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ABSTRACT A novel multi-exposure image fusion method is proposed for solving the problems of
color distortion and detail loss through adaptive image patch segmentation. First, we use the super-pixel
segmentation approach to divide the input images into the non-overlapping image patches composed of
pixels with similar visual properties. Then, the image patches are decomposed into three independent
components: signal strength, image structure and intensity. The three components are fused separately based
on characteristics of human vision system and exposure level of input image. While, guided filtering is used
to remove the blocking artifacts caused by patch-wise processing. In contrast to the existing methods which
use fixed-size patches, the proposed method avoids blocking effect and preserves the color attribute of the
input images. The experimental results show that the proposed method has advantages both in subjective and
objective evaluation over the state-of-the-art multi-exposure fusion methods.

INDEX TERMS Multi-exposure image fusion, super-pixel segmentation, structural patch decomposition,
guided filtering.

I. INTRODUCTION
The dynamic range of the natural scene is much larger than
that of images captured by ordinary consumptive cameras [1].
The difference between the two dynamic ranges makes it is
difficult to retain all the content of natural scene in a single
image. In both under-exposed and over-exposed regions of
images, a lot of details are lost. There are two solutions
to this problem: high dynamic range (HDR) imaging [2]
and multi-exposure image fusion (MEF) [3]. HDR imaging
usually consists of two main steps: HDR reconstruction and
tone mapping [4]. Firstly, multiple low dynamic range (LDR)
images with different exposure levels in the same scene are
taken, and then the HDR image is reconstructed by inverting
the camera response function (CRF). Finally, in order to dis-
play on ordinary equipment, HDR imagemust be converted to
LRD image by tone mapping. HDR imaging technology can
recover the whole dynamic range of the scene and make all
the details visible in a signal image. However, the estimation
of CRF itself is a difficult problem [5]. MEF provides a
more efficient alternative which can directly generate high
quality LDR images without intermediate HDR images [6].
MEF takes a sequence of images with different exposure
levels as inputs and synthesizes the fused image that is more
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informative and perceptually appealing than any of the input
images [7].

Most of the existing MEF methods generate a fused image
by weighted average of input images with different exposure
levels, where one of the key issues is to design a proper
weighting scheme. An intuitive idea is that the clearer pixels
are assigned the greater weight. The different measures of
pixel quality have been proposed based on different assump-
tion to calculate appropriate weights. However, weights
obtained based on a single pixel are susceptible to noise and
easy to produce visual artifacts in the fused image. In recent
years, patch-based MEF methods have attracted more atten-
tion [8]. These methods divide multi-exposure images into
fixed-size rectangular patches, and perform image fusion
process patch-wisely. In contrast to most pixel-wise MEF
methods, the patch-based MEF methods can improve color
fidelity of the fused image [9]. For the patch-based MEF
methods, the division of image patches is an important issue.
The MEF methods using fixed-size patches tend to cause the
problems such as color distortion and detail loss in the fused
image. However, few researchers studied the impact of patch
division on the quality of the fused image.

To address this issue, we propose a novel patch-based
multi-exposure image fusion method. Different from the
existing methods which use fixed-size image patches, we uti-
lize a super-pixel segmentation approach to divide the
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input images into non-overlapping image patches com-
posed of pixels with similar visual properties. First, the
best-exposed image is selected as the reference image from
the input multi-exposure images, and a super-pixel segmen-
tation approach [10], [11] is performed on the reference
image to obtain the division of image patches. All of the
input images use this division to obtain non-overlapping
image patches. Then, the image patches are decomposed
into three independent components: signal strength, image
structure and intensity. The different fusion rules are designed
according to the characteristics of these three components.
In addition, in order to ensure the spatial consistency of
the fused image, guided filtering [12] is used to refine the
weight maps, signal strength and intensity component. Three
merged components are constructed by using the refined
weight maps. Finally the final fused image is reconstructed
according to the merged component.

To the best of our knowledge, the paper by Li et al. [8] is
the most similar work to our method. Their method selects the
optimal patch size based on the texture entropy of the input
images. However, the shape and size of the image patches are
still fixed in a fusion process. In contrast, the patch division
approach used in the proposed method can change the shape
of the image patches to fit the image content. The proposed
fusion method brings two main advantages: 1) The patch
division takes into account the characteristics of the image
content. As a result, the proposed method avoids the blocking
artifacts which are often generated by the patch-based MEF
methods. 2) The weight map is calculated patch-wisely based
on characteristics of human vision system (HSV) and expo-
sure level of the input images. Therefore, the color attribute
of input images is preserved as much as possible. We evaluate
the proposed method by comparing with 7 MEF methods
on 24 sets of multi-exposure image sequences. The experi-
mental results show that the proposed method produces better
fused images.

The rest of the paper is organized as follows. In section 2,
the existing MEF methods are briefly reviewed. Section 3
describes the proposed method in detail. The experimental
results are discussed and analyzed in section 4. Finally, a con-
clusion is given in section 5.

II. RELATED WORK
The MEF methods can be classified in two categories: trans-
form domain- and spatial domain-based fusion [8]. The
main processes of fusion method based on transformation
domain are as follows: First, input images are transformed
into the transform domain. Then, the fused coefficients are
obtained by applying the fusion rules on the coefficients of
input images. Finally, the fused image is reconstructed by
inverse transformation. The transformation methods that are
often used in MEF include pyramid transform [13], wavelet
transform [14], nonsubsampled contourlet transform [15].
However, this kind of methods may produce serious color
distortion in the fused image [16]. The pixel-based meth-
ods evaluate the quality of each pixel in input images and

incorporate the best quality pixels at the same location into
the fused image. Song et al. [17] proposed an image fusion
method by integrating locally adaptive scene detail capture.
This method firstly calculates the brightness, contrast and
gradient of input images, and then synthesizes the fused
image by using a probabilisticmodel that suppresses reversals
in the image luminance gradients. Gu et al. [18] proposed
a gradient field based image fusion method. This method
takes into account that the human visual system is sensitive
to contrasts between pixel intensities, not the absolute values.
The gradient values of fused images are obtained by max-
imizing the structure tensor and the fused image is derived
from the fused gradient field. Li and Kang [19] proposed a
weighted sum based multi-exposure image fusion method.
Firstly, this method constructs the weight map using three
image features: contrast, brightness and color dissimilarity;
then the weight maps were refined by recurrent filtering;
finally, the fused image was obtained by weighted sum of the
input images. Pixel-based image fusion method is simple and
easy to implement. However, these methods only consider
single pixel and ignore the relationship between adjacent
pixels, which tend to produce the visual artifacts in the fused
images [20]. To solve this problem, the patch-based methods
design fusion rule by considering image patches instead of
single pixel. Goshtasby [21] proposed a fusion method that
produces a fused image with maximum information content.
This method partitioned the input images into fixed-size
image patches and used information entropy to evaluate the
amount of information in image patches. The selected images
are then blended based on weight map. In the fusion method
proposed by Zhang et al. [9], a contrast criterion is introduced
to measure the quality of exposure and generate weight maps.
The fused image is obtained by merging the input images
based on weighted average scheme. Ma et al. [22] proposed
a structural patch decomposition (SPD) approach for MEF.
This method decomposes an image patch into three concep-
tually independent components, and then fuse these three
components separately. The fused image is reconstructed
using the three fused component. Huang [23] improved the
SPD method by designing new fusion scheme based on the
quality of image patches. In the above patch-based fusion
methods, the size or shape of image patches are fixed to facil-
itate subsequent processing. However, this results in image
patches containing pixels with different color and brightness
characteristics. If the same fusion schemes are used to fuse
these pixels with different characteristics, the color or detail
information of the fused image tend to be lost.

III. MULTI-EXPOSURE FUSION METHOD
In this section, the MEF method based on adaptive patch seg-
mentation is presented in detail. Fig.1 shows the framework
of the proposed method. Assume that all input images are
already registered. Firstly, the selected reference image is par-
titioned into non-overlapping image patches by super-pixel
segmentation, and the segmentation results are applied to
all other input images. Then, each image patch is decom-
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FIGURE 1. Framework of the proposed MEF method.

posed into three independent components by structure patch
decomposition: signal strength, image structure and intensity.
According to the different characteristics of each component,
we design the corresponding fusion rules and use these rules
to obtain the fused components. Finally, the fused image is
reconstructed from three fused components.

A. ADAPTIVE IMAGE PATCH SEGMENTATION
The super-pixel segmentation approaches can divide the
image into irregular image patches composed of pixels with
similar visual properties. To achieve the division of the input
images, we first select a reference image from the input
multi-exposure images. In this paper, the image with the least
number of under/over-exposure pixels among all the input
images is used as the reference image Xref . Then, the ref-
erence image Xref is divided into non-overlapping N image
patches by using super-pixel segmentation approach SLIC
(Simple Linear Iterative Clustering) [24], which is described
as follows:

{P1, · · · ,Pn, · · ·PN } = Slic
(
Xref

)
. (1)

where Slic (·) denotes the super-pixel segmentation opera-
tion.Pn represents the spatial location of the n-th image patch.
In order to ensure that the segmentation of all input images
is consistent, we directly apply the segmentation result of
the reference image Xref to the other input images, as shown
in Fig. 2.

B. STRUCTURAL PATCH DECOMPOSITION
For all the image patches ({Xk (Pn)}k=1,··· ,K ,n=1,··· ,N )
obtained by segmentation, we decompose them into three
independent components: signal strength, image structure

FIGURE 2. Super-pixel segmentation.

and intensity, where Xk (Pn) denotes the n-th image patch
of the k-th input image. For convenience, Pn is omitted in
subsequent parts of this paper because the image patches
in different spatial location are treated independently. The
image patches at the same position of the k-th input source
image are directly represented by xk . Therefore, the patch
decomposition can be defined as follows [22]:

xk =
∥∥xk − µxk∥∥ · xk − µxk∥∥xk − µxk∥∥ + µxk

= ck · sk + lk . (2)

where, ‖·‖ denotes the l2 norm of a vector, µxk is the mean
value of the image patch xk . ck , sk and lk represent the
signal strength, image structure, and intensity component,
respectively.

C. WEIGHT MAP CONSTRUCTION
1) SIGNAL STRENGTH
Signal strength is defined as ck =||xk −µxk ||, which represents
the l2 norm of the image patch xk . ck can be regarded as
a measure of the amount of information which xk contains.
The larger the ck , the more information the image patch xk
contains. In order to preserve the information of the input
images in the fused image as much as possible, the fusion
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rule of ‘‘winner-take-all’’ is adopted for the signal strength
component. The weigh map of signal strength component is
defined as follows::

wc,k =

1 if ck= max
1≤k≤K

ck

0, otherwise
(3)

where wc,k denotes the weight map that determines the con-
tribution of the signal strength component of the k-th input
image to that of the fused image patch.

2) IMAGE STRUCTURE
Image structure component contains details of texture and
structure of image patches. In order to preserve the details
of the input images in the fused image as much as possible,
we need to evaluate the richness of the perceptible detail
contained in the image patches of the different input images
and assign a larger weight to the image patch containing more
detail. JND refers to the minimum amount of change that
can be perceived by HSV [25], [26]. We adopt a JND model
to measure signal strength from the perspective of HSV.
The perceptible strength of image details can be regarded as
saliency weight Jk (i, j) which is defined as [23], [27]:

Jk (i, j) = J lk (i, j)+ J
t
k (i, j)

−Kl,t (i, j)min
(
J lk (i, j) , J

t
k (i, j)

)
. (4)

where J lk (i, j) and J tk (i, j) represent the luminance weight
and texture weight at position (i, j),respectively. Kl,t (i, j)
describes the overlap effect of the weight with values ranging
from 0 to 1. The relation between the luminance weight
J lk (i, j) and background luminance is modeled with two
parts, i.e., J lk (i, j) is modeled as root function of average
background luminance for low background luminance and as
linear function in other case, which is defined as [23], [28]:

J lk (i, j) =


17

1−

√
xk (i, j)
127

+ 3, if xk (i, j) ≤ 127

3
128

(
xk (i, j)− 127

)
+ 3, otherwise

(5)

xk (i, j) =
1
32

5∑
m

5∑
n

xk (i− 3+ m, j− 3+ n) · B (m, n)

(6)

B (m, n) =


1 1 1 1 1
1 2 2 2 1
1 2 0 2 1
1
1

2
1

2
2

2
1

1
1

 (7)

where B(m, n) is a low-pass filter, xk (i, j) denotes the back-
ground luminance. Texture weight J tk (i, j) is usually calcu-
lated by local spatial gradients. In this paper, we calculated
the gradients in four directions and choose the strongest
gradient as the texture weight J tk (i, j) which is written

as [23], [28]:

J tk (i, j) = max
h=1,2,3,4

{|gradh (i, j)|}

gradh (i, j) = xk (i, j)⊗ gh (i, j) (8)

where ⊗ is a convolution operator. gh (i, j) is a high-pass
filter in the h-th direction(h = 1, 2, 3, 4), which is defined
as follow [23], [28]:

g1 =


0 0 0 0 0
1 3 8 3 1
0 0 0 0 0
−1
0

−3
0

−8
0

−3
0

−1
0



g2 =


0 0 1 0 0
0 8 3 0 0
1 3 0 −3 −1
0
0

0
0
−3
−1

−8
0

0
0



g3 =


0 0 1 0 0
0 0 3 8 0
−1 −3 0 3 1
0
0

− 8
0

−3
−1

0
0

0
0



g4 =


0 1 0 −1 0
0 3 0 −3 0
0 8 0 −8 0
0
0

3
1

0
0
−3
−1

0
0

 (9)

On the other hand, pixels with well-exposure should
be given larger weight because they contain more mean-
ingful information for HVS than the over-exposure and
under-exposure pixels. In this paper, we use a Gaussian func-
tion to construct the exposure weight, which is defined as
follows:

Ek (i, j) = exp

(
−

(
xgrayk (i, j)− 0.5

)2
2σ 2

)
(10)

where xgrayk (i, j) denotes the gray value of the pixel xk (i, j). σ
is standard deviation, which describes the degree of spread
of xgrayk . σ is an empirical value which is set to 0.2 in all
experiments.

In summary, weights of the structure components are
constructed by saliency weight Jk (i, j) and exposure weight
Ek (i, j)

ws,k (i, j) = Jk (i, j) · Ek (i, j) (11)

3) INTENSITY
The weight of intensity component is calculated based on
the global mean intensity µk of the input image Xk and the
local mean intensity lk of image patch xk When the average
intensity of an image patch is close to the middle value of
intensity range, it is considered to have a good exposure
and assigned a large weight. Otherwise, it is regarded as
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the under-exposure or over-exposure patch and given a small
weight. The weight map for intensity component is defined
as follow [6, 8, 22]:

wl,k = exp

(
−
(µk − 0.5)2

2σ 2
g

−
(lk − 0.5)2

2σ 2
l

)
(12)

where σg and σl are standard deviation, which control
the spreads along µk and lk dimensions, respectively. This
method assumes that all pixels in image have the same desired
intensity, i.e. the middle value of intensity range 0.5. In fact,
bright areas and dark areas have different intensity. Therefore,
we adopt an adaptive expected intensity, i.e.

pg = α × 0.5+ (1− α)×
XD + XB

2
(13)

pl (i, j) = β × 0.5+ (1− β)×
xD (i, j)+ xB (i, j)

2
(14)

where pg and pl are the global expected intensity and the
local expected intensity, respectively. XD and XB are the mean
values of the darkest and brightest input images respectively.
xD and xB represent the mean values of the darkest and
brightest image patches containing pixel (i, j) respectively. α
and β controls the tradeoff between prior desired intensity
and the average intensity from the input image. In this paper,
α and β are set to 0.5. The modified weighting function is
defined as follows:

wl,k (i, j) = exp

(
−

(
µk − pg

)2
2σ 2

g
−
(lk − pl (i, j))2

2σ 2
l

)
(15)

D. REFINEMENT
The weight maps of the k-th input image is constructed
by combining the weight maps of all image patches of
the k-th input image, which is denoted as Wc,k ,Ws,k ,Wl,k ,
respectively. Similarly, three component images of the input
image are written asCk ,Sk ,Lk , respectively. In order to ensure
spatial consistency, we refine the signal strength, intensity
component and weight maps of input images with guided
filter, respectively. It is worth to notice that the structural
components are not filtered since the structural components
contain a lot of detail of image patches and the filter operator
may cause the loss of fine-detail.

Guided filter is an edge-preserving filter which can smooth
images without blurring edges. We use the grayscale version
of the input images as the guide images. The refined weight
maps can be written as:

W ′y,k = GF
(
Xgrayk ,Wy,k , r, ε

)
, y = {c, s, l} (16)

where GF (·, ·, ·, ·) represents the guided filter operation.
Wy,k (y = {c, s, l}) is the weight map of each component of
the k-th image. W ′y,k is the refined weight map. r is the size
of the filter window. ε denotes the regularization parameter
which determines the blur degree of the filter. According to
the experiments, r = 3 and ε = 0.15 are taken in this paper.

Similarly, the refined signal strength C ′k and intensity
components L ′k are obtained using guild filter, respectively:

C ′k = GF
(
Xgrayk ,Ck , r, ε

)
(17)

L ′k = GF
(
Xgrayk ,Lk , r, ε

)
(18)

E. FUSION
According to the refinedweightmaps, refined signal strength,
refined intensity components and image structure of the input
image, the signal strength Ĉ , image structure Ŝ, and intensity
components L̂ of the fused image are calculated as follows,
respectively.

Ĉ =
K∑
k=1

W ′c,kC ′/
K∑
k=1

W ′c,k

Ŝ =
S̄∥∥S̄∥∥ and S̄ =

K∑
k=1

W ′s,kSk/
K∑
k=1

W ′s,k

L̂ =
K∑
k=1

W ′l,kL ′/
K∑
k=1

W ′l,k

(19)

The fused image X̂ is reconstructed from the three compo-
nents by:

X̂ = Ĉ · Ŝ + L̂ (20)

IV. EXPERIMENTS
We select 24 sets of multi-exposure source images to verify
the performance of the proposedmethod. The test sets include
various scenes such as day and night, indoor and outdoor
setting, as listed in Table 1. All experiments are implemented
inMatlab2015a on a computer with Intel Core i5, 3GHzCPU,
4GB of RAM, and Microsoft Windows 7 operating system.

A. EXPERIMENTAL RESULTS AND ANALYSIS
1) SUBJECTIVE ANALYSIS
In this section,we compare proposed method with seven
state-of-the-art MEF methods, including BLP [28], DSIFT
[29], FMMR [19], GF [30], EPS [31], Mertens09 [32],
SPD-MEF [22]. For intuitive analysis of the experimental
results, we select four sets of fused images for demonstration
among the 24 sets of fused images.
The experimental results of different methods for ‘‘House’’

image sequence are shown in Fig. 3. As we can see, the fused
image obtained by BLPmethod suffers from color distortions
and sudden intensity changes. The fused image obtained by
FMMR has the brightness inversion, i.e., the bookshelf is
brighter than the region outside the window. DSIFT and GF
methods produce obvious color distorted as shown in Fig.3(c)
and (e). The two chairs of the same color in source images
exhibit distinctly different colors in the fused images. The
fused image by EPS method loses the color information and
local details of the over-exposure area outside the window.
In the fused images obtained by Mertens09 and SPD-MEF,
the overall appearance is good, but the details of the scene
outside the window are blurred. The fused image of the
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TABLE 1. Information about input image sequences.

FIGURE 3. Comparison of different methods on the ‘‘House’’ image sequence.

proposed method appears better in detail preservation and
brightness distribution than the other methods. Further, the
color fidelity of the proposed method is also good.

Fig.4 shows the fused images of ‘‘Tower’’ obtained by
the eight different methods. As can be seen from Fig.4 (b),
the BLP method produces massive artifacts, especially in the
cloud region. In the fused image produced by DSIFT and GF
methods, the right side of the tower is obviously brighter than
the left, which is inconsistent with the input images. FMMR,
EPS and Mertens09 methods not only fail to preserve good
contrast in the sky, but also cause color distortion in the lawn.
EPS andMertens09 lose the local detail loss of the tower. The
SPD-MEF method performs excellent in color. Compared to
the other seven fused results, the proposed method increases
the overall contrast while preserving texture details. Besides,
the overall appearance of the fused image obtained by the
proposed method is appealing.

All fused images of ‘‘Chinese Garden’’ obtained by eight
different methods are illustrated in Fig.5. The BLP method
produces the image with unnatural colors and artifacts. In the
fused images obtained by FMMR, GF and Mertens09, the
brightness of sky is dark. In the fused result of EPS, the color
is pale. Although the SPD-MEF method performs well in the
color saturation and the global contrast, the local detail of
the fused image is blurred. The proposed method not only
contains rich details, but also achieves excellent performance
in global contrast and color saturation compared with the
other MEF methods. In addition, the fused image resulted
from the proposed method has more natural appearance with
respect to the human visual system.

Fig.6 demonstrates the performances of different methods
on the ‘‘Window’’ image sequence. As shown in Fig.6 (b),
there are obviously black shadows around the lamp. In the
fused images obtained by DSIFT and GF methods, the color
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FIGURE 4. Comparison of different methods on the ‘‘Tower’’ image sequence.

of the bed is distorted. In the fused images by GF and
Mertens09 method, the brightness of wall is too bright. The
local details of the magnified area in Fig.6 (f) are blurred.
In the fused image obtained by SPD-MEF method, there
are obvious black artifacts around the lamp. By contrast,
the proposed method better preserves the details and color
information, and achieves the best overall visual effect.

2) OBJECTIVE EVALUATION
In order to quantitatively evaluate the performance of the
proposed methods, three objective criteria are used. The first

criterion is mutual information (MI), defined as the sum of
mutual information between each source image and the fused
image [37], [38]. The second criterion is correlation coeffi-
cient (CC), which measures the degree of linear correlation of
the fused image and source images [39]. The third criterion
is standard deviation (SD) [39], which measures the contrast
in the fused image. For all three criteria, the larger the value
is, the better is the image quality.

The MI value reflects the total quantity of information
in the fused image which is obtained from the input source
images. The comparison results of 8 different MEF methods
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FIGURE 5. Comparison of different methods on the ‘‘Chinese garden’’ image sequence.

FIGURE 6. Comparison of different methods on the ‘‘Window’’ image sequence.

on 24 source sequences are listed in Table 2, in which the
largest MI value is shown in bold. It is clear that the pro-
posed method performs better than the other methods in most

scenes. In other word, the proposed method outperforms the
other methods in preserving information from the source
images.
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TABLE 2. Performance comparison of eight different methods according to MI.

TABLE 3. Performance comparison of eight different methods according to CC.

Table 3 lists the performance comparison of the proposed
methodwith 7 otherMEFmethods using CCmetric. Themet-
ric CC measures the similarity between the source image and
the fused image, ranging from -1 to 1. The larger CC value
indicates that the fused image better preserves the information
in the source images. Table 3 shows that the proposed method
has the best performance. The fused images obtained by BLP
have poor performance since they have obvious artifact as
shown in Fig. 3-6.

The comparison results of the metric SD are listed in
Table 4. The proposed method shows the best performance
in 13 sets of image sequences. For the rest of the image
sequences, the proposed method ranks the second in most
cases. Generally, the fused images obtained by the proposed
method have better global contrast than that of the other
methods.

In order to make it easy to compare the performance
of the different MEF methods using the objective met-

39042 VOLUME 8, 2020



S. Wang, Y. Zhao: Novel Patch-Based MEF Using Super-Pixel Segmentation

TABLE 4. Performance comparison of eight different methods according to SD.

FIGURE 7. Objective performance of eight different methods on three metrics.

rics, the line charts are given in Fig. 7. It is clearly
shown in Fig. 7 that the proposed method achieves
best performance in most case with respect to all three
metrics.

B. IMPACT OF PATCH DIVISION
To illustrate the effect of adaptive patch division, we compare
the fused results using different patch division schemes based
on the proposed fusion rule. The patches of six different
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TABLE 5. Average of objective indicators for different methods.

FIGURE 8. Comparison of different patches on the ‘‘Candle’’ image sequence.

sizes are used, where the fixed-sized patches are rectangle
of 29× 29, 21× 21 and 15× 15, and adaptive patches are
obtained by SLIC algorithm which specify the number of
super-pixels as 200, 400, and 800, respectively. The fused
images obtained using fixed-sized patches are denoted as
Ours-29, Ours-21 and Ours-15, respectively, and the fused
images obtained using adaptive patches are Ours-200, Ours-
400 andOurs-800. For convenience of comparison, the size of
input images is scaled to 512× 341 or 314× 512. When an
image is divided into 200 patches, the average size of patches
is approximately equal 29× 29, and so on.

Fig.8 shows the fused images of the ‘‘Candle’’. The results
in Fig.8(b)-(d) are obtained using adaptive patches. The
Fig.8(e)-(g) show the fused image produced using fixed-size
patches. When using fixed-size patch, the obvious blocking
artifacts appears in the fused image as the patch size increase,
while the fused images obtained using adaptive patches have
less difference. Comparing the results obtained by adaptive
patch-based and fixed-size patch-based methods with similar
patch size, we can see that adaptive patch-based method have
the better performance than fixed-size patch-based method.

Table 5 shows the average metrics of 6 fusion methods
on 24 sets of fused images. It can be seen that the smaller the
image patch, the larger the MI and CC values, the smaller the

SD values. When the patch size is approximately equal, all of
the three metrics indicates that adaptive patch-based method
outperforms fixed-size patch-based method.

V. CONCLUSION AND FUTURE WORK
In this paper, a multi-exposure image fusion method based
on adaptive patch has been proposed. The proposed method
uses a super-pixel segmentation approach to divide the input
images into the image patches composed of pixels with sim-
ilar visual properties. Then, the image patches are decom-
posed into three independent components: signal strength,
image structure and intensity. The three components are fused
using different fusion rules which are designed based on
characteristics of HVS and exposure level of input images.
To remove the blocking artifacts caused by patch-wise pro-
cess, guided filter is performed on signal strength component,
intensity component and weight maps. As a result, the pro-
posed method generates little blocking artifacts and preserves
well the color attribute of input images. The comparative
experiments show that the proposed method outperforms the
state-of-the-art multi-exposure fusion methods both in sub-
jective and objective evaluation.

Although the proposed method can produce high-quality
fused images, it is not suitable for real-time application. In the
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future, both algorithm and implementation will be optimized
to improve the efficiency of the fusion method.
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