
Received February 7, 2020, accepted February 18, 2020, date of publication February 24, 2020, date of current version March 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975832

FT-PBLAS: PBLAS-Based Fault-Tolerant Linear
Algebra Computation on High-performance
Computing Systems
YANCHAO ZHU , YI LIU , AND GUOZHEN ZHANG
School of Computer Science and Engineering, Sino-German Joint Software Institute, Beihang University, Beijing 100191, China
Beijing Key Laboratory of Network Technology, Beihang University, Beijing 100191, China

Corresponding author: Yanchao Zhu (zyc0627cool@gamil.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFB0200100, and in
part by the Natural Science Foundation of China under Grant 91530324.

ABSTRACT As high-performance computing (HPC) systems have scaled up, resilience has become a
great challenge. To guarantee resilience, various kinds of hardware and software techniques have been
proposed. However, among popular software fault-tolerant techniques, both the checkpoint-restart approach
and the replication technique face challenges of scalability in the era of peta- and exa-scale systems due to
their numerous processes. In this situation, algorithm-based approaches, or algorithm-based fault tolerance
(ABFT) mechanisms, have become attractive because they are efficient and lightweight. Although the ABFT
technique is algorithm-dependent, it is possible to implement it at a low level (e.g., in libraries for basic
numerical algorithms) and make it application-independent. However, previous ABFT approaches have
mainly aimed at achieving fault tolerance in integrated circuits (ICs) or at the architecture level and are
therefore not suitable for HPC systems; e.g., they use checksums of rows and columns of matrices rather
than checksums of blocks to detect errors. Furthermore, they cannot deal with errors caused by node failure,
which are common in current HPC systems. To solve these problems, this paper proposes FT-PBLAS,
a PBLAS-based library for fault-tolerant parallel linear algebra computations that can be regarded as a
fault-tolerant version of the parallel basic linear algebra subprograms (PBLAS), because it provides a series
of fault-tolerant versions of interfaces in PBLAS. To support the underlying error detection and recovery
mechanisms in the library, we propose a block-checksum approach for non-fatal errors and a scheme for
addressing node failure, respectively. We evaluate two fault-tolerant mechanisms and FT-PBLAS on HPC
systems, and the experimental results demonstrate the performance of our library.

INDEX TERMS Algorithm-based fault tolerance, HPC systems, node failure, matrix multiplication, linear
algebra computations.

I. INTRODUCTION
With the scaling up of high performance computing (HPC)
systems in recent years, resilience has become a major
challenge. Currently, supercomputers generally have tens
of thousands of processors; e.g., the number of cores in
Summit [1] and Sunway TaihuLight [2] is 2,414,592 and
10,649,600, respectively. As the number of hardware com-
ponents increases, failures occur more frequently on aver-
age. Statistics show that the MTBF, the mean time between

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

failures, of the currently most powerful supercomputers has
been reduced to several hours. This situation will become
worse in the future due to the foreseeable increase of the
number of processors and nodes in HPC systems.

To ensure reliable execution of applications in HPC
systems, various kinds of fault-tolerant techniques have
been proposed, which can be simply classified into hard-
ware and software approaches. Among software approaches,
the checkpoint-restart method [5]–[8] is the most popular
one, and it is extensively used in current HPC systems.
However, the checkpoint-restart technique faces challenges in
current massive parallel systems, especially to its scalability;

42674 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4598-1063
https://orcid.org/0000-0002-4911-1161
https://orcid.org/0000-0002-9956-8119

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

e.g., at the checkpoint time, all the nodes need to be syn-
chronized for some particular applications, and the volume
of the checkpoint data also impacts the I/O infrastructure.
Another extensively used software-based technique is repli-
cation [9], [10], which uses replication in different levels
(e.g., the process-level) to ensure the reliable execution of
applications and consequently consumes a large amount of
resources. Apart from the above application-independent
software-based techniques, algorithm-based approaches, i.e.,
algorithm-based fault tolerance (ABFT), provide another
way to achieve the correct execution of applications. ABFT
ensures the reliability of basic algorithms through mathe-
matical principles, which help with fault tolerance through
data validation, error detection and data recovery; then, the
higher-level applications receive indirect fault-tolerance sup-
port through these fault-tolerant basic algorithms. Although
the ABFT approach is algorithm-dependent, its efficiency
and lightweight characteristics make it attractive in the era
of peta-scale and exa-scale systems.

Many engineering and scientific applications rely on some
fundamental algorithms, such as matrix computation and
fast Fourier transform (FFT). Therefore, it is possible to
provide algorithm-based fault-tolerant mechanisms at a low
level and tomake thesemechanisms application-independent.
However, previous ABFT approaches face two challenges
when they are used in HPC systems. First, most previous
approaches aim at fault-tolerance in integrated circuits (ICs)
or at the architecture level rather than in massive parallel
systems; e.g., the first ABFT approach for matrix multipli-
cation [11] uses checksums of rows and columns to detect
and recover from errors, which is suitable for IC chips.
However, matrix computations in HPC systems are usually
block-based, that is, matrices are partitioned into blocks
and assigned to different processes. The second challenge
is fatal errors caused by node failure. Node failure occurs
frequently in current HPC systems and often causes nodes
to crash, which renders traditional checksum-based systems
ineffective.

This paper proposes a fault-tolerant library for linear alge-
bra computations called FT-PBLAS, which can be regarded
as the fault-tolerant version of PBLAS. We propose a block-
based approach and a lightweight scheme to deal with node
failure, and we incorporate them into the extensively used
PBLAS library. The main contributions of this work include
the following:
• To the best of our knowledge, FT-PBLAS is the first
library that supports fault-tolerant linear algebra com-
putations in HPC systems. The library provides a series
of fault-tolerant versions of interfaces in PBLAS and
supports underlying error detection and recovery for
both non-fatal errors and node failure.

• We propose a block-checksum-based approach for
fault-tolerant matrix computations in HPC systems.
The approach uses a block checksum instead of a
traditional row-column checksum to detect computa-
tion errors, which is not only more suitable for HPC

systems but also better in terms of computational
complexity.

• We propose a fault-tolerant matrix computation scheme
to deal with errors caused by node failure. The
scheme ensures the execution and completion of large
iteration-based matrix algorithms such as Cannon 12],
even in node failure cases.

The rest of this paper is organized as follows: Section II
introduces the fault models of our work. Section III intro-
duces our proposed block-checksum approach. Section IV
presents our lightweight method for addressing node failure.
Section V presents the implementation based on PBLAS.
Section VI evaluates the proposed method and presents the
experimental results. Section VII presents related work and
section VIII concludes the paper.

II. FAULT MODEL
We propose our fault-tolerant mechanisms under two dif-
ferent fault models. As these fault models produce different
results, the corresponding fault-tolerant mechanisms are dis-
cussed separately.

Most previous ABFT methods focus on the correctness of
the calculation results, which are affected by silent errors
during computations, e.g., bit inversion caused by cosmic
rays. This kind of error does not impact the execution of an
application, but it can lead to a wrong calculation result. Our
block-checksum approach, which is discussed in next section,
aims at solving this kind of error in HPC systems.

The second fault model is a typical fail-stop model, which
is caused by non-silent errors, i.e., crash cases. Under this
model, an application cannot be executed completely if the
error occurs. Section IV presents a fault-tolerant mechanism
for node failure, which helps ensure the execution of a matrix
computation even if this kind of error occurs.

III. THE BLOCK-CHECKSUM APPROACH
As one kind of typical and complex linear algebra computa-
tion, matrix multiplication is a focus for many researchers.
Previous studies of fault-tolerant matrix multiplication use
checksums for each row and column of a matrix to check
computational errors, which is not suitable for current HPC
systems. The traditional row-column method detects error
through comparing all the checksums before and after the
matrix multiplication; then, it re-calculates the corresponding
data, the coordinates of which can also be found by com-
paring checksums. However, with the scaling up of matrices
in HPC systems, this fine-grained fault-tolerant method will
have faster growth of redundant data, which certainly impacts
the efficiency of the whole matrix multiplication.

Matrix computations generally divide matrices into pieces,
instead of rows or columns, and allocate these pieces to
different nodes (processes) for parallel computation. In this
situation, we propose a block-checksum approach, which
uses a checksum of blocks instead of rows and columns
to check for computational errors in HPC systems [14].
This approach reduces the number of redundant operations,

VOLUME 8, 2020 42675

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

i.e., calculations and comparisons of checksums, because it
detects and recovers errors in blocks instead of individual
data values. Although the approach needs more overhead to
recover data, it is more suitable for improving the perfor-
mance of HPC systems overall, as the recovery overhead is
manageable and can be negligible compared to the overall
number of matrix multiplication operations. In addition,
our approach also considers the procedure and algorithm
of matrix multiplication in PBLAS, in which each process
performs several steps of multiplication and addition, and
some communications among processes occur between those
steps. To minimize the impact on overall computation, our
approach focuses on each multiplication step in each process
so that error correction can be accomplished in processes
without communication.

A. PRINCIPLE AND PROCEDURE
We take matrix multiplication as an example to present the
principle of our block-checksum approach.

As mentioned above, the block-checksum approach is
designed for block-based matrix computations. We first set k
as the size of each block (the method of setting the k value
will be introduced in the following sections), and then the sum
of all elements in each block will be the checksum to detect
the occurrence of errors during the calculation. When errors
are detected, the corresponding process will re-calculate each
block with an error.

Figure 1 shows the principle of our approach, where matrix
A and B are multiplied with a checksum calculation and
error check. First, the two matrices are divided into pieces,
with each piece consisting of a block and its checksum. Our
algorithm will detect possible errors in blocks by these block-
checksums. The gray part in Figure 1 indicates the checksum
of the corresponding block. All of the block checksums will
be encoded into checksum matrices before computation and
then be used for calculating the checksum result. When the
multiplication is complete, the final result is encoded again

FIGURE 1. Block-checksum approach for matrix multiplication.

to compare with the checksum result. Under certain criteria,
our approach can detect an error and re-calculate the error
block or finish the entire calculation if no error occurred.

According to our scheme, to accomplish the matrix multi-
plication A×B, we first need to encode matrix A and matrix B
to generate the checksum. When the block has been divided,
the matrix A is represented as:

A =



a1,1 · · · a1,k a1,k+1 · · · a1,n
...

. . .
...

...
. . .

...

ak,1 · · · ak,k ak,k+1 · · · ak,n
ak+1,1 · · · ak+1,k ak+1,k+1 · · · ak+1,n
...

. . .
...

...
. . .

...

am,1 · · · am,k am,k+1 . . . am,n


For matrix A, we first divide the matrix into w blocks, with

each block consisting of k rows, then calculate the sum of
each column in each block and put the checksum into the
checksum matrix Acheck . That is, each row of the checksum
matrix Acheck corresponds to one block of matrix A. We also
add an extra row (the last row) inAcheck in which each element
is the sum of the corresponding column.

Acheck =


ac1,1 · · · ac1,n
...

. . .
...

acw,1 · · · acw,n
acw+1,1 . . . acw+1,n

 and w =
⌈m
k

⌉
(1)

aci,j =
i∗k+1∑

p=i∗k−k+1

ap,j (i ≤ w) aci,j =
m∑
p=1

ap,j (i > w) (2)

Matrix B is processed in the same way:

B =



b1,1 · · · b1,k b1,k+1 · · · b1,q
...

. . .
...

...
. . .

...

bk,1 · · · bk,k bk,k+1 · · · bk,q
bk+1,1 · · · bk+1,k bk+1,k+1 · · · bk+1,q
...

. . .
...

...
. . .

...

bn,1 · · · bn,k bn,k+1 . . . bn,q


.

The checksum matrix for matrix B is encoded as
follows:

Bcheck =

 bc1,1 . . . bc1,t bc1,t+1...
. . .

...
...

bcn,1 . . . bcn,t bcn,t+1

 And t =
⌈q
k

⌉
(3)

bci,j =
i∗k+1∑

p=i∗k−k+1

ai,p (j ≤ t) aci,j =
q∑

p=1

ai,p (j > t) . (4)

The result of matrix multiplication is C=A×B.

C =

 c1,1 · · · c1,q
...

. . .
...

cm,1 · · · cm,n


42676 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

The result checksum matrices are calculated as:

Crc = [cr1, . . . crw] , cr i =
n∑
j=1

aci,j × bcj,t+1 (5)

Ccc = [cc1, . . . cct] , cci =
n∑
j=1

acw+1,j × bcj,i (6)

Crcmeans the sums of the data in the same block row calcu-
lated by block checksums, andCccmeans the sums of the data
in the same block column. They help locate the coordinates of
the error block through the following comparisons if an error
occurs.

To check if there is an error during the multiplication,
we need to calculate the checksums for the matrix C and
compare them with the data in the result checksum matrix
(i.e., Crc and Ccc). An error block will be located at the inter-
section of mismatching block checksums. The checksums of
matrix C are calculated as follows:

cr∗i =
i∗k+1∑

j=i∗k−k+1

q∑
h=1

cj,h, and cc∗i =
i∗k+1∑

j=i∗k−k+1

m∑
h=1

ch,j (7)

Error detection is performed by comparing the above
newly calculated checksums with the elements in the result
checksum matrix. One question that should be considered is
how to distinguish floating-point rounding errors from com-
putational errors. To solve this problem, we set an appropriate
error bound (which is discussed in the next sub-section).
The final formula for error detection is as follows:∣∣cc∗i − cci∣∣ < εi, and

∣∣cc∗i − cci∣∣ < εi (8)

Proof: From the matrix multiplication theorem,
we know that

ci,j =
n∑

u=1

au,j ∗ bu,j (9)

For any row block checksum, we have:

cr∗i =
i∗k+1∑

j=i∗k−k+1

q∑
h=1

cj,h =
i∗k+1∑

j=i∗k−k+1

q∑
h=1

n∑
u=1

aj,u ∗ bu,h

=

n∑
u=1

i∗k+1∑
i∗k−k+1

q∑
h=1

aj,u ∗ bu,h

=

n∑
u=1

i∗k+1∑
i∗k−k+1

aj,u ∗
q∑

h=1

bu,h (10)

From equations (9) and (10), the block checksum is

cr∗i =
n∑

u=1

i∗k+1∑
j=i∗k−k+1

aj,u ∗ bcu,t+1

=

n∑
u=1

bcu,t+1 ∗
i∗k+1∑

j=i∗k−k+1

aj,u=
n∑

u=1

bcu,t+1 ∗ aci,u=cr i

(11)

Algorithm 1 Kernel for Encoding the Checksum of Matrix A
Input:A[m][n], k
Output: AC[w+1][n]

w←
m
k

for i = 0→ n do
p, q, asum, bsum=0;
/∗Initialize: asum stores all data sums, while bsum stores

the sum of the data in a block. p and q are used to judge
whether the calculation is still in the block.
∗/
for j = o→ m

if p<k
bsum = + A[j][i];
p++;

else
AC[q][i] = bsum;
asum = + bsum;
bsum, p=0;
q++;

/∗judgewhether the sum for the corresponding block has
been calculated. Store the sum and do the samewith the rest
of the data.
∗/
end for

end for
Output AC.

The algorithm for the encoding procedure is given in
Algorithm 1:

As soon as an error is detected, the algorithm will enter
the recovery procedure. After locating the intersection of the
mismatching block checksum, the algorithm will re-calculate
all the data in the block, as the block checksum cannot
give the exact coordinate where the error occurred. After the
re-calculation, the application will check the block checksum
again to ensure correctness.

B. BLOCK SIZE AND ROUNDING ERROR
Many studies have given a variety of methods to distinguish
rounding errors and soft errors, as this is an inescapable
problem in floating-point calculations.

In our block-checksum approach, there are two factors that
need to be determined: the block size k and the rounding
error bound . Generally, the larger the block we select is,
the smaller the time and space overhead and the lower the
accuracy; the opposite is also true. That is, block size is
inversely correlated with accuracy due to the effect of error-
counteraction; e.g., if there are two errors in one block, one
result is larger than the accurate value and the other is smaller.
Therefore, when the two values are added, the errors will
counteract each other in producing the checksum, and errors
may not be detected. To achieve a balance between accuracy
and efficiency, we propose an approach that combines our

VOLUME 8, 2020 42677

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

simplified method for block-size calculation with a classic
method for rounding-error-bound calculation.

Similar to other works [15], [16], Our approach uses the
reciprocal distribution of mantissa bits to calculate the round-
ing error bound for a block checksum. The principle of
the method is based on the fact that matrix multiplication
consists of multiple steps of multiplication and addition, and
the rounding error bound can be obtained by calculating
expectation and variance during those steps.

In arbitrary data sets, the mantissas of floating-point num-
bers tend to follow a reciprocal distribution, which, in the case
where the base B = 2, is represented as:

r (x) =
1

x · ln(2)
, x ∈ [

1
2
, 1) (12)

where r(x) is the probability that the floating-point mantissa
is x. After several calculation steps, we calculate the variance
of a single result.

σ (S) =
√
VarProd (S)+ Varsum(S)

≤

√
n · (n+ 1) · (2n+ 1)+ 2n

24
· y.2−t (13)

In the above formula, n refers to the size of the matrix
multiplied; y refers to the largest absolute value among the
data in matrix A and matrix B; and t depends on the bits
of floating-point in the hardware. In our block-checksum
approach, the block checksum is the summation of k×k data
points. After this addition, we obtain the variance of the block
checksum:

σ (RS)≤ k · m·

√
n · (n+ 1) · (2n+ 1)

24
· y.2−t

and

σ (CS)≤ k · q·

√
n · (n+ 1) · (2n+ 1)

24
· y.2−t (14)

where k refers to the size of the block we used for the block
checksum m refers to the number of rows in matrix A, and
q refers to the number of columns in matrix B. Formula 14
can be used to determine the value of k . Then, there is the
formula for the bound of the rounding error, which is based
on principles of numerical algorithms [17]:

ε ≤γn| |A| |∞| |B| |∞, (15)

where γn = nu
1−nu ,u is the unit roundoff error of the target

machine, and n is the common dimension of the matrix.
As a result, the value of rounding error bound calculated

through reciprocal distribution is much smaller than that cal-
culated through the other methods. By solving the formula
below, we can get a suitable value of the block size k .

σ (CS) ≤ k · q ·

√
n · (n+ 1) · (2n+ 1)

24
· y.2−t

≤ γn| |A| |∞| |B| |∞ (16)

In the above formula, some necessary data, e.g., y, needs to
be determined during the calculation. However, to determine

the value of k in fewer steps, we employ a simplified method:
before multiplication starts, the process extracts data from
some of the input matrices randomly, calculates the needed
values of these data rather than all data and finally obtains
the recommended range for k . By simplifying the calculation
of k before the matrix multiplication or offline, our method
causes little performance loss. However, since the value of
k is determined by only two methods for error threshold
judgment, it cannot be guaranteed to be optimal. Therefore,
we can also set a default value for k if necessary.

C. OVERHEAD ANALYSIS
A fault-tolerant mechanism involves extra computations,
which influence both performance and scalability. This
sub-section analyzes the computational complexity of our
block-checksum approach and compares it with that of the
previous ABFT [11] approach based on the row-column
checksum.

In the encoding procedure, both our approach and ABFT
need to traverse the whole matrix to calculate the checksum,
which corresponds to an overhead ofO(N 2), whereN refers to
the scale of the matrices for multiplication. In the computing
procedure and error-detecting procedure, the computational
complexity of our approach is O(N 2) and O(N), respectively,
which is only 1/kof that of ABFT. However, the error location
of our method is a coordinate of a block which includes
k2 data, instead of a coordinate of a single data. Although it
take some more time to recover the computational error than
the ABFT, our block-checksum approach has little impact
on the accuracy of error detection. As a result, the overhead
for recovery is of complexity O(N) for both ABFT and our
approach.

In conclusion, the overall complexity of our approach is
O(N 2). Considering that the complexity of matrix multipli-
cation is O(N 3), our approach imposes only a limited perfor-
mance impact on overall computation, especially when the
matrices become larger, as in HPC systems. Compared to the
previous row-column-checksum approach, our approach has
fewer operations in its computing and detecting procedures.

For example, consider conducting a 128000 × 1280000
matrix multiplication on a cluster with 256 nodes, each of
which runs 16 processes. There will be a 20000×20000 sub-
matrix multiplication for each process. The number of fault-
tolerant operations is shown in Table 1.

IV. FAULT-TOLERANT MATRIX COMPUTATION FOR
NODE FAILURE
A. PROBLEM ANALYSIS
The block-checksum approach can ensure the detection and
recovery of computational errors caused by non-fatal errors
(e.g., soft errors) in HPC systems; however, it cannot deal
with errors caused by node failure. Node failure often implies
a crash or a suspension of the node system, and it occurs
frequently in current HPC systems due to their large number
of processors and nodes. In this situation, all of the processes

42678 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

TABLE 1. Number of fault-tolerant operations (128000 × 128000 matrix multiplication, 256 nodes, 16 processes/node).

in the failure node stop running, and neither a computation
result nor a checksum can be returned for error-detection.

The situation may be more complex for practical matrix
algorithms such as the Cannon algorithm [12], which is a
classic and extensively used algorithm for large matrix mul-
tiplication, To solve the problem of insufficient memory for
storing the blocks of a large matrix, the algorithm divides the
matrix into smaller blocks and performsmatrixmultiplication
through multiple iterations on those blocks. During each iter-
ation, blocks are computed and exchanged among processes.
If a node failure occurs during the execution of the algorithm,
not only is the result of the failed node lost but also the data
blocks that are essential for subsequent computations are lost;
as a result, the process of the algorithm cannot continue.

To address the above problem, we propose an error detec-
tion and recovery scheme on the basis of the Cannon algo-
rithm to deal with errors caused by node failure.

B. FAULT-TOLERANT SCHEME FOR NODE FAILURE
Our fault-tolerant scheme for node failure consists of
two parts: error detection and error recovery. Error detec-
tion is performed along with computation, and we use a
two-dimensional state table (as shown in Figure 2) to trace
the status of the processes that compute over the blocks of
the matrix. The state table is organized by the column and row
index of blocks corresponding to the partitions of the matrix,
in which the element (i, j) indicates the status of the process
that compute over block(i, j): 1 means the process is alive
(i.e., working normally), and 0 means the process is down
(i.e., there is a node failure).

FIGURE 2. Two-dimensional state table.

The procedure of this fault-tolerant mechanism for each
iteration is described as follows:
(a) The Algorithm starts. Initialize the state table by setting

the status of each process to 1 (normal) and the MPI
environment; each process obtains the appropriate data
blocks according to the Cannon algorithm.

(b) Perform multiplication and addition. Judge whether the
iteration is complete. If it is complete, go to step d; if not,

then each process obtains state information from the state
table. If the data is 1, the process starts to obtain the data
for the next iteration from the corresponding process and
then goes to step c. If the process state information is 0
(meaning the process cannot execute normally), the pro-
cess acquires data from the storage system, then iterates
step b.

(c) Compare the time with a preset threshold. If the process
completes the data transfer within the threshold time,
then go to step b. If not, consider the node of the cor-
responding process to be down; then, update the infor-
mation of this process in the state table and broadcast this
information to the other processes. Acquire data from the
storage system and go to step b.

(d) Finish the work of the current process. The main pro-
cess starts checking the state table. If all the data are 1,
the algorithm ends. If any processes are found with
state information 0, the main process re-assigns the tasks
of these processes to other processes that execute the
program correctly. After all the results are calculated,
the algorithm ends.

To be more specific, we use process(i, j) to represent the
process that computes over block(i, j) of the matrix. Figure 3
illustrates our algorithm with an example of process(i, j).
Part A in the figure shows the whole procedure of our fault-
tolerant scheme for node failure. The algorithm starts with
an initialization step, and a timeout threshold u is used to
judge the node failure error. During each iteration, the process
exchanges data with neighboring processes, and any timeout
of data transfer will be regarded as node failure, which will
trigger the error recovery shown in part B. In the figure,
we also give an error example in which the data transfer from
process(i, j+1) runs out of time; then, the process will enter
the error recovery module as shown in part B.

To start the error recovery, the process updates the state
table to mark the status of the failed process (i.e., it sets their
values to 0), and the timeout threshold is also updated to
avoid misjudging failures during error recovery; after that,
the process broadcasts the information to the other processes
and reloads the lost data from the storage system directly,
then finishes the current iteration. During the subsequent
iterations, the process obtains data from the storage system,
as the value of process(i, j+1) in the state table is 0.

After all of the iterations are completed, the main process
checks the state table. If all of the values in the table are 1,
the algorithm will finish immediately because no failure
occurred. However, for this example, the main process will
find that the process state(i, j+1) has the value 0, so it

VOLUME 8, 2020 42679

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

FIGURE 3. Fault-tolerant matrix multiplication for node failure.

re-assigns the task of process(i, j+1) to the processes that exe-
cute it correctly. After the re-computing of the corresponding
block completes normally, we finally obtain all the results and
finish the whole procedure.

From the above description, we can see that the error
detection incurs only a little overhead; on the other hand,
the error recovery takes a long time to finish the whole
calculation. The overhead of error recovery mainly comes

from two sources: first, we have to wait for a certain amount
of time to check whether the relevant process is down, as
it may be affected by network fluctuations, and we cannot
get hardware information from the platform system, as this
scheme is deployed at the application level. The updating and
broadcasting of the information of failed processes also take
some time. Second, some time is also needed to re-calculate
the tasks of failed nodes.

42680 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

It should be noted that the state table of the scheme is use-
ful for achieving fault tolerance in upper-level applications.
For example, matrix decomposition needs many instances of
matrix multiplication, but our scheme ensures that each node
failure is detected only once, e.g., through the repeated writ-
ing and reading of the state table in storage system between
multiplications, which avoids wasting time with the repeated
detection of node failure in multiple matrix multiplications.

This approach enables HPC matrix multiplication to con-
tinue to execute when node failure error occurs, and com-
pared to the overall matrix operation, it only takes a little
additional overhead when no node failure occurs. This fault-
tolerant matrix computation method for addressing node
failure achieves a good balance between functionality and
performance.

V. IMPLEMENTATION BASED ON PBLAS
We implemented our block-checksum-based approach and
the scheme for node failure on the basis of PBLAS. PBLAS
is the cluster-version of a popular linear algebra computation
library, BLAS, and it is used extensively in HPC systems and
other software packages such as ScaLAPACK [4]. To guar-
antee ease of use and compatibility, our library provides
fault-tolerant version interfaces corresponding to the original
interfaces of PBLAS.

Similar to BLAS, PBLAS also supports three levels of
linear algebra operations: vector-vector (level-1), matrix-
vector (level-2) and matrix-matrix (level-3). Among those
operations, matrix multiplication is the most complex opera-
tion and has the highest computational complexity. Therefore,
we focus on the implementation and interface of level 3
(matrix-matrix) operations in the following section.
Considering that the default MPI error handling mechanism
for node failure contradicts our mechanism, the relevant
measures are also presented in part C.

A. ARCHITECTURE OF THE LIBRARY
Figure 4 shows the architecture of FT-PBLAS. Both the
block-checksum mechanism and the scheme for node failure
are implemented in the underlying programs, and by provid-
ing a fault-tolerant version of interfaces (introduced in the
next sub-section), HPC applications can invoke this library

FIGURE 4. Architecture of the FT-PBLAS.

to accomplish transparent fault-tolerant vector and matrix
computations.

Considering that PBLAS is built on BLAS and the
communication interface BLACS (basic linear algebra com-
munication subprograms), we still utilize these functions to
implement fault-tolerant mechanisms. The block-checksum
mechanism is combined with the original BLAS, and
fault-tolerant interfaces are incorporated by adding parame-
ters and renaming methods. At the same time, we utilize the
communication functions of BLACS to broadcast and update
the information of the state table among processes.

B. INTERFACE OF THE LIBRARY
As mentioned in previous sections, FT-PBLAS provides a
series of fault-tolerant versions of interfaces corresponding
to the original interfaces of PBLAS. To distinguish the fault-
tolerant interfaces from the original ones, we add the prefix
‘‘FT_’’ to all of the fault-tolerant interfaces. In addition, some
new parameters are added to specify parameters for error
detection and recovery; e.g., the parameter BS is used to
specify the block size, but this can also be set to a default value
by using our built-in automatic block selection mechanism.

Based on the operation of matrix multiplication introduced
previously, the vector-vector and matrix-vector operations
can be regarded as matrix operations with a lower latitude and
complexity. Therefore, we mainly discuss the fault-tolerant
interfaces in Level 3, as listed in Table 2.

In addition to the fault-tolerant versions of the original
interfaces, we added three new interfaces to facilitate the node
failure approach and cooperate with high-level applications,
as shown in Table 3.

C. WORK WITH MPI ENVIRONMENT
In order to ensure the completion of the application and
its efficiency with MPI environment, MPI will monitor all
the processes during the execution of program. When some
processes fail, caused by node failure or other reasons dur-
ing the execution of the program, MPI will handle the cor-
responding error according to the preset mechanism when
the error is monitored. Generally MPI terminates the exe-
cuting program as the default predefined error handle is
MPI_ERROR_ARE_FATAL, which means to bring down the
whole computation when error occurs [18]. Considering that
a failed MPI process usually leads to the failure of the whole
parallel program due to some information which will never
been received from the failed process, to bring down the
whole program is the safest and most efficient measure while
facing the node failure error.

However, even though our proposed fault-tolerant mech-
anism could deal with the node failure during the execution
of the matrix multiplication, the current MPI error handling
mechanism will hinder this mechanism which uses MPI.
To ensure our mechanism without hindrance, a function, i.e.,
MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler
errhandler) [18], which is used to set the error handle for a
specific communicator, will be called during the initialization

VOLUME 8, 2020 42681

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

TABLE 2. Level 3 interfaces of FT-PBLAS and PBLAS.

TABLE 3. Interface for supporting the state table.

of the MPI environment. Another predefined error handle
MPI_ERROR_RETURN, which means only to return the
error code while error occurs, will be set for the communi-
cator of our matrix multiplication, so that the execution of
our algorithm will not be terminated by node failure error.
As a result, our fault-tolerant matrix multiplication for node
failure could work with MPI environment normally simply
by setting a new error handle.

Previous researches have proposed some mechanisms with
MPI for node failures, there are two main methods: global
restart [19] and local recovery via a ULFM interface [20].
Although these methods could restore the MPI environ-
ment efficiency, the applications must be re-executed. Even
though some necessary fault-tolerant measures are used to
reduce the performance overhead of the re-execution (e.g.,
FT-MPI [38]), it is still less efficient compared to our
fault-tolerant mechanism.

VI. EVALUATION
A. EXPERIMENT STEP
We evaluate our FT-PBLAS on the Tianhe-2 system [31],
major configurations of which are listed in Table 4. The
number of computing nodes used in our experiments ranges

TABLE 4. Experimental environment.

from 4 to 128, with each node assigned 32 processes (i.e.,
1 process/processor core). Therefore, the number of pro-
cesses ranges from 128 to 4096.

Our experiments mainly evaluate the overhead of the two
fault-tolerant approaches and the FT-PBLAS library. In prin-
ciple, the overhead can be investigated according to two
aspects: the overhead when no error occurs, and the overhead
when there is error (i.e., the overhead of error recovery).
Accordingly, our experiments are composed of two parts—
experiments without error and experiments with error—both
of which use the computation time of matrix multiplica-
tion as the metric. That is, the metric is the execution time
of the function PDGEMM() and its fault-tolerant version
FT_PDGEMM() in PBLAS and FT-PBLAS, respectively.
in the function calls to PDGEMM() and FT_PDGEMM(),
we set the parameters alpha and beta to 1 and 0, respectively,
which transforms the function into a simple matrix multi-
plication. we use a simple program to pre-load the data and
invoke these two interfaces to test performance.

B. PERFORMANCE AND OVERHEAD WITHOUT ERROR
1) BLOCK-CHECKSUM APPROACH
To better demonstrate the performance of the two methods
of our fault-tolerant mechanism, we test them one by one.

42682 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

FIGURE 5. Performance of the block-checksum approach without error.

First, we disable the fault-tolerantmodule for node failure and
evaluate the block-checksum approach with the default block
size value 4. This experiment aims to evaluate the overhead
of the block-checksum approach by comparing it with the
original PBLAS. We run the program with different sizes
of matrices and different parallel scales, and the results are
shown in Figure 5. From the figure we can see that, under
different sizes of matrices, the total execution time decreases
with the increase of the number of nodes, but the difference
between our method and the original matrix multiplication
is hard to see when no error occurs. The blue curve, which
represents the percentage of time spent on overhead, is always
at a low level. Compared with the complexity of matrix mul-
tiplication itself, the overhead of our redundancy operations
is diluted at this massive computational scale.

We also compare the performance of our block-checksum
approach with that of the row-column checksum method.
To implement parallel matrix multiplication on multiple
nodes with the row-column checksum method, we assign
whole rows and columns to different nodes, despite the
fact that this is not a normal method for performing matrix

computations on large-scale parallel systems. In Figure 6, the
extra performance overhead represents the percentage of the
time it takes to perform fault-tolerant operations. As shown in
the figure, the ratio of the row-column method grows faster
than the block-checksum method as the size of the matrix in
each process increases (the node number decreases), how-
ever, the overhead of the block-checksum approach grows
much more slowly than that of the row-column method for
both sizes of matrices. The result also confirms the fact that
the size of the block influences performance.

Then, we did further experiments; Figure 7 presents the
experimental data calculated with different sizes of the check-
sum blocks. In the figure, n refers to the size of the block.
Due to the method of the algorithm, the larger the size of
the checksum block is, the less overhead it takes. However,
the larger size reduces the accuracy of locating errors, and it
may take more time to recover the error data. So, if we take
themisdiagnosis rate into account, a larger block size does not
produce a more accurate detection; in other words, an appro-
priate block size is necessary, which can be calculated by our
simple method.

VOLUME 8, 2020 42683

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

FIGURE 6. Overhead comparison between two FT methods.

FIGURE 7. Extra execution time under different sizes of checksum blocks
with matrix size 40000∗40000.

Figure 8 presents the execution time for fault tolerance
under different scales of matrices. It can be seen that the
extra execution time (fault tolerance) reduces significantly
as the scale of the matrix decreases (and increases with
parallel scales), as the overhead for fault-tolerant calculation
is O(N 2). However, because the extra time is combined with
three parts—encoding time, calculation time and checking
time—it does not reduce perfectly.

2) FAULT-TOLERANT MATRIX COMPUTATION OF NODE
FAILURE
In this experiment, we disable the block-checksum module
and enable the fault-tolerant module for node failure. We also
run the program with different sizes of matrices and different
numbers of computing nodes without error, and we compare
the performance of ourmethodwith that of the original matrix
multiplication; the results are shown in Figure 9.

FIGURE 8. Performance of the block-checksum approach on fault
tolerance.

As discussed in previous sections, our method for node
failure has little influence on the original algorithm when no
error occurs. The experimental results demonstrate this point,
as shown in Figure 9; the overhead percentage (blue curve) of
time spent on overhead is always at a lower level no matter
what the matrix size is or howmuch greater the parallelism is.

C. PERFORMANCE AND OVERHEAD WITH ERROR
As themain objective of our fault-tolerant method is to ensure
reliable matrix multiplication, we perform some experiments
to verify the effectiveness of the two approaches. Although
both fault-tolerant approaches can ensure program execu-
tion, they aim at solving different problems. Therefore, the
fault-tolerant function tests are also performed separately.
We injected errors through various kinds of artificial meth-
ods and explored further issues through the performance
results.

42684 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

FIGURE 9. Performance of the fault-tolerant method for node failure without error.

1) BLOCK-CHECKSUM APPROACH
The block-checksum approach mainly aims at detecting non-
fatal soft errors, such as bit-flipping caused by universal
radiation or certain calculation errors, which generally lead
to wrong results. We simulate this kind of error by inserting
statements to modify some data during computation, and
then check the final result to verify whether the fault-tolerant
mechanism works correctly. In addition, the total execution
time is recorded and compared with the normal execution
time (i.e., when there is no error); the results are shown
in Figure 10.

As shown in Figure 10, the overhead of error detection and
recovery for non-fatal errors are fairly low compared to the
high computational overhead of matrix multiplication.

2) FAULT-TOLERANT MATRIX COMPUTATION FOR NODE
FAILURE
Node failure is usually in the form of crashes or suspension
of the node system; in that case, all of the processes in
the node stop working. Therefore, we injected this kind of

FIGURE 10. Performance of the block-checksum mechanism with error
(matrix size: 20000∗20000).

error by killing all of the processes on a particular node.
Considering that the overall execution time is related to the
time of error occurrence, we divide the whole execution

VOLUME 8, 2020 42685

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

FIGURE 11. Performance of the fault-tolerant method for node failure with error.

procedure into five equal time segments and test the overall
execution time by injecting an error in each of those time
segments separately.

Figure 11 shows the overall execution time with one node
failure. The blue curve indicates the ratio of extra execution
time to the time without error. Compared to the normal exe-
cution time (i.e., when there is no error), the execution time
with error is at least doubled, because error recovery involves
re-computation of the tasks on the failed node. Another phe-
nomenon is that the earlier the error occurs, the longer the
overall execution time is; this is because processes need to
load the data that was lost in the failed node from the storage
systems multiple times. In any case, this method ensures
the completion of the program even if a node fails, and in
addition, most computing nodes are free to allocate to other
applications in the error recovery process. Considering that
as the matrix scales up, the execution time for computation
increases faster than the additional time consumed by the
fault-tolerant operation of the different data achieving ways,
as a result, the overhead ratio decreases as the matrix size
increases.

VII. RELATED WORK
Fault-tolerance and resilience are classic topics for HPC sys-
tems and have been studied for a long time. Researchers have
proposed various kinds of hardware and software techniques.
Among software approaches, checkpoint-restart and replica-
tion are two popular and extensively used techniques [30].
However, in the era of peta- and exa-scale systems, there
will be tens of thousands of processes in the system, which
challenges the scalability of both checkpoint-restart and repli-
cation. In this situation, the algorithm-based fault-tolerant
(ABFT) approach becomes attractive.

The ABFT was first proposed in [11] to support fault-
tolerance for matrix multiplication by using checksums of the
rows and columns of matrices to detect errors in computation.
Further studies focused on searching for a more accurate way
to distinguish rounding errors and computation errors or a
more efficient way to detect and recover from errors. [13]
presents a highly efficient online approach; instead of detect-
ing errors offline when computation is finished, it transforms

matrix multiplication into another algorithm that is more
like an iterative algorithm. Reference [16] uses a graphics
processing unit (GPU) or co-processors to perform fault-
tolerant calculations to reduce the impact of matrix opera-
tions. Reference [17] uses a weighted checksum to achieve
fault-tolerant matrix multiplication, which reduces time and
space overhead but is only suitable for small-scale matrix
multiplication. Reference [22] uses an arithmetic and logic
unit (ALU) to check the operation of floating-point multi-
plication. A simplified error analysis (SEA) approach for
ABFT is introduced in [23]. A-ABFT calculates the range
of rounding errors through the probability distribution of
floating-point tails [15].

For the problem of node failure in HPC systems,
researchers also propose a variety of solutions. The main
ideas can be classified into checkpoint-restart and replication
approaches. The checkpoint-restart method records the sta-
tus of processes and/or systems periodically during program
execution and restarts the execution from the nearest check-
point whenever a fatal error occurs. This method requires
synchronization among all of the processes at the time of
checkpointing and produces a large volume of checkpoint
data, which impacts the I/O system. Further studies aim
at optimizing redundant resources, such as encoding data
to compress the checkpoints [24]. Traditional replication is
mostly used for verifying the correctness of computations, but
for node failure errors, it entails using redundant equipment
to replace failed equipment. However, due to the loss of data
in the faulty equipment, this method often works together
with the checkpoint method. Related research has also tried
to improve the efficiency of error diagnosis [26]–[28], such
as by using a daemon process [25]. Many of these methods
rely on the MPI environment [32]–[34]. Concerning the algo-
rithm itself, researchers have proposed the hardware fault-
tolerant algorithm [29]. This method relies on FT-MPI [38]
for error location and can recover lost data through a coding
method based on matrix multiplication characteristics. How-
ever, as multiple processes can run on one node, a number
of processes will stop working at the same time when an
error occurs, and this limits the generality of this method.
Most of the fault-tolerant methods for node failure need to
be supported by the computing platform itself [35]–[37].

42686 VOLUME 8, 2020

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

VIII. CONCLUSION AND FUTURE WORK
In this paper, we presented the FT-PBLAS, a library for fault-
tolerant parallel linear algebra computations onHPC systems.
The library is implemented on the basis of the extensively
used PBLAS and supports underlying fault-tolerant mecha-
nisms by employing a block-checksum approach for non-fatal
errors and a scheme for node failure. Compared to previous
work, the block-checksum approach loosens the accuracy of
error detection to reduce the expenditure of time on tolerance.
In addition, in order to balance the accuracy and efficiency of
this algorithm, we also present a method to obtain an appro-
priate block size, which also has a low overhead. A scheme
of fault-tolerant matrix computation for node failure has also
been developed to guarantee the reliability of the library.
It uses a state table to ensure program execution even if a
node fails.

REFERENCES
[1] Summit-IBM Power System AC 922, IBM POWER9 22C, NVDIA Volta

GV100, Dual-Rail Mellannox EDR Infiniband. Accessed: Feb. 2020.
[Online]. Available: https://www.top500.org/system/179397

[2] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang,
Y. Wang, C. Zhou, and G. Yang, ‘‘The sunway TaihuLight supercomputer:
System and applications,’’ Sci. China Inf. Sci., vol. 59, no. 7, Jun. 2016,
Art. no. 072001.

[3] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. S. Duff, ‘‘A set of level
3 basic linear algebra subprograms,’’ ACM Trans. Math. Softw., vol. 16,
no. 1, pp. 1–17, Mar. 1990.

[4] L. S. Blackford, J. Choi, and A. Cleary, ‘‘ScaLAPACK: A linear algebra
library for message-passing computers,’’ in Proc. SIAM Conf. Parallel
Process. Sci. Comput., 1997, pp. 1–16.

[5] L. Wan, Q. Cao, F. Wang, and S. Oral, ‘‘Optimizing checkpoint data place-
ment with guaranteed burst buffer endurance in large-scale hierarchi-
cal storage systems,’’ J. Parallel Distrib. Comput., vol. 100, pp. 16–29,
Feb. 2017.

[6] P. H. Hargrove and J. C. Duell, ‘‘Berkeley lab checkpoint/restart (BLCR)
for linux clusters,’’ J. Phys., Conf. Ser., vol. 46, pp. 494–499, Sep. 2006.

[7] J. Ansel, K. Arya, and G. Cooperman, ‘‘DMTCP: Transparent checkpoint-
ing for cluster computations and the desktop,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process., May 2009, pp. 1–12.

[8] T. Li, M. Shafique, J. A. Ambrose, J. Henkel, and S. Parameswaran,
‘‘Fine-grained checkpoint recovery for application-specific instruction-set
processors,’’ IEEE Trans. Comput., vol. 66, no. 4, pp. 647–660, Apr. 2017.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif.
Intell. Res., vol. 16, pp. 321–357, Jun. 2002.

[10] D. A. Adams, R. R. Nelson, and P. A. Todd, ‘‘Perceived usefulness, ease
of use, and usage of information technology: A replication,’’ MIS Quart.,
vol. 16, no. 2, p. 227, Jun. 1992.

[11] K.-H. Huang and J. A. Abraham, ‘‘Algorithm-based fault tolerance for
matrix operations,’’ IEEE Trans. Comput., vols. C-33, no. 6, pp. 518–528,
Jun. 1984.

[12] H.-J. Lee, P. J. Robertson, and A. B. J. Fortes, ‘‘Generalized Cannon’s
algorithm for parallel matrix multiplication,’’ in Proc. 11th Int. Conf.
Supercomput. (ICS). New York, NY, USA: Association for Computing
Machinery, 1997, pp. 44–51.

[13] Y. Kim and J. J. Dongarra, ‘‘Fault tolerant matrix operations for parallel
and distributed systems,’’ Ph.D. dissertation, Univ. Tennessee, Knoxville,
TN, USA, 1996.

[14] Y. Zhu, Y. Liu, M. Li, and D. Qian, ‘‘Block-Checksum-Based fault tol-
erance for matrix multiplication on large-scale parallel systems,’’ in
Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., IEEE
16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Jun. 2018, pp. 172–179.

[15] C. Braun, S. Halder, and H. J. Wunderlich, ‘‘A-ABFT: Autonomous
algorithm-based fault tolerance for matrix multiplications on graphics
processing units,’’ in Proc. 44th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Jun. 2014, pp. 443–454.

[16] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, ‘‘Algorithmic based
fault tolerance applied to high performance computing,’’ J. Parallel Distrib.
Comput., vol. 69, no. 4, pp. 410–416, 2009.

[17] J. N. Higham, Accuracy and Stability of Numerical Algorithms. Philadel-
phia, PA, USA: SIAM, 1996.

[18] Open MPI Document. Accessed: Feb. 2020. [Online]. Available:
https://www.open-mpi.org/doc/current/

[19] A. D. Selvakumar, P. M. Sobha, and G. C. Ravindra, ‘‘Design, implemen-
tation and performance of fault-tolerant message passing interface (MPI),’’
in Proc. 7th Int. Conf. High Perform. Comput. Grid Asia Pacific Region,
2004, pp. 120–129.

[20] K. Teranishi and M. A. Heroux, ‘‘Toward local failure local recovery
resilience model using MPI-ULFM,’’ in Proc. 21st Eur. MPI Users’ Group
Meeting (EuroMPI/ASIA), 2014, pp. 51–56.

[21] V. Stefanidis and K. Margaritis, ‘‘Algorithm based fault tolerant matrix
operations for parallel and distributed systems: Block checksummethods,’’
in Proc. 6th Hellenic-Eur. Conf. Comput. Math. Appl., 2003, pp. 767–773.

[22] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy,
V. Balasubramanian, and J. A. Abraham, ‘‘Algorithm-based fault tolerance
on a hypercube multiprocessor,’’ IEEE Trans. Comput., vol. 39, no. 9,
pp. 1132–1145, Sep. 1990.

[23] S. Dutt and F. T. Assaad, ‘‘Mantissa-preserving operations and robust
algorithm based fault tolerance for matrix computations,’’ IEEE Trans.
Comput., vol. 45, no. 4, pp. 408–424, Apr. 1996.

[24] L. Bautistagomez, ‘‘FTI: High performance fault tolerance interface for
hybrid systems,’’ in Proc. High Perform. Comput., Netw., Storage Anal.,
2011, pp. 1–32.

[25] G. Zhang, Y. Liu, H. Yang, and D. Qian, ‘‘A lightweight and flexible tool
for distinguishing between hardware malfunctions and program bugs in
debugging large-scale programs,’’ IEEE Access, vol. 6, pp. 71892–71905,
2018.

[26] Z. Chen, J. Dinan, Z. Tang, P. Balaji, H. Zhong, J. Wei, T. Huang, and
F. Qin, ‘‘MC-checker: Detecting memory consistency errors in MPI one-
sided applications,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal. (SC), Nov. 2014, pp. 499–510.

[27] B. Zhou, J. Too, and M. Kulkarni, ‘‘WuKong: Automatically detecting
and localizing bugs that manifest at large system scales,’’ in
Proc. Int. Symp. High-Perform. Parallel Distrib. Comput., 2013,
pp. 131–142.

[28] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky,
D. H. Anh, M. Schulz, and B. Rountree, ‘‘Large scale debugging of par-
allel tasks with AutomaDeD,’’ in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal. (SC), 2011, pp. 1–10.

[29] C. J. D. Zizhong, Algorithm-Based Fault Tolerance for Fail-Stop Failures.
Piscataway, NJ, USA: IEEE Press, 2008.

[30] P. I. Nitin and T. N. Vijaykumar, ‘‘FaultHound: Value-locality-based soft-
fault tolerance,’’ ACM SIGARCHComput. Archit. News, vol. 2015, vol. 43,
no. 3, pp. 668–681.

[31] (2018).Nation Supercomputer Center in GuangzhouHome Page. [Online].
Available: http://www.nscc-gz.cn/

[32] G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva, ‘‘Deadlock
detection in MPI programs,’’ Concurrency Comput., Pract. Exper., vol. 14,
no. 11, pp. 911–932, 2002.

[33] J. S. Vetter and B. R. de Supinski, ‘‘Dynamic software testing of MPI
applications with umpire,’’ in Proc. ACM/IEEE SC Conf. (SC), Nov. 2000,
p. 51.

[34] B. Krammer, T. Hilbrich, and V. Himmler, ‘‘MPI correctness checking
with marmot,’’ in Proc. Int. Workshop Parallel Tools High Perform. Com-
put., 2008, pp. 61–78.

[35] Center for High Throughput Computing, University of Wisconsin Madi-
son. (Mar. 2018). HTCondor Version 8.7.7 Manual. [Online]. Avail-
able: http://research.cs.wisc.edu/htcondor/manual/v8.7/condor-V8_ 7_7-
Manual.pdf

[36] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, ‘‘DejaVu: Transparent
user-level checkpointing, migration, and recovery for distributed sys-
tems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007,
pp. 1–10.

[37] M. Schulz, G. Bronevetsky, and R. Fernandes, ‘‘Implementation and eval-
uation of a scalable application-level checkpoint-recovery scheme for MPI
programs,’’ in Proc. ACM/IEEE SC2004 Conf., Nov. 2004, p. 38.

[38] G. E. Fagg and J. Dongarra, ‘‘FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,’’ in Proc. Eur. PVM/MPI Users
Group Meeting Recent Adv. Parallel Virtual Mach. Message Passing Inter-
face, 2000, pp. 346–353.

VOLUME 8, 2020 42687

Y. Zhu et al.: FT-PBLAS: PBLAS-Based Fault-Tolerant Linear Algebra Computation on High-Performance Computing Systems

YANCHAO ZHU is currently pursuing the Ph.D.
degree with the School of Computer Science and
Engineering, Beihang University. He focuses on
algorithm-based fault tolerance for high perfor-
mance computing systems. His research interests
include high-performance computing, distributed
computing, and parallel computing.

YI LIU received the Ph.D. degree from the
Department of Computer Science, Xi’an Jiaotong
University, in 2000. He is currently a Professor
with the School of Computer Science and Engi-
neering and the Director of the Sino-German Joint
Software Institute, Beihang University, China. His
research interests include computer architecture,
high-performance computing, and new generation
of network technology.

GUOZHEN ZHANG is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering, Beihang University. He focuses
on program debugging of large-scale parallel
applications. His research interests include high-
performance computing, program debugging,
distributed computing, and parallel computing.

42688 VOLUME 8, 2020

