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ABSTRACT In this short paper, our main objective is to construct binary locally repairable codes (LRCs)
with good properties. Two constructions of LRCswith short lengthes are proposed. The first one is that define
a u-linearly independent set (u-LIS) of an LRCwith disjoint repair groups (DRGs) and enlarge it into another
one with bigger size to construct new LRCs. The second is puncturing check matrices of known codes to
construct new LRCs. As an application, many new binary LRCs are constructed from distance optimal linear
codes, which are also locality optimal according to the Cadambe-Mazumdar (C-M) bound.

INDEX TERMS Cadambe-Mazumdar bound, distance optimal linear code, locally repairable code.

I. INTRODUCTION
Locally repairable codes (LRCs) are designed for distributed
storage systems to improve the repair efficiency. Since the
pioneer work of Gopalan et al. in [1], LRC has been inten-
sively researching in recent years. For a q-ary linear code
C = [n, k, d]q, if for any c = (c1, c2, . . . , cn) ∈ C, the i-th
code symbol ci can be recovered by accessing no more than
r other code symbols, ci is said to have locality r . The code
C is said to have locality r if all its symbols have locality at
most r . A code C = [n, k, d]q with locality r is denoted as
C = [n, k, d; r]q in [2]. If q = 2, [n, k, d]q and [n, k, d; r]q
are denoted as [n, k, d] and [n, k, d; r] for short, respectively.
In [1], Gopalan et al. proposed an upper bound for an

[n, k, d; r]q code named as Singleton-like bound:

d ≤ n− k + 2− d
k
r
e. (1)

This bound is not tight over small fields [3], [4], especially
over the binary field [5]. A bound taking field size into
consideration was presented in [6], which is called Cadambe-
Mazumdar (C-M) bound. This bound says that an [n, k, d; r]q
code satisfies

k ≤ kcm = mint∈Z+{tr + k
(q)
opt (n− t(r + 1), d)}, (2)

where k (q)opt (n, d) is the largest possible dimension of a code
of length n, for given field size q and minimum distance d .
Binary LRCs receive much more attentions, since they

are easily implemented for no multiplications are needed in
encoding, decoding and repair, see [2], [3], [5] and [7]–[19].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jin Sha.

Binary LRCs with small locality and meeting the C-M bound
have been constructed by using anti-codes [7]. References
[8]–[10] proposed binary LRCs for specific parameters by
using cyclic codes. Authors of [2]–[3], [5] and [11]–[18]
discussed constructions of binary LRCs from classical codes
and obtained many codes meeting the C-M bound. Most
of the binary LRCs given in this work have relative low
rate or small distance, for detail please see [19]. So we focus
on constructions of binary LRCs with relative higher rate
and minimum distance d ≥ 6, and discuss the optimality of
obtained LRCs in terms of the C-M bound.

II. PRELIMINARIES
This section introduces basic concepts and some results on
LRCs [1], [23], [24]. First, we give some notations which will
be used later.

(i) Let Fn2 be the n-dimensional space over the binary field
F2 = {0, 1}. All codes, matrices and vectors in the rest of this
paper are over F2.

(ii) Let [n] = {1, 2, . . . , n}. Denote 1n and 0n as the all-one
and all-zero row vectors, their transposes are denoted as 1Tn
and 0Tn , respectively. Denote an m× n matrix A as Am,n.
For an [n, k, d] code C, a matrix Gk,n whose rows form a

basis of C is called a generator matrix of C. The dual code of C
is defined as C⊥ = {x ∈ Fn2 |x · c = 0 for all c ∈ C}. We call a
generator matrix H of C⊥ as a parity check matrix of C [22],
[23]. If C = [n, k, d] and there is no C′ = [n, k, d + 1], C
is called a distance optimal (d-optimal) code. For details on
parameters of d-optimal binary codes, please see [21]. If C =
[n, k, d; r] meets the C-M bound, it is called an r-optimal
code.
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Let H = Hm,n be a parity check matrix of C. For i ∈ [n]
and j ∈ [m], if there is a row hji in H and the i-th coordinate
of hji is nonzero, we say that the i-th coordinate is covered

by hji . If H =
(
HL
HG

)
and each i ∈ [n] is covered by some

rows of HL , then we say HL covers [n] and the rows of HL
are called locality rows in [14]. The locality of C = [n, k, d]
can be judged by its parity check matrix as follows:

Proposition 1 [7]: Let H =


h1
h2
· · ·

hn−k

 be a parity check

matrix of C = [n, k, d]. For each i ∈ [n], there is a row hji
of H with weight at most r + 1 and the i-th coordinate is
covered by hji , then C has locality r .

Proposition 2 [14]: Let H =
(
HL
HG

)
be a parity check

matrix of C = [n, k, d]. If HL covers [n] and the weight of
each locality row is at most r + 1, then C has locality r .

If n = l(r + 1), C = [n, k, d; r] and H =
(
HL
HG

)
is its

parity check matrix, where

HL =


1r+1 0r+1 · · · 0r+1
0r+1 1r+1 · · · 0r+1
· · · · · · · · · · · ·

0r+1 0r+1 · · · 1r+1

,
then C is called an LRC with disjoint repair groups (DRGs).
In [18], a method of constructing an even distance LRC

from an odd distance LRC was presented.
Proposition 3 [18]: Let d be odd and C0 = [n, k, d; r0].

If the maximal weight of codewords of C⊥0 is wmax and
wmax < n, then there is a C = [n + 1, k, d + 1; r] where
r ≤ max{n− wmax , r0}.
To develop our discussion, we need a definition.
Definition 1 [20]: Let M = {α1, α2, . . . , αn} be a set of

m-dimensional column vectors. If any u vectors inM are lin-
early independent, thenM is called as u-linearly independent
set (u-LIS).
Let u < m < n. Given a u-LIS M = {α1, α2, . . . , αn}

of m-dimensional column vectors, one can obtain an m × n
matrix H = (α1, α2, . . . , αn). If the rank of H is m, then an
[n, k, d] = [n, n − m, u + 1] code with parity check matrix
H can be obtained. In this work, we only take care of u-LIS
M which can give an [n, k, d] = [n, n− m, u+ 1] code, and
use αi to denote binary column vector.

III. CONSTRUCTIONS OF LRCs
In this section, we will give two constructions for LRCs.

A. NEW LRCs FROM LRCs WITH DRGs
In this subsection, we always assume n = l(r + 1), C =
[n, k, d; r] is an LRC with DRGs and its parity check matrix

is H =
(
HL
HG

)
= (α1, α2, . . . , αn). If M = {α1, α2, . . . , αn}

can be enlarged into (d−1)-linearly independent setM ′, new
LRCs can be obtained as follows.

Construction 1: Let C = [n, k, d; r] be an LRC with
DRGs, whose parity check matrix is given above. Suppose
M = {α1, α2, . . . , αn} can be enlarged into a (d − 1)-

LIS M ′ = M ∪ {αn+1, . . . , αn+s}. If A =
(
Al,s
B

)
=

(αn+1, . . . , αn+s), Al,s covers [s] and its maximal row weight
is w, then there exists an [n+ s, k + s, d; r + w] LRC.

Proof: Let H ′ = [H A] and H ′L = [HL Al,s]. As Al,s
covers [s], one can see H ′L covers [n+ s]. Since the maximal
row weight of Al,s is w, it is obvious that the maximal row
weight of H ′L is r + w + 1. Thus the code with parity check
matrix H ′ = [H A] is an [n+ s, k + s, d; r + w] LRC.
Example 1: An [18, 6, 8; 2] LRC with DRGs was given in

[2]. This code has parity check matrix H12,18 =

(
HL
HG

)
=

(α1, α2, . . . , α18). Using computer, we can enlarge M =

{α1, α2, . . . , α18} into a 7-LISM ′ = M∪{α19, . . . , α24}. The
matrix H12,24 = (H12,18 | A) = (α1, . . . , α18, . . . , α24) is

H12,24 =

(
HL A6,6
HG O

)

=



111000000000000000 | 111110
000111000000000000 | 111101
000000111000000000 | 111011
000000000111000000 | 110111
000000000000111000 | 101111
000000000000000111 | 011111
101000000011110011 | 000000
011101000011000101 | 000000
011011101000000110 | 000000
011011011110011101 | 000000
000011011000110011 | 000000
000000011011101101 | 000000



.

From H12,24 and its sub-matrices H12,18+j = (α1, α2, . . . ,
α19, . . . , α18+j} for 1 ≤ j ≤ 6, we can obtain six
LRCswith parameters [19, 7, 8; 3], [20, 8, 8; 4], [21, 9, 8; 5],
[22, 10, 8; 6], [23, 11, 8; 7] and [24, 12, 8; 7]. Localities of
these LRCs are determined by the first six rows of their parity
check matrices and can be calculated by hand.
Example 2: From [2] we can obtain a [24,11,8;3] LRC

with DRGs, whose parity check matrix isH13,24 =

(
HL
HG

)
=

(α1, α2, . . . , α24), where

HG =



010100000000001101100011
001101010000001100000101
001100110101000000000110
001100110011011000110101
000000110011000001100011
000000000011001101010101
100010001000100010001000


.

Using computer, we can enlarge M = {α1, α2, . . . , α24}

into two 7-LIS M ′ = M ∪ {α′25} and M
′′
= M ∪ {α′′25},

where (α′25)
T
= (1, 1, 1, 1, 1, 0, · · · , 0) and (α′′25)

T
=

(1, 1, 1, 1, 1, 1, 0, · · · , 0, 1). H ′13,25 = (α1, . . . , α24, α′25)
parity checks a [25, 12, 8; 4] LRC whose weight distribution
is w(z) = 1+ 503z8+ 256z10+ · · · + 128z18+ z24. H ′′13,25 =

VOLUME 8, 2020 41283



S. Yang et al.: New Constructions of Short Length Binary LRCs

(α1, α2, . . . , α24, α′′25) parity checks a [25, 12, 8; 4] LRCwith
weight distributionw(z) = 1+375z8+384z9+· · ·+384z17+
z24. Localities of these LRCs are determined by the first six
rows of their parity check matrices.

The seven LRCs obtained in this subsection are optimal
LRCs according to the C-M bound. Now we check the opti-
mality of the code [25, 12, 8; 4]. Suppose t = 2 and r = 4,
by [21], then one can derive tr + k (2)opt (25 − t(r + 1), 8) =
8+ k (2)opt (15, 8) = 12, hence a [25, 12, 8; 4] LRC achieves the
C-M bound. Similarly, we can prove that the other six LRCs
given in example 1 also achieve the C-M bound.

B. LRCs CONSTRUCTED BY DUAL PUNCTURING KNOWN
CODES
In [16], a construction for LRCs was presented via punc-
turing anti-codes from generator matrices of Simplex codes,
some optimal LRCs with small localities and low rates were
derived. Using block-puncturing methods on generator matri-
ces of Simplex codes, authors of [24] investigated minimum
distance, locality, availability, joint information locality, and
joint information availability of related LRCs. Many good
LRCs concerning these properties were presented, yet these
LRCs are low rate codes. Recently, in [18], we discussed
construction of high rate LRCs by puncturing on check matri-
ces of d-optimal codes. For a given parity check matrix
H , by deleting a column with maximal weight each time,
we obtained some good LRCs with length n ≤ 24 and
n − k ≤ 12. However, the method in [18] often fail to get
r-optimal LRC when n − k > 12. Thus we need to try new
method for constructing optimal LRCs.

In this subsection, we assume C = [n, k, d; r] with
parity check matrix H = (α1, α2, . . . , αn). For S =

{j1, j2, . . . , js} ⊂ [n] with s =| S |≤ r − 1, delete the
columns αj1 , αj2 , · · · , αjs fromH and denote the result matrix
as HS̄ . The code with parity check matrix HS̄ is called the
dual punctured code of C by S, and its locality is denoted as
rS̄ . From this, one can derive Construction 2 following.
Construction 2: Let r ≥ 3 and 1 ≤ s ≤ r − 1. If

C = [n, k, d; r] is an LRC with parity check matrix H =
(α1, α2, . . . , αn), then there is an [n − s, k − s, d; rs] LRC,
where rs = min{rS̄ | S ⊂ [n] and | S |= s}.

Proof: Let H = (α1, α2, . . . , αn) be a parity check
matrix of C. For a set S = {j1, j2, . . . , js} ⊂ [n] with
s =| S |≤ r − 1, delete the columns αj1 , αj2 , · · · , αjs from
H and denote the result matrix as HS̄ . If rank(HS̄ )= n − k ,
using computer, we can obtain locality rS̄ of the code with
parity check matrix HS̄ , otherwise choose another subset of
[n] of size s and do the same thing. In this way, we can find
an S ⊂ [n] such that its dual punctured code has locality
rs = min{rS̄ | S ⊂ [n] and | S |= s} since the total number
of such subset is

(n
s

)
.

Using this construction, we can construct many new LRCs
from distance optimal codes whose localities are calculated
by computer according to the three proposition given in
Section II.

TABLE 1. Localities of [n, n− 12, 6; r ] for 32 ≤ n ≤ 48.

Example 3: From a [33, 23, 5; 11] LRC given by [17],
according to proposition 3, one can construct a [34, 23, 6; 11]
code with parity check matrix H11,34, where

H11,34 =



1011101100110000000100010000010001
0011000100101000010110000100011010
0001000001001011101100001001011000
0000010111000001001001110101010000
0000101000011000010010001011110100
0110110100000000001001011000011010
0000000001101110100001100000111010
0000000010110011100000010110011001
0101000000000010011100001010010111
0001101000000111000001010100111000
0010010110001011010000000001011001



.

Puncturing onH11,34, one can construct LRCs [n, k, 6; r] =
[n, n−11, 6; r] for 25 ≤ n ≤ 34. The localities of these LRCs
are r = 5, 6, 6, 7, 7, 8, 9, 9, 10, 11 respectively.
Example 4:A [48, 36, 6; 17] code can be constructed from

a [47, 36, 5; 17] LRC given in [17], this [48, 36, 6; 17] code
has a parity check matrix H12,48, where as shown at the top
of the next page.

By puncturing on H12,48, one can obtain [n, k, 6; r] =
[n, n − 12, 6; r] LRCs for 32 ≤ n ≤ 48. The localities of
these LRCs are listed in Table 1.
Example 5: (1) A [27, 10, 9] code and a [31, 13, 9] code

can be obtained from [21], their parity check matrices are
H17,27 and H18,31 respectively, where

H17,27 =



100000001000000000010000011
000000000010001000001010001
000000110000000000000001101
011000000000000110000000001
000100010000010001000000001
000010010000000000000100011
000001001000000000100010001
000000000011010100000000001
000000000100001000000100101
100000100000101000000000001
100100000000000000000110001
000000000001000010010001001
110000000000000000101000001
000100001010000010000000001
000010100000000011000000001
000000000100010000010100010
000001100000000000000011010



,
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H18,31 =



1000000010100000000000100001010
0000000000001010001010100010000
0101000000010100000000101000000
0000000101000000000100110001000
0010001000000100000011100000000
0000000000011001110000100000000
1000110100000000000100100000000
0000000110000000001000100100100
0000000000000000000001111000011
0000001010000000100010110000000
1000000100010000000000110100000
0000001001100010001000100000000
0110000011000000000100100000000
1001001001000000000001100000000
0000010001000001000000101010000
0100000001100000000001100000100
0010000100000101000000100000010
0000010100000000010000110010100



.

It is not difficult to check that H17,27 gives a [27, 10, 9; 4]
LRC by computer, and similarly H18,31 parity checks a
[31, 13, 9; 5] LRC. Puncturing on H17,27, one can derive
LRCs [26, 9, 9; 3] and [25, 8, 9; 3]. LRCs [30, 12, 9; 4] and
[29, 11, 9; 4] can be obtained by puncturing on H18,31.

(2) According to Proposition 3, from the above six
codes and weight distributions of their dual codes, one
can derive LRCs [26, 8, 10; 3], [27, 9, 10; 3], [28, 10, 10; 4];
[30, 11, 10; 4], [31, 12, 10; 4] and [32, 13, 10; 5]. Further,
puncturing on parity check matrix of the [30, 11, 10; 4] code,
we can get a [29, 10, 10; 3] LRC.
Example 6: (1) A [31, 11, 11] LRC can be obtained from

[21], whose parity check matrix H20,31 is:

H20,31 =



1000010100000000000000000001011
0000000000100000010001001000101
0000000011000101000100000000001
0110100000000010000000000100001
0001000000001000101010000000001
0000000000000000010010110010001
1000011000010000100000000000001
0000000110001000010000000000101
0000100001000000000000011000011
0000000100110000000100000000101
0010010000000001001000010000001
0101000000000100010000000010001
0000010010000100010000100000001
0100000000100100000000000001101
0101001000000000000010001000001
0000001000100100010100000000001
0010001000000000000000001001011
0010000001000010000001000000011
0001000010000000000101000000011
1000000010000000010100000001001



.

It is not difficult to check H20,31 gives a [31, 11, 11; 5]
LRC by computer. Puncturing on H20,31, one can derive
[30, 10, 11; 4], [29, 9, 11; 3] and [28, 8, 11; 3] LRCs.
(2) According to Proposition 3, from the above four

codes and weight distributions of their dual codes, one
can derive [29, 8, 12; 3], [30, 9, 12; 3], [31, 10, 12; 4] and
[32, 11, 12; 5] LRCs.

TABLE 2. Comparisons of LRCs.

(3) A [33, 11, 12] code can be obtained from [21], its parity
check matrix is H22,33, where

H22,33 =



000000000000000000000100100110001
001000000001000000000110000000100
000010000000100000000100010000010
000000100000000010000101000001000
110000000000010000001100000000000
000001000000001001000100001000000
100000000110000000000100001000000
000010010000000000100101000000000
000000000000000101010110000000000
010100000000000000000100001000001
100000001000000000000100000001100
000010000000010100000100000000001
000000000000000100001100000101000
001000000000000110000100000000010
000001000100000000000111000000000
000000000000001000000110000001001
101010000000000000010100000000000
000000000000010000000100011000100
000000000000100010001100000010000
000000000101001000000100000000010
000000010001000100000100010000000
010000010000000000000100000001010



.

It is not difficult to check H22,33 gives a [33, 11, 12; 4]
LRC by computer. By puncturing on H22,33, one can derive a
[32, 10, 12; 3] LRC.

We have obtained 50 LRCs in this subsection, and we can
show that all these LRCs meet the C-M bound by hand.

Summarizing all the examples in these section, we have
constructed 57 LRCs, according to [21], all these codes are
d-optimal codes. These results on d-optimal and r-optimal
LRCs are shown as follows.

Results: There are d-optimal and r-optimal LRCs with
parameters:

(1) [19, 7, 8; 3], [20, 8, 8; 4], [21, 9, 8; 5], [22, 10, 8; 6],
[23, 11, 8; 7], [24, 12, 8; 7] and [25, 12, 8; 4].

(2) [25, 14, 6; 5], [26, 15, 6; 6], [27, 16, 6; 6], [28, 17, 6; 7],
[29, 18, 6; 7], [30, 19, 6; 8], [31, 20, 6; 9], [32, 21, 6; 9],
[33, 22, 6; 10], [34, 23, 6; 11].

(3) [32, 20, 6; 6], [33, 21, 6; 7], [34, 22, 6; 7], [35, 23, 6; 8],
[36, 24, 6; 9], [37, 25, 6; 9], [38, 26, 6; 10], [39, 27, 6; 10],
[40, 28, 6; 11], [41, 29, 6; 12], [42, 30, 6; 12], [43, 31, 6; 13],
[44, 32, 6; 13], [45, 33, 6; 14], [46, 34, 6; 15], [47, 35, 6; 16],
[48, 36, 6; 17].
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H12,48 =



110001001101000010000101010101000011101000001001
000010101000111101000010100011000000000010011111
000000110000100000011001111010111010000111000001
010101011110010010100100000000010110000010110001
001010010110101010011000101000000010010010100011
010010011100001001101100100010000011010001001001
010000111001100011001010101000000000100101010011
001000101111000100000101100100101110000001100001
100101010101001000100110100001000101000000010111
011000001100001000000110011110100000000101011101
101000010110000001011011010000010000101001011001
010010100100000000011010101111000010101000010101


.

(4) [25, 8, 9; 3], [26, 9, 9; 3], [27, 10, 9; 4], [29, 11, 9; 4],
[30, 12, 9; 4], [31, 13, 9; 5].
(5) [26, 8, 10; 3], [27, 9, 10; 3], [28, 10, 10; 4],

[29, 10, 10; 3], [30, 11, 10; 4], [31, 12, 10; 4], [32, 13, 10; 5].
(6) [28, 8, 11; 3], [29, 9, 11; 3], [30, 10, 11; 4],

[31, 11, 11; 5], [29, 8, 12; 3], [30, 9, 12; 3], [31, 10, 12; 4],
[32, 11, 12; 5], [32, 10, 12; 3], [33, 11, 12; 4].
Remark: One can check by hand that an [18, 8, 4; 1] in [3]

achieves both the Singleton-like bound and the C-M bound,
yet it is not d-optimal code.

IV. CONCLUSION
In this paper, we have developed two constructions of LRCs.
Using these methods, we can construct 57 new binary LRCs
which are distance optimal codes and can achieve the C-M
bound, hence they are also locality optimal codes. In fact,
the approaches presented in this work can also be used to
construct non-binary LRCs, we hope this question would
attract much attention.
Table 2 lists some LRCs we constructed, which are all

better than codes in Tables 2 and 4 of [10].
We only focus on localities of LRCs in our proposed two

constructions. When considering availability and joint infor-
mation localities of LRCs [24], we will make further study on
these properties of LRCs in the future.
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