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ABSTRACT In this paper, the air-fuel ratio regulation problem of compressed natural gas (CNG) engines
is considered by employing stochastic model predictive control (MPC) technology. A stochastic model
predictive regulator based on a discrete-time dynamicmodel of CNG engines is proposed, taking into account
the residual gas, and the closed-loop system is deduced to be stochastically stable. A numerical simulation is
performed to demonstrate the effectiveness of the proposed control scheme under two working conditions.
The simulation results show that the performance of the proposed stochastic model predictive regulator is
better than that of the open-loop controller.

INDEX TERMS Stochastic model predictive control, air-fuel ratio regulation, compressed natural gas
engines.

I. INTRODUCTION
Natural gas is a widely acknowledged apposite alterna-
tive fuel that can help improve the environment and
address energy issues, owing to its widespread distribution,
clean-burning properties and higher proportion of hydro-
gen to carbon [1]. Consequently, natural gas engines have
received considerable attention to realize fuel saving and
reduce emissions.

The air-fuel ratio in the pre-combustion chamber of CNG
engines, corresponding to various mixtures and fuel flow
rates can be estimated using a model established in [2]. The
emission and combustion performance of a natural gas engine
with excess hydrogen, which is affected by the compression
ratio under diverse air-fuel ratios has been described in [3].
The influence of the components of natural gas on the com-
bustion and emission performance of natural gas engines has
been researched, and the well-known results in this research
domain has been reported in [4]. In [5], researchers inves-
tigated the particle emission characteristics of natural gas
engines operating a traditional oil fueled engine with natural
gas. The cyclic variation of the combustion in a pre-mixed
natural gas engine with the mixture characteristics was inves-
tigated in [6]. In [7], the researchers performed experiments
to improve the combustion efficiency of natural gas engines
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enhancing the compression ratio to achieve a larger expansion
ratio. In [8], to clarify the potential of CNG for transport
applications, an experimental investigation of the laser igni-
tion of a mixture of lean CNG and air under various com-
pression ratios and excess air ratios has been expressed. The
results of recent research pertaining to the performance of
CNG engines in terms of the power, efficiency, and other
factors have been provided in [9]. In [10], the combustion
and emission performance of a CNG engine using a strat-
ified air-fuel mixture were investigated, and overall engine
efficiency was improved compared to that of the premixed
type engine. To clarify the content of methane, the technology
of fuel adaptive injection of CNG engines was investigated
in [11]. A reduced order dynamic model of twin spool gas
turbine was established for the tracking problem in [12], and
a sliding mode controller was designed based on the theory
of finite-time stabilization, e. g. [13]. To reduce the root and
carbon dioxide emissions of diesel engines, performances of
CNG engineswith different replacement rates were compared
in [14], and the hole size of the fuel injector was optimized.
However, the fuel economy and emissions of CNG engines
are considerably affected by the control accuracy of the
air-fuel ratio. In practice, the performance of the air-fuel ratio
control is affected by many factors, such as the so-called
residual gas trapped in the cylinder at the end of the exhaust
stroke, which reflects stochastic characteristics. Moreover,
the inaccuracy of the dynamic models of CNG engines also
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considerably influences the control accuracy of the air-fuel
ratio. An intuitive approach to solve the above problems
is to employ the stochastic MPC technology, using which,
the limitations of the stochasticity of the residual gas and
inaccuracy of the dynamic model can be overcome.

Consequently, the stochastic MPC technology has been
widely researched and applied to several practical systems.
In [15], the researchers developed a control algorithm to
enable the operation of an energy vehicle by combining
stochastic MPC with learning, and the proposed control
algorithm was validated by considering the energy distribu-
tion of a hybrid electrical vehicle. An energy distribution
algorithm based on the stochastic MPC theory was devel-
oped in [16], by considering the vehicle allocation, driving
direction, and transportation information of hybrid electrical
vehicles operating in hilly areas with less traffic. A stratified
stochastic control algorithm for the energy management of
charging of plug-in electrical vehicles and wind energy in a
micro-grid was presented in [17], to enable the coordination
of plug-in electric vehicles and wind energy. The use of
restriction fastening to anti conservatively ensure the sta-
bility and recursive practicability in a stochastic MPC was
reported in [18]. In [19], the framework of a stochasticMPC is
described in context of a certain real-time permission regard-
ing the regulation of the energy and frequency markets for an
immobilization battery. Considering the energy distribution
of micro-grids involving double glazed units, a control algo-
rithm combined with the MPC working under two different
time axes was proposed in [20].

In this paper, the regulation problem of the air-fuel ratio
of CNG engines is addressed by using a stochastic MPC
algorithm based on the air path and fuel path dynamics.
The stochasticity of residual gas is modelled as a Markov
chain [21], and the stabilization of the whole system is con-
sidered. The control accuracy of the air-fuel ratio is improved,
since the statistical information of the residual gas transitions
is fully utilized, and the influence of the inaccuracy of the
dynamic model is eliminated by using a stochastic model
predictive regulator. A numerical simulation is performed to
demonstrate the effectiveness of the employed air-fuel ratio
stochastic model predictive regulator.

II. STOCHASTIC MPC ALGORITHM DESIGN
The stochastic air-fuel ratio regulator is designed as described
in this section. Because the dynamics of CNG engines is
the same as that of gasoline engines, a model of gasoline
engines, which involves the air path and fuel path dynamics,
as established in [21], is used:

Ma (k + 1) =
(
Ma (k)− λdµMf (k)

)
r (k)+Man (k) ,

Mf (k + 1) = Mf (k) (1− µ) r (k)+Mfn (k) , (1)

whereMa (k) denotes the mass of the total air in the cylinder,
Mf (k) denotes the mass of the total fuel in the cylinder,
λd denotes the ideal air-fuel ratio, µ∈ (0, 1) denotes the
efficiency of combustion, Man (k) denotes the mass of fresh

air, and Mfn (k) denotes the mass of fresh fuel, r (k) denotes
the residual gas fraction, and is considered as a finite-state
irreducible aperiodic Markov chain whose state space S and
one-step transition probability matrix P can be expressed as
follows:

S = {s1, · · · , sn} , (2)

and

P =

 p11 · · · p1n
...

. . .
...

pn1 · · · pnn

 , (3)

where si denotes the state, and pij denotes the one-step tran-
sition probability. The error of regulation of the air-fuel ratio
y (k) is defined as

y (k) = Ma (k)− λdMf (k) . (4)

Rearranging system (1) and (4) yields,

y (k + 1) = r (k) y (k)+ u (k) , (5)

where

u (k) = Man (k)− λdMfn (k) . (6)

Next, the detailed design process of the stochastic MPC
algorithm will be given:

Step 1. Prediction of y (k) and u (k): For system (5),
the error of regulation of the air-fuel ratio y (k) and the
residual gas fraction r (k) are available at sampling point k
by estimation [21]. Based on y (k) and r (k), the future error
of regulation of the air-fuel ratio and the future fresh fuel mass
trajectories can be expressed as

y(k + 1/k, r(k + 1/k)), y(k + 2/k, r(k + 2/k)),

· · · , y(k + Np − 1/k, r(k + Np − 1/k)), (7)

u (k) , u (k + 1/k, r(k + 1/k)) ,

· · · , u (k + Nc − 1/k, r(k + Nc − 1/k)) ,

· · · , u
(
k + Np − 1/k, r(k + Np − 1/k)

)
, (8)

where Np and Nc denote the corresponding horizons, and

u (k + Nc − 1/k, r(k + Nc − 1/k))

= u (k + Nc/k, r(k + Nc/k))

= · · · = u
(
k + Np − 1/k, r(k + Np − 1/k)

)
. (9)

Based on (5) and the future fresh fuel mass trajectories (8), the
future error of regulation of the air-fuel ratio can be expressed
as follows:

y (k + 2/k, r(k + 2/k))

=

Nr∑
j=1

pijsjy (k + 1/k)+ u (k + 1/k, r(k + 1/k))

=

Nr∑
j=1

pijsjsiy (k)+
Nr∑
j=1

pijsju (k)

+ u (k + 1/k, r(k + 1/k)) ,
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...

y
(
k + Np/k, r(k + Np/k)

)
= �y(k)siy (k)+�u(k)u (k)

+ · · · +�u(k+Nc−1)u (k + Nc − 1/k, r(k + Nc − 1/k))

+ · · · +�u(k+Np−2)u
(
k + Np − 2/k, r(k + Np − 2/k)

)
+ u

(
k + Np − 1/k, r(k + Np − 1/k)

)
, (10)

where

�y(k) =

( Nr∑
v=1

Nr∑
l=1

pvlsl

)Np−2 Nr∑
j=1

pijsj,

�u(k) =

( Nr∑
v=1

Nr∑
l=1

pvlsl

)Np−2 Nr∑
j=1

pijsj,

...

�u(k+Nc−1) =

( Nr∑
v=1

Nr∑
l=1

pvlsl

)Np−Nc
,

...

�u(k+Np−2) =

Nr∑
v=1

Nr∑
l=1

pvlsl . (11)

Step 2. Optimization within the horizon Np: Let J (y (k) , r
(k) , u[k,k+Np−1]/k ) denotes the cost function as follows:

J (y (k) , r (k) , u[k,k+Np−1]/k )

= E


Np−1∑
n=0

[Q(k+n/k, r(k + n/k))y2(k+n/k, r(k + n/k))

+R(k + n/k, r(k + n/k))u2(k + n/k, r(k + n/k))]

+�(k + Np/k, r(k + Np/k))y2(k + Np/k, r(k

+Np/k))

 , (12)

where Q(k+n/k, r(k+n/k)) > 0, R(k+n/k, r(k+n/k)) >
0, ∞ >�(k + n/k, r(k + Np/k)) > 0, and Np is a finite
positive integer. Define

V (y (k) , r (k) = si)

= J (y (k) , r (k) , u∗[k,k+Np−1]/k )

= minE


Np−1∑
n=0

[Q(k + n/k, r(k + n/k))y2(k + n/k,

r(k + n/k))+ R(k + n/k, r(k + n/k))u2(k + n/k,

r(k + n/k))]+ �(k + Np/k, r(k + Np/k))y2(k + Np/k,

r(k + Np/k))/r(k) = si

 (13)

where u∗[k,k+Np−1]/k is the optimal control sequence. Using
the optimality principle, we have

V (y (k) , r (k) = si)

= minE
{
Q (k, si) y2 (k)+ R(k, si)u2(k)

+V
(
y (k + 1) , r (k + 1) = sj

)
/r(k) = si

}
. (14)

Choose

V (y (k) , r (k) = si) = α (k, si) y
2 (k) , (15)

where α (k, si) > 0 satisfies

α
(
k + np/k, si

)
= �(k + np/k, si). (16)

Substituting (5) and (15) into (14), we can obtain

α (k, si) y2 (k)

= minE
{
Q (k, si) y2 (k)+ R(k, si)u2(k)

+α
(
k + 1, r (k + 1) = sj/r(k) = si

)
(siy (k)+ u (k))2

}
= min

{
Q (k, si) y2 (k)+ R(k, si)u2(k)

+α
(
k + 1, sj

)
pij(siy (k)+ u (k))2

}
. (17)

Based on the first derivative of (17) with respect to u(k), the
optimal control can be obtained as follows:

u∗ (k) = −
α
(
k + 1, sj

)
pijsi

R (k, si)+ α
(
k + 1, sj

)
pij
y (k) . (18)

Considering (17) and (18), we obtain

α (k, si)

= Q (k, si)+
R(k, si)α2

(
k + 1, sj

)
p2ijs

2
i(

R (k, si)+ α
(
k + 1, sj

)
pij
)2

+α
(
k + 1, sj

)
pij

(
si −

α
(
k + 1, sj

)
pijsi

R (k, si)+ α
(
k + 1, sj

)
pij

)2

.

(19)

Based on (6), the optimal fresh fuel mass M∗fn (k) can be
obtained as follows:

M∗fn (k)=
Man(k)
λd

+
α
(
k + 1, sj

)
pijsiy(k)

λd
(
R (k, si)+α

(
k + 1, sj

)
pij
) . (20)

Step 3. At sampling point k + 1,M∗fn (k + 1) can be obtained
by repeating step 1 and step 2.
Remark 1: The traditional control approaches, which usu-

ally employ the robust control method to address the mode
transitions of a discrete-time system with jump parameters,
do not take into account the statistical information of the
mode transitions. To solve this problem, the mode transitions
aremodeled as aMarkov chain, and the statistical information
of the mode transitions is fully considered in the correspond-
ing stochastic control algorithm. However, the control per-
formance of the stochastic control algorithm is considerably
influenced by the accuracy of the system model. In general,
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the proposed stochastic MPC exhibits a better control per-
formance than that of the above mentioned control approach,
as the statistical information of the mode transitions is fully
utilized, and the accuracy of the systemmodel does not have a
strict requirement due to its receding horizon implementation
mechanism. It is noted that the better control performance is
usually achieved at the cost of increased online computational
burden. However, with the improvement in the computational
capabilities, the computational issues of the MPC are being
gradually alleviated.
Remark 2: The optimal controller (18) at sampling point k

is obtained by deriving (17) with respect to u(k) based on the
optimality principle, and makes the cost function (12) reach
the minimum value within the horizon Np.

III. STABILITY ANALYSIS
This section discusses the stabilization of the closed-loop
system consisting of (5), (18) and (19). Consider a system
with the following discrete-time form:

x (k + 1) = A(r(k))x(k)

x (0) = x0, r (0) = r0, (21)

where x(k) denotes the system state, r(k) denotes a finite state
aperiodic irreducibleMarkov chain, and x(0) and r (0) denote
the corresponding initial values.
Definition 1 [22]: If for every initial values x (0) and r (0),

a finite bound M (x (0) , r(0)) exists, such that:

lim
N→∞

E

{
N∑
k=0

xT (k) x (k) |x (0) , r(0)

}
< M (x (0) , r (0)) ,

(22)

system (21) is considered stochastically stable. More-
over, (21) implies that

lim
N→∞

E
{
xT (k) x (k) |x (0) , r(0)

}
→ 0. (23)

Lemma 1 [22]: If given a set of symmetric matrices
{W (si)> 0,i= 1, · · · ,N }, and a set of appropriate dimension
matrices {χ (si)> 0,i= 1, · · · ,N } satisfies

N∑
j=1

pijAT (si)χ (sj)A(si)−χ (si)= −W (si) , (24)

system (21) is stochastically stable.
Proposition 1 for every r(k+Np/k) =si and all k ∈ [0,∞),

the terminal weighting number �(k+Np/k,sj) satisfies

�(k+Np/k,si)

≥ Q
(
k+Np/k,si

)
+

R
(
k+Np/k,si

)
α2
(
k+Np+1/k,sj

)
p2ijs

2
i(

R
(
k+Np/k,si

)
+α

(
k+Np+1/k,sj

)
pij
)2

+�(k+Np+1/k,sj)pij

×

(
si−

α
(
k+Np+1/k,sj

)
pijsi

R×
(
k+Np/k,si

)
+α

(
k+Np+1/k,sj

)
pij

)2

.

(25)

In this case, the closed-loop system consisting of (5), (18)
and (19) is stochastically stable.

Proof: From (10), we have

V
(
y (k + 1) , r (k + 1) = sj/r(k) =si

)
− V (y (k) , si)

=minE


Np∑
n=0

[Q(k+n/k, r(k+n/k))y2(k+n/k, r(k+n/k))

+R(k + n/k, r(k + n/k))u2(k + n/k, r(k + n/k))]

+�(k + Np + 1/k, r(k + Np + 1/k))y2(k + Np + 1/k,

r(k + Np + 1/k))/r(k) = si


− minE


Np−1∑
n=0

[Q(k + n/k, r(k + n/k))y2(k + n/k,

r(k + n/k))+ R(k + n/k, r(k + n/k))u2(k + n/k,

r(k + n/k))]+�(k+Np/k, r(k+Np/k))y2(k + Np/k,

r(k + Np/k))/r(k) = si

 . (26)

Rearranging (26) yields,

V
(
y (k + 1) ,r (k + 1)= sj/r(k) = si

)
−V (y (k) , si)

= Q(k+Np/k,si)y2(k+Np/k,si)

+R(k + Np/k,si)u2(k + Np/k,si)

+�(k + Np + 1/k, sj)pij(siy(k+Np/k,si)

+ u(k + Np/k,si))2−�(k+Np/k,si)y2(k+Np/k,si).

(27)

Considering (18) and (27), we can obtain

V
(
y (k + 1) ,r (k + 1)= sj/r(k) =si

)
−V (y (k) ,si)≤ 0.

(28)

Lemma 1 indicates that, the closed-loop system involving (5),
(17) and (18) is stochastically stable.

IV. NUMERICAL SIMULATION
The effectiveness of the designed stochastic MPC regulator is
demonstrated in this section. The numerical simulation which
is performed on the Matlab/Simulink platform, involves the
dynamic equations of the air and fuel paths (1) and models in
mean value form [23]–[25], as follows:

y (k) = Ma (k)−Mf (k)λd,
Ma (k + 1) =

(
Ma (k)− λdµMf (k)

)
r (k)+Man (k) ,

Mf (k + 1) = Mf (k) (1− µ) r (k)+Mfn (k) ,

Ṁan =
ρaVdηv
4πPa

ωePm,

Te =
HuVdηiηvPm
4πRTmλ

,

J ω̇e = Te − Tl,
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FIGURE 1. Schematic of the numerical simulation control structure.

Ṗm =
RTm
Vm

(
Ṁi − Ṁan

)
,

Ṁi = s0 (1− cosφ)
Pa
√
RTa

ψ

(
Pa
Pm

)
, (29)

where Tm is 298.15K, Vm is 5.897E-03m3, Vd is 5.76E-04m3,
s0 is 3.5E-03m2, Ta is 298.15K, and

ψ (s) =


s
2
k

(
2k

k − 1
(1− s)

) k−1
k

if s ≥
(

2
k + 1

) k
k−1

k
(

2
k + 1

) k+1
k−1

if otherwise.

(30)

The numerical simulation control structure diagram is shown
in Fig. 1. The simulation parameters corresponding to two
working conditions W1 and W2 are as follows. In W1,
the engine revolution is 1200rpm, external burden is 60Nm,
and ideal air-fuel ratio is 17.4. InW2, the engine revolution is
1600rpm, external burden is 90Nm, and ideal air-fuel ratio is
17.4. For the two working conditions, Np and Nc are 10 and
5, respectively. The state spaces and one-step transition prob-
ability matrices of W1 and W2 are as follows:

SW1 = {0.085, 0.082, 0.080, 0.076} , (31)

SW2 = {0.087, 0.081, 0.075, 0.072} , (32)

PW1 =


0.10 0.33 0.39 0.27
0.11 0.14 0.39 0.36
0.31 0.14 0.14 0.41
0.41 0.31 0.10 0.18

 , (33)

PW2 =


0.25 0.02 0.19 0.54
0.51 0.24 0.04 0.21
0.21 0.52 0.23 0.04
0.03 0.21 0.55 0.21

 . (34)

By settingQ(k+n/k, r(k+n/k)) and R(k+n/k, r(k+n/k))
as 1 for all k ∈ [0,∞) and n ∈

[
0, np

]
, the values of

α (k + n/k, si) for working conditions W1 and W2 can be
obtained as follows:

αW1 (k + n/k, si) =


1.00127, if si = 0.085
1.00118, if si = 0.082
1.00112, if si = 0.08
1.00101, if si = 0.076,

(35)

and

αW2 (k + n/k, si) =


1.00133, if si = 0.087
1.00115, if si = 0.081
1.00099, if si = 0.075
1.00091, if si = 0.072.

(36)

Considering (31)-(36), for every si ∈ S, we choose

�(k + Np − 1/k, si) = 1.6+ 0.25�(k + Np/k, sj)

�(k + 10/k, sj) = 1. (37)

In this case, (25) is satisfied. The air-fuel ratio and fresh fuel
mass samples under W1 and W2 are exhibited in Figs. 2-5,
where USMPC denotes the designed stochastic MPC algo-
rithm, and the open-loop controller UOPEN is defined as
follows:

UOPEN =
Man(k)
λd

. (38)

Fig. 2 and Fig. 4 indicate that the air-fuel ratio can be
regulated into a neighborhood of its ideal value by using
both USMPC and UOPEN , and the fluctuation range of the
air-fuel ratio of USMPC is smaller than that of UOPEN under
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FIGURE 2. Control performances of air-fuel ratio of W1.

FIGURE 3. Fresh fuel masses of W1.

W1 andW2. In contrast, the fluctuation range of the fresh fuel
mass of USMPC is larger than that of UOPEN under W1 and
W2, which can be observed from Fig. 3 and Fig. 5. To enable
the quantitative examination of the control performances of
USMPC and UOPEN , the cost function J of W1 and W2 are
listed in Table 1, where

J =
N∑
k=1

{
(λ (k)− λd )2 + u2(k)

}
,

ε =

∣∣JUSMPC − JUOPEN ∣∣
JUSMPC

. (39)

The values of the controllers USMPC and UOPEN listed
in Table 1 indicated that the cost function ofUSMPC is smaller
than that of UOPEN , and the values of ε for W1 and W2 are
0.503% and 0.644%, respectively. Therefore, the proposed
stochastic MPC algorithm USMPC exhibits a better perfor-
mance under working conditions W1 and W2.
Remark 3: The mean value models reported in refer-

ences [23], [24] and [25] contain the dynamic equations of
the air mass flow leaving the manifold into the cylinders,
torque generated, pressure in the manifold and air mass flow
passing through the throttle, these equations, along with (1),
constitute the dynamic model of the CNG engines.

0 200 400 60017.1

17.3
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17.7

0 200 400 60017.1

17.3

17.5

17.7

A
ir-
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tio
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USMPC

UOPEN

FIGURE 4. Control performances of air-fuel ratio of W2.

FIGURE 5. Fresh fuel masses of W2.

TABLE 1. Cost functions of W1 and W2.

V. CONCLUSION
This paper proposes a stochastic MPC regulator based on a
dynamic model of CNG engines in the discrete-time form,
which contains the air path and fuel path dynamics. The
whole system is deduced to be stochastically stable. The
effectiveness of the designed stochastic MPC regulator is
demonstrated by performing a numerical simulation. The
control performance of the proposed stochasticMPC depends
on the computer performance since the online computational
burden is augmented in this technique. The limitations of the
increase in the computational burden are being progressively
overcome via improvements of the computer performance.
An on-line technique to estimate the masses of the total air
and the total fuel in-cylinder should be designed, as these
values can’t be directly estimated. Furthermore, the control
accuracy of the air-fuel ratio of CNG engines is affected
by estimation errors. As an effective control algorithm, the
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stochastic MPC has been applied to the energy distribution
of hybrid electrical vehicles, coordinated dispatch of power
grid and other applications.
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