local gridding.
In 2013, the approach [18] proposed automated gridding of
microarray images of DNA using an optimum sub-image.
The gridding lines are determined using the intensity projec-
tion profiles from this sub-image. In 2013, authors used their
sub-array gridding unit with a modified Otsu algorithm [19],
which provides good accuracy with less computational time.
For increasing the precision of spot detection, heuristic rules
are applied to the grid lines acquired. Using a background

39606

estimation process, spot pixels are enhanced before gridding.
In 2015, the method [20] described a sub-array gridding
technique based on intensity projection profiles following a
histogram-based threshold enhancement of pixels. For detect-
ing and correcting grid line errors a refinement technique is
applied.

In 2016, a generalized methodology is proposed for the
spot addressing of microarray images which include hexag-
onal or rectangular grid patterns [21], [22]. Hybridized spots
are segmented based on simple segmentation rules, and an
increasing concentrate polygon (GCP) algorithm detects non-
hybridized spots. Eventually, it measures a Voronoi diagram
to distinguish each position in a single cell. In 2017 the
authors of [23] used microarray images to implement multi-
ple image processing techniques for cancer detection. A com-
plete microarray image analysis is done before the disease
diagnosis. Microarray image blocks are identified by the
computation sum of pixels in a row/column and taking the
local minima. The successive local minima in each sub-
arrays are calculated for spot detection by the period derived
from the auto-correlation function applied on the histogram
of each block. In 2017 a shape-independent algorithm [24]
for fully-automated gridding of cDNA microarray images is
implemented to minimize grid line errors. This technique
involves finding the subarray in an image by using the
Blackman window length variable, Otsu threshold-based
image contrast enhancement, and defining image objects
such as spots and noise blocks through the 8-connected
labeling procedure. In 2018, a Cross covariance approach [25]
with a mean image profile is used to compare the known
and unknown locations in microarray images. Noisy pixels
are removed by using structural processing methods before
the gridding stage. In 2019, authors applied an improved
Otsu method which is optimized by multilevel thresholds
to achieve precise gridding [26]. Multilevel thresholds are
obtained using physical information from source microarray
images. In 2019, the authors introduced a fully automatic
gridding technique [27], applying multi-resolution analysis
to obtain horizontal and vertical image projection profiles in
global and local grid units. Upon identification of the sub-
array, an adaptive threshold approach is determined to get the
grid lines for locations.

Although many attempts are focused on this particular
gridding step, they are almost failed to properly gridding
tough images (high-density noisy images, images with a
large number of missing spots (non-hybridized spots), low-
resolution spots, almost same measurements for subgrid and
spot spacing) in the databases. Images in the same databases
have a different number of sub-arrays and spots. Sub-array
spacing, spot spacing, size and shape of spots are also
dissimilar. Images feature with almost the same inter sub-
array spacing and inter spot spacing can cause an error in
global gridding lines. Many of the contrast enhancement
methods in the literature boost the noisy pixels along with the
spot pixels. Hence, the accuracy of global and local gridding
of spots is observed very poorly in high-density noisy images.
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Also, some researchers have not used universal microarray
databases namely GEO, Derisi, SMD available for develop-
ing and testing their methods. Therefore, the performance of
their methods in automated gridding cannot be compared.

Our work employs a novel preprocessing method which
gives a good contrast with reduced noise effect on high-
density noisy images. The preprocessing work is done on
composite images, which combines the advantages of three-
dimensional (3D) median filtering and the contrast enhance-
ment by dehazing technique. This dehazing technique works
well in poor contrast images. The contrast-enhanced image
is top-hat filtered to reduce high fluorescent block noise to a
large extent. The size of the structuring element is automat-
ically derived from the obtained spot spacing measurement.
The proposed fully automated gridding method exploits the
structural information (inter subgrid spacing, inter spot spac-
ing, and location of spot centers) from the images so that the
algorithm can be automated for different featured microarray
databases. The grid lines are calculated in such a way that
spots are located in the middle region of their grid compart-
ments (Perfectly gridded). This lessens the error associated
with marginally gridded (more than 80% of spot pixels reside
in the equivalent compartment) and incorrectly gridded (less
than 80% of spot pixels reside in the equivalent compartment)
spots. Also, three quality parameters are used to analyze the
traits of images which aid the gridding accuracy of perfectly
gridded spots in tough images.

The rest of this paper is structured in six sections. Microar-
ray images, their ideal characteristics, and the challenges
associated with practical/real images are described with fig-
ures in section II. Section III mentions the details of real
microarray image corpora used in our methods. Methods and
detailed algorithms of preprocessing, global gridding, and
local gridding are well explained in section I'V. The results
of the proposed work and comparison with most competitive
works are discussed in section V, while the conclusion is
written in section VI.

Il. MICROARRAY IMAGE
The microarray experiment’s outputs are two high-resolution
16-bit grayscale images in TIFF format, for both the green
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FIGURE 1. Challenges present in the real microarray databases.
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and red channels. Each image contains regularly arranged
unique gene probes called spots. A relative level of gene
expression is given by the ratio of gray-level intensities of
the red spot to the green spot.

A. CHARACTERISTICS OF AN IDEAL MICROARRAY IMAGE
The ideal microarray image has the following features:

(1) All the sub-arrays have the same number of rows and
columns, (2) There is no rotation or inclination of spots in
horizontal as well as in the vertical direction, (3) Inter sub-
array spacing and inter spot spacing are regular, (4) Sizes
and shapes are the same for all the spots, (5) No dust and
other contamination are affected on the microarray slide,
(6) A uniform background intensity should remain across
the image, (7) Spots should reflect only the true measures
of fluorescence intensities of a corresponding dye of
interest.

B. CHALLENGES IN REAL MICROARRAY IMAGES
This part addresses the main challenges of real microarray
images with illustrations.

Real microarray images exhibit a large dynamic range.
It requires 16 bits/pixels whereas 8 bits/pixels are used in
natural images. The size of the image/channel varies approx-
imately from 2MB to 120MB which directly depends upon
the total number of subgrids and spots immobilized in the
DNA chip. Images are of poor contrast and possess variable-
sized subgrids. All the spots are not clearly detected. This is
demonstrated in Fig. la. Also, it is visible that the second
subgrid size is 5 x 7 and other subgrids have the dimension of
7 x 7 in the same image. Spots with variable sizes and shapes
are shown in Fig. 1b. All are not in circular in shape. The
histogram comparison of a natural image, a graphics image,
and a microarray image [28] is displayed in Fig. lc. The
pixels in the microarray image use only a smaller fraction of
all possible intensities. Also, the prevalence of low-intensity
spots pixels with a large background gives a unimodal dis-
tribution. Common image enhancement methods like power-
law transformation and histogram equalization will result in
a washed-out image and hence they are not directly suit-
able on these images. The fifth row of the subgrid image

spots/

(f) high density noise

spots (e) tilt within subgrids
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FIGURE 2. Overall block diagram of the proposed fully automated method.

in Fig. 1d contains a large number of missing spots. This
will miss the horizontal grid line due to the low value of
mean intensity in that row. A large number of missing spots
are often visible in real microarray images. Fig. le depicts
a contrast-enhanced image with reduced noise effect. How-
ever, false and redundant horizontal grid lines are appeared
due to the tilt or rotation of subgrids or spots within the
images. High-density noise is affected like a spider-web on
all the subgrids in the image displayed in Fig. 1f. This is the
toughest image named ‘Def665Cy5.tif” which causes false
global gridding of subgrids and local gridding of spots in
our experimental databases. None of the works proposed so
far in the literature obtained a 100% accuracy with perfect
gridding of spots for the aforementioned image. However,
the method proposed in this work gives a 100% accuracy.
Most of the microarray images experience a non-uniform
background intensity around the spots and sometimes contain

block noises similar to the size and the intensity level of real
spots. This is a big challenge in the right gridding of spot
regions.

Hence, a preprocessing algorithm is inevitable to address
all the issues before the image analysis for different
applications.

Ill. DATASETS

Four different cDNA microarray databases that are most com-
monly used in the literature have been selected for evaluating
the performance of the proposed method. Databases are two-
channel image datasets. Databases and image features are
exhibited in Table 1. Images in the datasets possess dif-
ferent scanning resolutions, inter-subgrid spacing, inter-spot
spacing, and spots with different features. All the challenges
addressed in section II.B are considered to ratify the flexibil-
ity of our proposed method.

TABLE 1. Real Microarray image corpora used for evaluating the performance of the proposed technique.

Real Dataset SIB Derisi GEO SMD
Name Swiss Institute of Bioinformatics Joe DeRisi Individual ~Gene Expression Omnibus  Stanford Microarray Database
Image Format Tiff Tiff Tiff Tiff
No. of Images 14 14 8 20
No. of Subgrids/ Image 4 4 48 16
Subgrid Layout 2x2 2x2 12 x 4 4 x4
Spot Layout one 5 x 5 and three 7 x 7 40 x 40 13 x 14 17 x 17
No. of Spots/ Image 182 6400 8736 4624
Image Resolution 1000 x 1000 1024 x 1024 5997 x 2200 2164 x 2200
( approximate) 2 MB 2 MB 25MB 8 MB to 13 MB
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The first database includes 14 microarray images from
the Computational Cancer Genomics (CCG) group of the
Swiss Institute of Bioinformatics (SIB) [29]. The images have
been named using Def, followed by experiment IDs 661,
662, 663, 664, 665, 666, 667 and channel number is Cy3 or
Cy5. Each image contains four subgrids. Subgrids 1, 3 and
4 contain 49 spots and subgrid 2 contains 35 spots.

The second database of 14 images is drawn from Joe
DeRisi’s individual tiff files [30]. These images correspond to
channels 1 and 2 for experiment IDs OD730, OD046, OD014,
0OD180, OD690, OD080, and OD370. Each image contains
four subgrids and each subgrid contains 1,600 spots.

The third database consists of a set of eight images which
are selected from Gene Expression Omnibus (GEO) [31].
Images correspond to channels 1 and 2 for experiment
IDs GSM15898, GSM 16389, GSM16391, and GSM16101.
Each image contains 48 subgrids and each subgrid contains
182 spots.

The fourth database provides a set of images drawn from
the Stanford Microarray Database (SMD). Each image con-
tains four subgrids and each subgrid contains 289 spots.

IV. METHODS

The proposed methodology includes three main algorithms:
Preprocessing Algorithm for image enhancement, Global
gridding algorithm to get sub-array regions and Local grid-
ding algorithm for spot regions which will be discussed in
detail on the pages concerned. The overall block diagram of
the proposed fully automated method is shown in Fig. 2.

A. PROPOSED PREPROCESSING ALGORITHM FOR
COMPOSITE IMAGES

The major steps of the preprocessing algorithm are listed
in Algorithm 1. Initially, a composite image is made by
suitably stacking as [Red channel, Green channel, Blue Chan-
nel] or as [Green channel, Red channel, Blue Channel]. There
is no blue channel for microarray images, hence it is kept
as zero planes. Exchange of Red plane and Green plane
is done based on the mse, or mse, values mentioned in
steps 1, 2 and 3 of Algorithm 1. This stacking of planes
can form a composite image that exploits the advantages of
median filtering in the 3D domain. The Signal Processing
Toolbox in Matlab computing environment allows the easy
computation of 3D median filtering. The obtained median
values are position-dependent and relative to the stacking of
Red and Green planes. This is done in step 4. The results
of 3D median filtering are displayed in Fig. 3. The noise
effect is considerably decreased in the GRB domain than in
the RGB domain after the 3D median filtering for the image
Def665. This is visually justified in Figs. 3 d, and 3 e. The
converted image back to the RGB domain after the filtering
is depicted in Fig. 3 f. Contrast enhancement is implemented
by using the dehazing algorithm [32] implemented for low
light images in [33]. Obviously, microarray images are of
poor contrast. All the spots in the image are not equally
visible and are analogous to a low light image scene contents.
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It is noted that the histogram of a low light image in the
complemented version is similar to the histogram of a hazy
image. Therefore, step 5 in Algorithm 1 is done. The resultant
image from step 5 is converted into grayscale in step 6. In
step 7, rotation adjustment is done by using radon transform
to minimize the tilt within subgrids and spots. These types
of rotations are often visible in microarray images within a
certain angle range. Radon coefficients for each deviation
angle are normalized and entropy is calculated. The best
rotation angles are chosen based on the minimum value of
entropy. An affine map is created for the anti-rotation which
uses the derived best rotation angles in x and y direction to
spatially transform the input image. This is explained in [17].
Extra boosting of contrast is again done by sharpening the
image in step 8. Step 9 gives a preprocessed image z, which
is 3D median filtered, contrast-enhanced, and tilt corrected
image in 2D.

Composite images in 3D are generated mainly to exploit
the benefits of 3D median filtering and contrast enhancement
by haze removing algorithm.

B. MODIFIED PROJECTION PROFILE TECHNIQUE

The projection profile technique endeavors the structural data
of microarrays. Microarrays generally hold the regular grid
of spots. The mean intensity for each column of the image
will give an estimation of the number of spot centers and
allows the calculation of inter-spacing between the spots.
A horizontal intensity projection profile gives the number of
vertical separators or grid lines. Similarly, a vertical inten-
sity projection profile gives the number of horizontal grid
lines.

1) STEPS FOR CREATING HORIZONTAL INTENSITY PROFILE
FOR VERTICAL SEPARATORS
Horizontal intensity profile is calculated by (1), where
[r, c] = size(z). The auto-correlation is taken to enhance the
self- similarity by reducing the irregularities in the profile.
This is illustrated in Fig. 4 and in Fig. 5.
The estimated period for spot spacing can be found by
taking the median value of differences of peaks.
1 r
xProfile = ~ ¥ " z(i. j): (j € [1, c]) (1
r

i=1

2) REMOVING BACKGROUND NOISE BY MORPHOLOGICAL
TOP-HAT FILTERING METHOD

Top-hat filtering can be exploited to rectify uneven illumina-
tion when the background is dark. The structuring element
used here is a flat linear structuring element ‘SE’ with the
length of line the same as the estimated period computed.
The image ‘z’ in step 9 of Algorithm 1 is top-hat filtered,
and followed by median filtered in order to reduce the effect
of high-density block noises generated in the microarray
experiment as well as during the image acquisition time.
Amplified noise after the contrast enhancement also will be
mitigated in this stage. The resultant image can be named
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(d)

(®

FIGURE 3. Image Def665 from SIB dataset, (a) source image in rgb domain, (b) Red Plane (mse, = 316.0161), (c) Green Plane (mseg = 22.1008),
(d) denoised in rgb domain, (e) denoised in grb domain, and (f) denoised image in grb domain is converted back to rgb domain. (In Algorithm 1,
the resultant image illustrated in (e) is obtained based on the lower MSE value. The image in (d) is displayed only for the visual comparison with (e).)

as ‘z.’. Fig. 6 displays the resultant figures of z after the pre-
processing method, intermediate stage after the morphology
operation ‘opening’, and enhanced z, of image OD370 from
the DeRisi dataset. Comparison of z, with the source image
and the resultant images obtained after the implementa-
tion of common enhancement methods mainly histogram
equalization (HE) and contrast limited adaptive histogram
equalization (CLAHE) are exhibited in Fig. 7. HE works
on the entire image and enhances the overall contrast of the
image. This method gives a washed-out image in microar-
ray image datasets and hence they are not directly suit-
able. CLAHE boosts the contrast of small tiles or regions
of the image so that the histogram of the output region
approximately matches the required histogram. However, this
enhancement method is not at all good enough to provide
a sufficient contrast level for spots and background in the
microarray images. The horizontal intensity profile is again
calculated on ‘z.’ by (1) and top-hat filtered using the same
structuring element ‘SE’ to obtain an enhanced profile.
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3) SEGMENT PEAKS AND LOCATE CENTERS
The enhanced profile is segmented by Otsu’s method. Otsu
method computes a global threshold level to minimize the
intra-class variance of the thresholded white and black pixels.
This is a good example of the image processing techniques
that are often useful when analyzing 1D data [34]. Each
peak region of the binarized image can be numbered and
corresponding centroids can be extracted. These centroids
conform to horizontal centers ‘xCenters’ of the spots. The
middle points between adjacent horizontal centers provide
vertical grid point locations. Image is transposed and the
aforementioned steps are repeated for achieving the verti-
cal intensity profile, yCenters, and the horizontal separators.
Original and enhanced horizontal and vertical profiles of
Def665 are shown in Fig. 8. Enhanced profiles got clean
and anchored peaks with regular spot spacings when they are
compared to their original profiles.

We illustrated most of the resultant figures of image
Def665. This image is the most challenging image in the
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Algorithm 1: Proposed Preprocessing Algorithm

initialization: x; < red channel image;

x» <—green channel image

Step 1: Find median filtered images x;,1 of x| & x;,;2 of

X2

Step 2: Check mse(x1, x,,;,1) and mse(x2, Xp2);

let mse, < mse(x1, xy1) and mseg < mse(x2, Xm2)

Step 3: if (mse, < mse,) then

stacking image planes to get composite image;
x3(:, 1, 1) < x1;5

x3(:, 1, 2) < x2;3

x3(:, 1, 3) < zero;

x3 is stacked as RGB;

else

x3(:, 1, 1) <= xp;

x3(5, 1, 2) < x13

x3(:, 1, 3) < zero;

x3 is stacked as GRB;

end

Step 4: Do the 3D median filtering on obtained

composite image x3

Step 5: Contrast Enhancement is done by using dehazing

algorithm [32] implemented for low light images [33];

(x3 converted back to RGB domain after Step 4)

Do complement of x3

Apply haze removal

Take complement again to get back the resultant image
in RGB domain (original domain)

Step 6: Convert resultant image into its grayscale

VETsion x3g

Step 7: x3; is tilt corrected using the technique

implemented in [17]

Step 8: Find the edge features using a high pass filter on

the resultant image and get the sharpened image.

Step 9: Add the resultant image and sharpened image.

Final Preprocessed image z is denoised, tilt corrected

and contrast-enhanced image in 2D

SIB dataset which is not globally gridded 100% and locally
gridded 100% by anybody to the best of our knowledge.

C. QUALITY PARAMETERS APPLIED TO ANALYZE THE
TRAITS OF IMAGES

The following three quality parameters are used to analyze
the traits of images in the databases.

1) Mean-Squared Error (MSE): Calculates the mean-
squared error (mse, / mse,) between red/green channel
images and their corresponding median filtered images.
It is used in switching to RGB/GRB domain before the
effective 3D median filtering.

2) Naturalness image quality evaluator (NIQE): This No-
reference image quality score [35] calculates the nige
score with respect to a custom nige MODEL computed
for microarray images using the FITNIQE function in
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Matlab. The MODEL contains visually good images
in equal proportion from the experimental databases.
NIQE value is used to understand the perceptual qual-
ity difference of an enhanced image from the source
image. The enhanced image is more similar to the
source image if the NIQE value of the enhanced image
is more close to that of the source image (contrast
enhancement in Algorithm 1 for ‘z, is not adequate and
need extra boosting).

3) Contrast degree (RMSc): RMS contrast uses the stan-
dard deviation of the image and is computed by (2).
RMS of the source image (gray-scale) and enhanced
image are found. Some enhanced images still cause
grid line errors. It is believed that the level of enhance-
ment is not adequate in those images. We will be multi-
plying a scale of contrast difference (Contyjfr) to those
enhanced images by analyzing their Nigegyr values
(Nigegiff = Nigeyeyw — Nigeoq). If Nigegifr is less than
a particular threshold (empirically optimized), that ‘z,’
is extra boosted in contrast value.

N—-1M-1

RMS; = |+ Z Y -1y 2

i=0 j=0

I is the average intensity of all pixel values in the image
and MN is the product of the number of rows and the
number of columns in the image.

The values obtained for each image are listed in Table 2.
Also, the best rotation angles computed by radon transform
technique in x and y directions to minimize the tilt are added
in Table 2.

inter sub-array spacing

UL LY

_inter spot spacing

FIGURE 4. Horizontal intensity profile of image ‘z". The image used is
Def661 from the SIB dataset.

I I I I
8 QQﬁ%WMN%QQ §4
——AAAAA,A_,A ﬁ'j\uﬁju\)b“ ‘\‘J“‘\‘J“““‘J‘\JU“‘J“\/J\ﬁﬁ 73% JA\,AAAAAA\

FIGURE 5. Auto-correlation of the horizontal intensity profile in Figure. 4.
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(a) (b) ()

FIGURE 6. Image OD370 from DeRisi dataset used in the proposed preprocessing algorithm, (a) image z after Algorithm 1, (b) image after ‘Morphology
opening’(intermediate stage), and (c) image z¢ after Top-hat filtering and Median filtering.

(a) source image in gray-scale (b) after HE (¢) after CLAHE (d) enhanced image z.
(e) histogram of (a) (f) histogram of (b) (g) histogram of (c) (h) histogram of (d)

FIGURE 7. Image OD370 from DeRisi dataset, Comparison of resultant images after histogram equalization (HE) and contrast-limited adaptive histogram
equalization (CLAHE) with the enhanced image ze in the proposed method. While comparing the corresponding histograms, the histogram of z
reveals a better pixel distribution than the other histograms in (e), (f), and (g).
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FIGURE 8. Image Def665 from SIB dataset. Resultant horizontal and vertical profiles of the source image (a) and (c) and enhanced image
Ze (b) and (d).

D. PROPOSED GLOBAL GRIDDING Z. are loaded initially in the algorithm. Inter spot spacings
Major steps of the Global gridding algorithm are listed in of xCenters are calculated and spot_x gets the estimated
Algorithm 2. Horizontal centers ‘xCenters’ obtained from the period of spot spacings in step 1. In projection profiles, noisy

modified projection profile technique of the enhanced image ~ xCenters can be seen at the beginning and at the endpoints,
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Algorithm 2: Proposed Global Gridding Algorithm

Result: Refined Global vertical gridding points
Step 1: Load xCenters from enhanced image z.;
Let dist_x < differences of xCenters;
spot_x <— median of dist_x
Step 2: Refining xCenters
Lett_x1 <« (spot_x — 20) and t_x2 < (spot_x —+ 20)
thresholds to remove noisy xCenters;
Checking beginning 3 points (i = 1, 2, 3) and
end 3 points (i = end, end — 1, end — 2)
if dist_x(i) > t_x2 or dist_x(i) < t_x1 then
| delete xCenters(i);
end
Refine dist_x < differences of new xCenters;
Step 3: Calculate an array n_x of distances greater than
Spot_x;
Letlx < 1;
for n < 1 to length(dist_x) do
if (dist_x(n) > spot_x) then
n_x(Ix) < (dist_x(n);
I x < Ix+1;
end
end
Step 4: Find a threshold to get sub-array spacings
[_xm < mean (unique (n_x))
step S: Find xCenters corresponding to sub-array
spacings
Let ¢ < 1; Assign gxc(c) < xCenters(1);
gxc(end) < xCenters(end); ¢ < 2;
for j < 1 to length(dist_x) do
if dist_x(j) > [_xm then
dist_xx(c — 1) < dist_x(j);
gxc(c) < xCenters(j);
c<c+1;
end
end
Step 6: Obtain the average of sub-array spacings
SubgridDist_X < mean(dist_xx)
Step 7: Calculating global grid points
xG(1) < gxc(1) — SubgridDist_X /2;
xG(2 : length(gxc)) < gxc(2 : end)+
SubgridDist_X /2

and these should be removed before the global gridding.
Three such points will be checked and deleted based on the
condition in step 2. Here, dist_x is the difference between
xCenters and spot_x is the average spot gap between the
spots. We have checked the initial 3 point’s (xCenters) spot
gap in dist_x. If the point is less than r_x1 or greater than
t_x2, then that is not a valid point. Ideally, the threshold
points 7_x1 and #_x2 should be spot_x equivalent. But we
can not give the ideal measure in real images. Hence, 20 mm
offset to spof_x is experimentally determined and hence
selected for all the images in the four datasets. An example
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FIGURE 9. Images are Def665 from SIB and 0D046 from DeRisi dataset,
number of red circled peaks in (a) and (c) is the count of original
xCenters; but xCenters(1) (first point) is a noisy one and that is not
considered in refined xCenters that are plotted as green starred on the
same peaks in (b) and (d).

20

of plotting noisy and refined xCenters is illustrated in Fig. 9.
Then dist_x is updated with the refined inter spot spacings
of xCenters. Usually, sub-array spacings are greater than the
spot spacings. In order to get correct sub-array spacings,
a new threshold /_xm is calculated in steps 3 and 4. Since
the noisy points are already removed in step 2, xCenters(1)
and xCenters(end) will be the new beginning and endpoints
of global xCenters (gxc(1) and gxc(end)). Distances or spac-
ings greater than /_xm are counted as sub-array spacings
in the loop in step 5 and are stored in an array dist_xx.
The remaining global xCenters corresponding to dist_xx are
also taken in the same loop. SubgridDist_X is calculated as
the mean of dist_xx in step 6. The scale of SubgridDist_X
is added to each global xCenters in step 7 to align sub-
arrays effectively within the middle region of the global grid
compartments.

In step 7, xG gives the vertical grid lines for sub-arrays.
Similarly yG can be obtained for horizontal grid lines using
the above algorithm by loading yCenters. Region of interest
(ROI) around each subarray is a 4 element vector. It contains
positions in x and y directions with sizes dx and dy.
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TABLE 2. The values of three quality parameters applied to analyze the traits of our experimental datasets are listed. Nige,/y and Nigepew are the nige
values of source image and enhanced image ‘ze’; Similarly Cont,;y and Contpew are the contrast degree values of source image and image ‘ze’; Note:
RMS * 100 values are shown here. A source image is the grayscale version of the RGB image obtained from the original red channel and green channel

images. The blue channel is kept as zero.

Dataset Images mseg  mse,  Nigeoga Nigenew Contoyq Contpe, Contairy BestRot  Best Rot
Angle_x  Angle_y

SIB ‘ 661 17.20 5.52 5.17 10.08 441 13.47 9.06 0.3 0
‘ 662 7.38 10.71 5.75 23.08 4.53 13.56 9.03 1.1 -0.8
‘ 663 2277  10.38 6.4 16.51 4.93 13.97 9.03 0.6 -0.2
‘ 664 12.53  18.59 447 16.51 3.06 15.1 12.03 0.1 -0.7
‘ 665 22.10 316.01 5.64 21.86 4.59 16.91 12.32 0.2 -0.6
‘ 666 8.63 11.64 3.7 19.6 447 13.68 9.21 1.4 -1.1
‘ 667 5.44 5.75 4.26 18.32 4.02 13.66 9.64 0.7 -0.2

Derisi ‘ 0OD370 3320 29.23 6.13 17.75 5.17 26.71 21.54 0 0.1
‘ 0D046 4833  53.02 4.69 12.49 5.55 25.79 20.24 0.2 -0.2
‘ ODO014 3351 44.03 5.13 14.01 6.02 25.51 19.49 0.1 -0.1

‘ OD180 2526  29.61 5.25 9.93 4.84 26.43 21.58 -0.1 0.1
‘ 0OD690 4239 4594 5.25 11.46 4.67 25.21 20.53 0.1 -0.1

‘ 0OD080 31.98 4355 4.94 11.94 5.28 25.60 20.31 -0.3 0.3
‘ 0OD730 30.51  31.56 5.13 13.09 2.76 23.56 20.79 0.1 -0.1
GEO ‘ GSM16391 5.25 2.05 2.63 18.29 1.81 12.01 10.19 -0.3 -0.2
‘ GSM15898 5.17 6.33 2.78 15.89 2.7 11.81 9.11 -0.4 -0.1
‘ GSM16101 7.16 2.58 1.68 18.51 1.93 13.55 11.61 -0.3 -0.1
‘ GSM16389 6.91 2.36 1.88 18.3 1.88 12.18 10.30 -0.2 -0.2

SMD ‘ TB1_037,_038 1.52 8.39 4.27 12.07 0.15 17.53 17.37 -0.1 0.1
‘ TB6_99,_100 0.25 0.08 5.07 8.55 1.04 16.47 1543 0.1 0.2

‘ TB3_65,_67 0.31 21.09 4.48 8.99 0.65 14.05 13.39 0.0 0.3
‘ TB3_89,_90 8.19 3.75 4.35 11.81 0.17 14.61 14.43 0.0 0.2
‘ TB3_96,_94 0.08 14.10 5.64 9.37 0.41 15.03 14.61 0.0 0.2

‘ TB3_95, 97 0.15 6.13 3.85 8.5 0.59 16.63 16.03 0.0 0.3

‘ TB3_101,_102 1.65 9.84 5.17 11.23 0.17 14.48 14.31 -0.2 0.3
‘ Microti_5_95,_ 396 13820 106.19 2.71 11.57 4.75 20.14 15.38 0.7 0.0

‘ 2001-_0008.1, 35.07 35.85 3.56 11.16 1.33 19.14 17.81 0.0 0.1

8_0009.1
‘ 2001-_0010, 1.18 3.41 4.39 10.48 0.38 20.65 20.26 0.0 0.2
0010.1

E. PROPOSED LOCAL GRIDDING

Major steps of the Local gridding algorithm are listed in
Algorithm 3. Steps 1 and 2 do the procedure as in the same
steps of the global gridding algorithm. Load the xCenters
from subgrid’s ROI's and find the optimal spot spacing
spot_x as seen in step 1. In step 2, threshold values tloc_x1
(lower limit) and tloc_x2 (upper limit) are obtained from the
spot_x to obtain the correct grid lines. Here, 5 mm offset to
spot_x is experimentally determined and hence selected for
all the images in the four datasets. All adjacent xCenters are
considered correct points if their separation distance is within
the defined lower and upper limits. First and endpoints are
checked based on the conditions in step 2 to identify the noisy
xCenters. xCenters(1) is taken into the new variable locx(1)
to continue the remaining steps. Step 3 does the following
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cases to regulate the grid line for proper gridding of all of
the spots. Case 1: if dist_x(i) is within the limits of tloc_x1
and tloc_x2, then the next xCenters(i + 1) is the correct point
and will be considered. Case 2: if dist_x(i) is lesser than the
lower limit tloc_x1 and dist_x(i + 1) is within the limits
of tloc_x1 and tloc_x2, then current point and next point
should be considered. This will be executed in an algorithm
when the variable count < 1. Case 3: if both dist_x(i) and
dist_x(i + 1) are lesser than the tloc_x1, then xCenters(i + 1)
is assumed as a noisy point and i is incremented by one to
take the next xCenters(i + 1). This happens when count < 2
in the algorithm. Case 4: if dist_x(i) is greater than tloc_x2,
obviously one or more xCenters are missed between adjacent
points. We will calculate the number of points missed by the
equation num <— round(dist_x(i)/spot_x), and correspond-
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ing points will be introduced in the loop for the equation
locx(j) <— xCenters(i + 1) — check * spot_x. Hence, the pro-
posed technique is appropriate to microarray images gridding
with different levels of hybridization, and in the absence of
spots. The obtained locx are re-assigned back to xCenters.
Step 4 finds the distances to be added to that xCenters to
obtain the grid lines. The grid lines are computed in step 5 in
such a way that the points are residing within the middle
region of each grid compartment.

In step 5, xGrid gives the vertical grid lines for the spots.
Similarly, yGrid can be obtained for horizontal grid lines
using the above algorithm by loading yCenters.

V. RESULTS AND DISCUSSION

Three types of noises namely Salt and pepper noise,
Poisson noise, and Gaussian noise are commonly found in
the microarray images. Sparsely occurring white pixels in
dark areas and black pixels in white areas can be eliminated
by a median filter. This noise is mainly because of high
transients in the signal that results in ADC errors during
the conversion from an analog signal to a digitized image.
Poisson noise is associated with the variation of the number
of photons sensed at a given exposure level. The exposure
level is defined by green and red wavelengths of laser medium
to the corresponding dyes of normal and abnormal DNA
samples. The photomultiplier tubes in the image acquisition
system multiply the number of electrons of sensed photons
from the DNA chip which creates high amplification noise
(considered as Gaussian noise) in order to enhance the low
light conditions. The preprocessing algorithm proposed in
Algorithm 1 gives ‘z’ which is top-hat filtered, and followed
by median filtered to give a denoised and enhanced image
2,

This ‘z.” is passed to the Global gridding stage. Global
gridding lines vertical (V), horizontal (H) are calculated
in the horizontal and in the vertical direction according to
Algorithm 2. The measurements obtained from the Global
gridding algorithm is provided in Table 3. The required,
obtained correct, obtained false and obtained total V, H
lines for each image in the four databases are computed.
Also, average inter-subgrid distances in x and y direction are
added in the table. The accuracy of global gridding lines is
computed by (3).

sum(obtained correct)

A = 3
couracy sum(obtained total) )

The comparison of our global gridding results with previous
works which used the same datasets are displayed in Table 4.
The authors in [27] proposed a fully automatic gridding
algorithm and had worked on the Derisi dataset. However,
they only gave the local gridding results of that dataset.
SMD [1] used in our work is different from SMD [2] used
in the literature. Both are SMD microarray databases with
different numbers of sub-arrays, spots, and other features.
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Algorithm 3: Proposed Local Gridding Algorithm

Result: Refined Local vertical gridding points
Step 1: Load xCenters from subgrid’s ROI’s of z,;
Let dist_x < differences of xCenters;
spot_x <— median of dist_x
Step 2: Refining xCenters to check noisy points;
Let tloc_x1 < (spot_x — spot_x/5) and
tloc_x2 < (spot_x + spot_x/5);
h<1;j<«2; count < 0
Checking first point:
if xCenters(h) < spot_x/2 then
locx(h) < xCenters(2);,
h <~ h+1;
end
Checking end point:
if dist_x(end) > tloc_x2 then
| delete xCenters(end);
end
dist_x < differences of new xCenters
Step 3: Regulating xCenters for correct gridding points;
for i < h to length(dist_x) do
if dist_x(i) >= tloc_x1 and dist_x(i) <= tloc_x2
then
if count = 1 then
locx(j) < xCenters(i);
J<Jj+1
count < 0;
end
locx(j) <— xCenters(i + 1);
J<i+L
else if dist_x(i) < tloc_x1 then
‘ count < count + 1;
else if dist_x(i) > tloc_x2 then
num <— round(dist_x(i)/spot_x);
check < num — 1;
for n < 1 to num do
locx(j) <— xCenters(i + 1) — check x spot_x;
j<j+1
check < check — 1;

end

end

if count = 2 then

locx(j) < xCenters(i + 1);
Jj<jt+1;

count < 0;

end

end

Clear xCenters; Assign updated xCenters <— locx
Step 4: Find gap < differences(xCenters)/?2
Step 5: Calculating local gridding points;

xGrid (1) < xCenters(1) — gap(1);

xGrid (2 : length(xCenters) + 1) <

xCenters(1 : end) + gap[1 : end end]
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TABLE 3. Measurements obtained from the proposed Global gridding algorithm. Note: Avg Subgrid dist_X is the average value of obtained
sub-array/subgrid distances in the horizontal profile. Similarly, Avg Subgrid dist_Y is the average value of obtained sub-array/subgrid distances in the

vertical profile. Accuracy = sum (Obtained correct)/ sum (Obtained total).

Dataset Images Required  Obtained correct Obtained false Obtained total Avg Subgrid  Avg Subgrid
V,H V,H V,H V,H dist_ X (mm) dist_Y (mm)
SIB ‘ 661 33 33 0,0 33 155.5 147.5
‘ 662 33 33 0,0 33 155 148
\ 663 33 33 0,0 33 154.5 148.5
Tough | 664 33 3,2 0,1 33 154 149
Tough ‘ 665 33 33 0,0 33 155 148
| 666 33 33 0,0 33 155.5 147
‘ 667 33 33 0,0 33 154 148
‘ Total 21+421=42 21+20=41 21+421=42 Accuracy 41/42=0.98
DeRisi ‘ OD180 33 33 0,0 33 18.5 15.5
Tough ‘ 0OD370 33 33 0,0 33 18.5 15
Tough ‘ OD046 33 33 0,0 33 18.5 14.5
‘ OD014 33 33 0,0 33 18.5 14.5
‘ OD690 33 33 0,0 33 19 15
‘ OD080 33 33 0,0 33 18.5 15.5
\ OD730 33 33 0,0 33 18.5 15
‘ Total 21+21=42 21+21=42 21+21=42 Accuracy 42/42=1
GEO ‘ GSM16391 5,13 5,13 0,0 5,13 190 225.5
Tough ‘ GSM15898 5,13 5,13 0,0 5,13 191.16 238.04
\ GSM16101 5,13 5,13 0,0 5,13 190.16 220.5
‘ GSM16389 5,13 5,13 0,0 5,13 190.16 233.4
‘ Total 20+52=72 20+52=72 20+52=72 Accuracy 72/72=1
SMD ‘ TB6_99,_100 5,5 5,5 0,0 5,5 66.67 100.34
Tough \ TB1_37,_38 5,5 5,5 32 8,7 58 121.3
‘ TB3_65,_67 5,5 54 0,1 5,5 66.83 162.83
‘ TB3_89, 90 5,5 55 0,1 5,6 67.16 107.25
\ TB3_96,_94 5,5 5,5 0,1 5,6 66.50 135.62
‘ TB3_95,_97 5,5 5.4 0,1 5,5 67 162
‘ TB3_101,_102 55 5,5 0,1 5,6 66.67 124.67
Tough ‘ Mic_95,_96 5,5 45 3,1 7,6 69.70 133.37
Tough ‘ 8.1,8_0009.1 5,5 5,5 1,0 6,5 62.12 115.50
\ 0010,0010.1 5,5 5,5 0,0 5,5 67.16 145.67
‘ Total 50+50=100 49+48=97 56+56=112 Accuracy 97/112=0.87

Since SMD [2] is not available for our work, we neglected
the comparison of SMD’s results in local gridding results and
discussion. The resultant figures after the global gridding are
exhibited in Fig. 10. Global gridding results are all plotted
on corresponding enhanced images ‘z.’s. A source image is
the grayscale version of the RGB image obtained from the
original red channel and green channel images. ROI around
each sub-array is a 4 element vector which can be calculated
using horizontal and vertical grid lines attained from the
global gridding stage.
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ROISs of sub-arrays are automatically passed into the local
gridding stage. Local gridding lines are computed according
to Algorithm 3. Measurements from the local gridding algo-
rithm are listed in Table 5. The total number of spots (T)
is the overall number of spots in the entire image. True
Positive (TP) is the number of spots that are perfectly gridded.
False Positive (FP) is the number of background regions that
are wrongly gridded as spot blocks. The number of spots
missed and considered as the background is counted in False
Negative (FN). In our work, 0% is the FP rate. 21 spots
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FIGURE 10. (a) and (d) Images OD730 (DeRisi dataset), (b) and (e) Def665 (SIB dataset), (c) and (f) 2001-_0010 (SMD dataset), (a), (b), and (c) are the

source images and (d), (e), and (f) are their globally gridded enhanced images.

TABLE 4. Comparison of accuracy in % (accuracy*100) of the proposed
Global gridding algorithm with competitive works.

Dataset | Rueda [17] | Mary Monir [27] | Our Method

Year | 2011 | 2019 | 2019

SIB | - | 89.29% | 98%

Derisi | - | - | 100%

Geo | 100% | 100% | 100%

SMD [1] | - | - | 87%
| |

SMD [2] ‘ 100%

each from sub-array 1 and 3 of Def 664 are missed and
fallen into the FN group due to the false top horizontal global
gridding line. This is depicted in Fig. 11. Image Def664 is
globally gridded 98% and locally gridded 76.93% with our
method. Image Def665 is globally and locally gridded with
100% and is displayed in Fig. 12. Once the gridding is
perfectly aligned, the grid lines can be superimposed on
source images or enhanced images. Fig. 13 and Fig. 14 shows
the local gridding results of images from Derisi and GEO
datasets. The number of FN is more observed in the GEO
dataset. A large number of spots in the top as well as in the
bottom lines of sub-arrays in the GEO dataset are missed due
to the low value of horizontal mean intensity in those lines.
A comparison in terms of accuracy with most competitive
works is shown in Table 6. This is also illustrated in bar
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FIGURE 11. False top horizontal gridding line attained in the global
gridding algorithm in Image Def664 (SIB dataset).

diagrams in Fig. 15. The authors of [10], [17] and [27] did
gridding on entire images and authors of [14], [19] and [20]
worked on cropped subgrids.

In our work, the accuracy of perfectly gridded spots is only
taken into the account. The accuracy of local gridding lines
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sub-array 1

sub-array 3

sub-array 2

(a) source image (b) sub-array 1

(c) sub-array 2

(d) sub-array 3 (e) sub-array 4

FIGURE 12. Image Def665 from SIB dataset. (Note: obtained grid lines are superimposed on source image in rgb domain).
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(a) source image (b) sub-array 1

(c) sub-array 2

(d) sub-array 3 (e) sub-array 4

FIGURE 13. Image OD046 from DeRisi dataset. (Note: grid lines are plotted on enhanced subarrays).

is defined by (4).

Accuracy = L @)
TP + FP + FN

Accuracy for each image is given independently in Table 5.
In the SIB dataset, except Def 664, other images got
100% accuracy. Def664 has 76.93% (FN value = 42).
DeRisi dataset achieved 100% accuracy for all the images.
GEO dataset attained 97.85% for GSM16101, 96.1%
for GSM15898, 98.45% for GSM16389 and 99.2% for
GSM16391 accuracy respectively. The comparison of our
local gridding results with the previous works is exhibited
in Figs. 16, 17, and 18. The local gridding algorithm gives an
overall accuracy of 96.7%, 100% and 97.9% for SIB, DeRisi
and GEO datasets respectively.

The proposed entire algorithm is appropriate to microarray
images gridding with different levels of hybridization and in
the absence of spots. All the experimental databases have
different levels of spot hybridization. Every spot intensity
is proportional to that particular spot’s degree of hybridiza-
tion of green-colored genes (control genes) and red-colored
genes (test genes). The absence of a spot or missing spot
is due to the lack of that particular gene being hybridized.
This algorithm works effectively in a single row/column
in a sub-array for the case of a large number of missing
spots or non-hybridized spots. GEO databases have a lot
of sub-arrays, with a lot of missed spots. Even with that
database, we got a better gridding accuracy than the existing
methods.
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FIGURE 14. Image GSM16389 from Geo dataset, (a) globally gridded on
enhanced image, (b) enhanced horizontal profile, (c) enhanced vertical
profile, and (d) locally gridded on sub-array 1.

A. COMPUTATIONAL EFFICIENCY PERFORMANCE

Microarray image-oriented analysis is usually not performed
in real-time. The importance lies more on how easily and
correctly we can interpret the intensity values of the microar-
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TABLE 5. Measurements obtained from the proposed Local gridding algorithm. Note: Avg Spot dist_X is the average value of obtained inter spot
distances in the horizontal profiles of all subgrids. Similarly, Avg Spot dist_Y is the average value of obtained inter spot distances in the vertical

= : _ P
profiles of all subgrids. Accuracy = 5 +Fp5Fn * 100
Dataset/ Images Avg Spot Avg Spot Total True Positive  False Positive False Negative Accuracy
dist_X(mm) dist_Y(mm) spots (T) (TP) (FP) (FN) in %
Main challenges
SIB ‘ Def661 50.5 50 182 182 0 0 100%
Block Noise in subgrid 4 ‘ Def662 51 50 182 182 0 0 100%
Noises in b/n column Def663 51 49.75 182 182 0 0 100%
of spots of subgrid 3
Low quality spots Def664 51 49.5 182 140 0 42 76.93%
in top 3 rows
Large noise due to Def665 50.75 50 182 182 0 0 100%
experimental variations
Big Tilt [1.4,-1.1] ‘ Def666 51 50 182 182 0 0 100%
‘ Def667 51 50 182 182 0 0 100%
| Overall Accuracy  96.70%
Derisi ‘ OD180 11 11 6400 6400 0 0 100%
Large no of missing 0OD370 11 11 6400 6400 0 0 100%
spots in row 1
Noise in subgrid 1, 0OD046 11 11 6400 6400 0 0 100%
missing spots in subgrid 2
‘ 0ODO014 11 11 6400 6400 0 0 100%
Low quality spots 0OD690 11 11 6400 6400 0 0 100%
in subgrid 2
Large no of missing 0ODO080 11 11 6400 6400 0 0 100%
spots in subgrid 4
Low quality spots 0OD730 11 11 6400 6400 0 0 100%
in subgrid 2
| Overall Accuracy  100%
GEO ‘ GSM16101 20 19 8736 8548 0 188 97.85%
Large no of GSM15898 20 20 8736 8394 0 342 96.1%
missing spots
| GSM16389 20 19.5 8736 8600 0 136 98.45%
‘ GSM16391 20 18.75 8736 8659 0 77 99.2%
| Overall Accuracy  97.9%

Local gridding Accuracy

of\

I ). Angulo (2003)
[ E. Zacharia (2008)
[CJRueda (2011)
I G. Fang Shao (2013)
V. G. Biju (2015)
[ Mary (2019)

I Proposed (2019)

FIGURE 15. Comparison in bar diagrams of local gridding accuracy.

ray spots given the noises and artifacts that occur from
experimental variations and inappropriate imaging condi-
tions. After acquiring or storing the data, the image analysis
can be done offline. We have computed and executed our
algorithms in Matlab R2018b and ran on an Intel-based work-
station with clock speed at 3.30 GHz. The operating system
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is Windows 10 Pro edition with 16 GB installed RAM. The
average processing time of the entire image (complete spots
in a red channel image and in a green channel image) of the
proposed fully automated technique is calculated as 3.5 sec-
onds for the SIB dataset, 6 seconds for the DeRisi dataset,
30 seconds for the GEO dataset and 12 seconds for the SMD

39619



IEEE Access

S. M. Joseph, P. S. Sathidevi: Fully Automated Gridding Technique for Real Composite cDNA Microarray Images

Redundant gridlines
& FALSE POSITIVES

Spots are not center at boundary cells,

All spots are at center on automatically derived subgrid regions

subgrid is manually cropped

(d) (f)
FIGURE 16. Comparison on image Def661 subgrid 1, (a) J. Angulo (Morphology method), (b) E. Zacharia (Genetic Algorithm), (c)

Rueda (OMTG method), (d) G. Shao (Modified Otsu method), (e) V. G. Biju (Gridline refinement method), and (f) Proposed method.

(d) High Contrast with less noise amplification

(b) One missing V gridding line
FIGURE 17. Comparison on image OD046 subgrid 1, (a) Source image, (b) Shao method,
(c) Monir method, and (d) Proposed method. Yellow circles show the noise effect on their
enhanced images.

TABLE 6. Comparison of the accuracy of the proposed Local gridding algorithm with the competitive works. Accuracy is also compared with the works

applied on cropped subgrids and are displayed in the table.

Dataset Jesus Eleni Rueda [17] | Guifang Mary Our
Angulo [10] | Zacharia [14] Shao [19] Bl_]ll [20] Monir [27] | Method
Year | 2003 | 2008 | 2011 | 2013 | 2015 | 2019 | 2019
SIB | 321% | 845% | - | 857% | 89.11% | 9459% | 96.7%
Derisi | 76.8% | 91% \ - | 946% | 9481% | 9833% | 100%
84% 90.85% 99.26% 96.7% | 97.87% | 97.87% | 97.9%
SMD [2] 92% 92.6% 98.06% 98.9% | 96.51%
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(c) Less noise effect on enhanced image

FIGURE 18. Comparison on image OD080 subgrid 1, (a) Shao method, (b) Monir method, and (c) Proposed method.

TABLE 7. Average Processing speed for the proposed techni
three algorithms for the experimental datasets.

including

“

Dataset ‘ Average Processing speed in seconds(s)

SIB | 34
Derisi | 35s
Geo ‘ 30s
SMD (1] | 12

dataset respectively. That is shown in Table 7. Matlab tic-
toc commands are used to find the elapsed time for the four
experimental datasets to implement the proposed technique in
full. Quality in computational efficiency differs with various
datasets, software and device configurations for microarray
images. Therefore, the processing speed is different. Due
to the non-availability of the complete algorithm/codes of
other state-of-the-art methods, we could not compare the
processing time of our method with those methods. Moreover,
in most of the available methods, a fully automated gridding
algorithm on an entire image is not developed (only the
average processing speed for a single spot in a sub-array or for
a single sub-array is calculated).

VI. CONCLUSION

In this work, a composite microarray image is formed by suit-
ably stacking red and green channels to make the whole image
analysis algorithm computationally efficient. The proposed
preprocessing method, which combines the advantages of
median filtering in the 3D domain and contrast enhancement
by dehazing, increases the contrast of the entire image with
reduced noise effect. The resultant enhanced image after top-
hat filtering and median filtering attains a better contrast with
the reduced effect of noise amplification. Many of the fully
automated works available in the literature are based on the
cropped subgrids of images. The proposed fully automatic

VOLUME 8, 2020

algorithm for global gridding combined with local gridding
uses the structural information as features to obtain the cor-
rect gridding lines. Gridline management is performed in a
row/column of an image to find the missing spots or the non-
hybridized spots. Hence, the proposed technique is appro-
priate to microarray images gridding with different levels
of hybridization, and in the absence of spots. The traits of
a microarray image are evaluated using three parameters
namely Mean square error, Naturalness quality image eval-
uator and degree of contrast. No user intervention or preset
parameters are introduced in the proposed method. Tough
images in SIB, DeRisi, GEO, and SMD are gridded with
better accuracy than the previous works in the literature. We
obtained a 0% false positive (FP) rate for the experimental
datasets using the proposed method. The highest global grid-
ding accuracy of the SIB dataset reported so far is 89. 29%
[27] whereas proposed method gives 98% accuracy. Also,
we achieved 2.11%, 1.67% and .03% improvement in local
gridding accuracy for SIB, Derisi and GEO datasets than the
aforementioned latest work.
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