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ABSTRACT Tracking multiple objects in a video sequence can be accomplished by identifying the
objects appearing in the sequence and distinguishing between them. Therefore, many recent multi-object
tracking (MOT) methods have utilized re-identification and distance metric learning to distinguish between
objects by computing the similarity/dissimilarity scores. However, it is difficult to generalize such
approaches for arbitrary video sequences, because some important information, such as the number of
objects (classes) in a video, is not known in advance. Therefore, in this study, we applied a one-shot learning
framework to the MOT problem. Our algorithm tracks objects by classifying newly observed objects into
existing tracks, irrespective of the number of objects appearing in a video frame. The proposedmethod, called
OneShotDA, exploits the one-shot learning framework based on an attention mechanism. Our neural network
learns to classify unseen data samples using labels from a support set. Once the network has been trained,
it predicts correct labels for newly received detection results based on the set of existing tracks. To analyze
the effectiveness of our method, it was tested on the MOTchallenge benchmark datasets (MOT16 and
MOT17 datasets). The results reveal that the performance of the proposed method was comparable with
those of current state-of-the-art methods. In particular, it is noteworthy that the proposed method ranked first
among the online trackers on the MOT17 benchmark.

INDEX TERMS Data association, deep learning, multi-object tracking, object recognition, one-shot
learning.

I. INTRODUCTION
Multi-object tracking (MOT) is considered one of the most
challenging problems in computer vision research. Recently,
tracking-by-detection methods have attracted significant
interest, because they can isolate the problem of object detec-
tion from object tracking, which helps them focus on the
tracking tasks, such as track management, initiation, and
termination, as well as data association.

There are several methods available for track initia-
tion/termination. Several studies [1]–[4] have adopted a
straightforward rule wherein tracking starts if there is a
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detection result, and ends if there is no detection result.
A subtle difference between such approaches is the num-
ber of repeated detections (misdetections) used for track
initiation (termination). In [1]–[4], a new track hypothe-
sis was generated at every frame for each detection result
that was not associated with an existing track. A track
was terminated if the number of consecutive misdetections
exceeded a predefined threshold. To eliminate false tra-
jectories, tracks shorter than a predefined threshold were
deleted from the track set after the tracking process was
completed.

Another strategy involves optimizing an objective func-
tion over the space of trajectories [11]–[13]; it is nec-
essary to perform both track management and data
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association simultaneously, based on the optimization results.
Zhang et al. [11] proposed a network-flow-based global
optimization method for MOT. They constructed a network
using a set of detection results from a video, and computed the
global best trajectories by identifying the min-cost flow of the
network. Initialization and termination of trajectories were
handled intrinsically after the solution had been computed.
Pirsiavash et al. [12] used an approach similar to that of
Zhang et al. , except that they adopted a greedy algorithm
(shortest path) for a flow network. In [13], the authors used
the multiple-hypothesis tracking (MHT) for track manage-
ment. The MHT saves track proposals in a tree structure that
grows with new detections for each frame, that is, the tree
describes all the possible data association results originating
from a single detection result. Track initiation and termina-
tion and data association in the MHT are treated as solving
an optimization problem, that is, the maximum weighted
independent set (MWIS), within a certain time window.

In the tracking-by-detection paradigm, data association
entails connecting detection outputs across video frames and
screening misdetections. This problem can be considered a
form of statistical estimation such as the likelihood estimation
of p(Z|T ), where Z is the set of detections and T is the set
of trajectories. The distribution of likelihood determines the
probability of associated detections belonging to the same
object when the track proposal T has been satisfied. Online
tracking methods recursively estimate the likelihood based
on the detection set up to the current frame [1]–[4], [13].
In contrast, offline/batch methods [11], [12] use the detection
results for an entire video sequence.

Recently, MOT has been accomplished by identifying and
distinguishing between objects appearing in the sequence.
Therefore, many recent MOT methods have focused on
re-identification and distance metric learning to distinguish
between objects by computing the similarity/dissimilarity
scores between them. However, it is difficult to generalize
such approaches for arbitrary video sequences, because some
important information, e.g., the number of objects (classes)
in a video, is not known in advance. In this study, we pro-
pose a novel data association strategy called OneShotDA
that exploits one-shot learning frameworks such as those
in [14]–[16]. In such frameworks, the class of a query sample
is determined by the samples in a gallery set. For exam-
ple, in [16], predictions for the samples in a query set are
obtained based on a relation module that computes the dis-
tance between a query feature and the features in a gallery
set. By following the protocol of the one-shot framework,
our method classifies a newly received detection result (query
sample) into an existing track (gallery set), or vice versa.1

Specifically, our model can predict the label of a query
sample based on the labels of the gallery set by using an
attention mechanism that indicates a corresponding sample
in the gallery set.

1The use of detection results as a query set or the use of existing tracks as
a query set is possible.

Let Q be the query set, and x(i)q be the i-th query sample.
G is the gallery set. G = {(x(j)g , y

(j)
g )}|G|j=1, where x

(j)
g and y(j)g

are the j-th sample and label in the gallery set, respectively.
In Figure 1(a), Tk−1, which is the track set at frame k − 1,
represents the query set, and Zk , which is the detection set
at frame k , represents the gallery set. The feature embedding
network (FEN) in OneShotDA takes a sample from both Q
and G as an input, and generates a feature vector f (·). Note
that the FEN processes samples in Q and G using the same
weights. Next, conditional embedding networks (CENs) are
used to embed feature vectors to generate more robust fea-
tures. CEN_Q and CEN_G are the CENs for the query set and
gallery set, respectively. Additionally, we include a network
called TD_clf that estimates the probability of accurate detec-
tion for a given input (detection response). We shall detail
each component of the OneShotDA in the following sections.

As shown in Figure 1(b), the OneShotDA maps the class
of a query sample to labels in the gallery set, which is defined
by p(yg|xq,G). The left table in Figure 1(b) contains the
probability distribution of data associations for the scenario
depicted in Figure 1(a). For example, q3, an embedded vector
of T (3)

k−1, has a low probability of data association, because
the object is completely occluded in frame k . The right table
in Figure 1(b) contains the probabilities of accurate detection
for the gallery set, which are estimated by TD_clf. We also
demonstrate that the proposed data association mechanism
can be easily integrated with any online MOT system. In the
experiments section, we track objects using a combination
of the MHT framework [7] and the proposed OneShotDA.
Tables 1 and 2 summarize the notations and abbreviations
used in this article.

TABLE 1. Notation summary: We define the mathematical notations used
for formalizing problems in this article.
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FIGURE 1. (a): Architecture of the proposed OneShotDA method. Our network consists of FEN, CEN_Q, CEN_G, and TD_clf. (b): Outputs of OneShotDA.

TABLE 2. Abbreviation summary: These abbreviations are used in our
model.

The contributions of this study can be summarized as
follows:
• We propose a novel data association mechanism called
OneShotDA that can classify newly generated detection
outputs into existing tracks using one-shot classification.

• We adopt a training strategy that is customized for
one-shot learning and suitable for data association tasks.
We also demonstrate the way training samples are

generated using MOT datasets such as the MOTChal-
lenge datasets [8].

• We demonstrate that OneShotDA can be easily inte-
grated with any online MOT system (MHT in this
study).2

• We demonstrate that the effectiveness of the proposed
MOT system can match those of the state-of-the-art
methods. It is noteworthy that the proposed method
ranks first among online trackers when evaluated on the
MOT17 benchmark.

II. RELATED WORKS
Modern MOT methods based on the tracking-by-detection
paradigm can be categorized into offline and online meth-
ods. Offline methods utilize the detection results from all
the video frames to construct robust trajectories, whereas,
online approaches process videos sequentially in a frame-
by-framemanner by recursively updating existing tracks with
new detection results.

The offline methods are commonly set up by represent-
ing the problem as a graph wherein each detection result
represents a node, and the edges represent possible links.

2The MHT tracker used in this research is now available on the web:
https://github.com/yoon28/pymht
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Ma et al. [17] formulated the problem as a hierarchical corre-
lation clustering (HCC), a modified form of the correlation-
clustering-based tracking method [18]. Tang et al. [19] used
a combination of the lifted multicut problem (LMP) formu-
lation and body pose information. Henschel et al. [20] also
utilized body pose information; however, they formulated the
problem as a min-cost graph labeling problem [21].

It is known that online methods are often impeded by
long-term occlusion issues, because only the current frame
and previous frames are available [22]. TheMHT [7], a robust
online tracking method, attempts to resolve this issue by
constructing a track tree that describes all the possible data
association results within a particular time window. Even
if this time window causes the MHT to produce delayed
tracking results, it is still considered an online tracker because
only the current detection set is used to update the scores
of previous tracks [7]. In other words, the MHT recur-
sively estimates the likelihood of the previous tracks reoccur-
ring based on current observations. Recently, various MHT
algorithms [13], [22], [23] have been proposed for MOT
tasks. In [13], long-term appearance modeling was incorpo-
rated into the MHT, where the tracker estimated the online
appearance features for each track. In [23], an LSTM network
was adopted to score track proposals in theMHT. The authors
also proposed a bilinear LSTM model, a modified version of
the original LSTM model [6] for a gating network. In [22],
the authors proposed an iterative MWIS algorithm for the
MHT, making it possible to solve the MWIS problem based
on the solutions of previous frames.

There have also been many recent studies based on MOT.
Sun et al. [24] tracked objects using a novel deep network
that can infer object affinities across different frames by
analyzing exhaustive permutations of the extracted features.
Their network also accounts for the appearance and disap-
pearance of objects between video frames. Yang et al. [25]
proposed an online MOT algorithm that uses two-step
data association combined with an improved sparse-based
appearance affinity model and rank-based motion affinity
model. They tracked objects by fusing trajectory dynamics
information, and proposed a novel two-step data association
framework. He et al. [26] proposed a tracking-by-animation
framework to achieve both label-free and end-to-end learn-
ing for MOT, unlike tracking-by-detection frameworks, that
isolate the detection task from the tracking task. Their
differentiable neural network first tracks objects in input
frames, and then animates the tracked objects in reconstructed
frames. Learning is driven by reconstruction error based
on backpropagation. Zhang et al. [27] tracked objects in
multi-modal scenarios by adopting a deep architecture that
can be trained in an end-to-end manner, thereby enabling
the joint optimization of the base feature extractors of each
modality and an adjacency estimator for cross-modality.
Wen et al. [28] proposed an MOT algorithm based on a
non-uniform hypergraph that can model different degrees of
dependency among tracklets for a unified objective. Their
method can model higher-order dependencies among objects

and tracklets. Voigtlaender et al. [29] extended the MOT
to MOT and segmentation. They also presented a track-
ing method that jointly addresses detection, tracking,
and segmentation using a single convolutional network.
Long et al. [30] tackled unreliable detection by selecting
candidates from the outputs of both detection and track-
ing. They also demonstrated that the identification ability
of their tracker could be improved by using appearance
representations trained on a person re-identification dataset.
In [31], the authors tracked the objects using recurrent neural
networks (RNNs), and demonstrated that RNNs can effec-
tively address the problems of trajectory estimation and data
association.

One(few)-shot learning aims to train a classifier to recog-
nize unseen classes during training using only a single (few)
labeled example(s). Because many deep learning systems
require hundreds or thousands of samples, one(few)-shot
learning has attracted significant interest [14]–[16], [32].
In such frameworks, the class of a query sample is determined
by the samples in a gallery set. In [32], the authors proposed a
novel strategy for one-shot classification using Siamese neu-
ral networks for verification. In [14], the MatchingNet model
was proposed to map a small labelled gallery set and an unla-
beled query sample to the correct label. MatchingNet com-
pares the cosine distances between a query feature and each
gallery feature. Snell et al. [16] proposed ProtoNet, which
also predicts the class of a query sample based on distance;
however, ProtoNet uses the Euclidean distance between a
query and the gallery. Sung et al. [15] presented RelationNet,
which, apart from replacing distance with a learnable relation
module, is based on a similar concept.

In OneShotDA, we adopt the one-shot learning frame-
work to classify new samples based on known examples,
which solves the data association problem in MOT. There
are multiple available options for this task, including existing
frameworks such as MatchingNet, RelationNet, or ProtoNet.
Therefore, we consider the one-shot framework as a data
association solver for MOT.

III. MULTIPLE HYPOTHESIS TRACKING
In this section, we briefly review the MHT model presented
in [7] and discuss how we combine MHT with the proposed
OneShotDA.

MHT maintains a track proposal by constructing a track
tree that describes all possible data association results orig-
inating from a single detection result (i.e., root node) and
its branches. Each node in the track tree can either cor-
respond to a real detection result obtained from an object
detector or be a dummy detection result representing a
misdetection. Let T (i)

k be the i-th track proposal at frame
k maintained by the MHT and let t be its length. Then,
T (i)
k = {z

[i]
k−t+1, z

[i]
k−t+2, . . . , z

[i]
k−1, z

[i]
k }, where z

[i]
l is a detec-

tion result chosen by the i-th track proposal at frame l.
As mentioned previously, z[i]l can be a real detection result
from Z or a dummy detection result. Note that z(j)l represents
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the j-th detection at frame l, meaning z(j)l ∈ Zl in which Zl is
a set of detections at frame l (i.e., Zl ⊂ Z).

Following the original formulation in [7], the score for each
track proposal is defined as the likelihood ratio (LR) between
the true-track (H1) and false alarm (H0) hypotheses (Eq. 1).

LR(T (i)
k ) =

p(T (i)
k |H1)

p(T (i)
k |H0)

P0(H1)
P0(H0)

(1)

In Eq. 1, P0(H1) and P0(H0) are the prior probabilities of the
true target and false alarm hypotheses, respectively. Based on
the chain rule, the likelihood is factorized as

LR(T (i)
k ) =

∏t
l=1 p(z

[i]
k−l+1|T

(i)
k−l,H1)∏t

l=1 p(z
[i]
k−l+1|H0)

P0(H1)
P0(H0)

, (2)

where we assume that detection results are conditionally
independent given the false alarm hypothesis and t is the
track length of T (i)

k . This equation can be further factorized
based on the independence assumption between kinematic
and appearance terms as follows:

LR(T (i)
k ) =

∏t
l=1 pK (kin(z

[i]
k−l+1)|kin(T

(i)
k−l),H1)∏t

l=1 pK (kin(z
[i]
k−l+1)|H0)

×

∏t
l=1 pA(app(z

[i]
k−l+1)|app(T

(i)
k−l),H1)∏t

l=1 pA(app(z
[i]
k−l+1)|H0)

P0(H1)
P0(H0)

,

(3)

where,app(·) is a function that returns the appearance feature
of a given input and kin(·) returns the kinematic component
of an input (e.g., the coordinate of the bounding box). The
kinematic term of LR(T (i)

k ) at frame (k − l + 1) under the
true-track hypothesis is assumed to be a Gaussian and is
estimated via Kalman filtering. Constants are set for the
false alarm hypotheses of both the appearance and kinematic
terms (pA(app(z

[i]
k−l+1)|H0) and pK (kin(z

[i]
k−l+1)|H0) are set

to Capp and Ckin, respectively).
We use the log likelihood ratio for track scoring by tak-

ing the logarithm of Eq 3. Additionally, the track initiation
score is defined as ln[P0(H1)

P0(H0)
] and a constant Cβ is set. Track

termination is performed after a track is updated with dummy
detection results for τmiss consecutive frames. To maintain the
size of the feasible track proposals, the track tree is pruned
such that it does not exceed a tree depth of τD. Tree pruning
can be performed after finding the best set of proposals. Once
the best set is identified, we select an ancestor of the best
proposal with a distance τD and prune the subtrees diverging
from that node.

Finally, the likelihood for the appearance term at frame l
under the true-track hypothesis is estimated by OneShotDA.
The true-track likelihood at frame l is written as

pA(app(z
[i]
l )|app(T (i)

l−1),H1)

= p(cls(z[i]l ,Zl)|T
(i)
l−1,Zl), (4)

where cls(z,Z) is a function that retrieves the label of a
detection result z determined by Z . Therefore, the right side

of Eq. 4 estimates the probability that a track T (i)
l−1 is classified

as cls(z[i]l ,Zl).

IV. DATA ASSOCIATION WITH ONE-SHOT LEARNING
For the data association task of MOT, we decided to adopt
the one-shot architecture of MatchingNet [14] because its
contextual embedding provides robust input features, partic-
ularly when two difficult examples are very close to each
other in the feature space [14]. However, simply applying
MatchingNet directly to our domain is not possible because
the data association problem does not match a detection to a
track and the proposed system must identify false alarms.

Let Q and G be a set of query samples and a set of gallery
samples, respectively. Each sample consists of image-label

pairs (i.e., Q = {(x(i)q , y
(i)
q )}|Q|i=1, and G = {(x(j)g , y

(j)
g )}|G|j=1).

|Q| and |G| represent the sizes of sets Q and G, respectively.
The labels y(j)g in the gallery set are |G|-sized vectors, each
of which is one-shot encoded such that the j-th component is
set to 1.

OneShotDA estimates the probability distribution of the
label of the i-th query sample for the labels in the gallery set
(Eq. 5).

p(ŷ(i)q |x
(i)
q ,G) = softmax(

|G|∑
j=1

〈qi, gj〉y(j)g ), (5)

where 〈·, ·〉 is the inner product between two vectors.
qi and gj are the corresponding embedding vectors of x(i)q
and x(j)g , respectively. In Eq. 5, the probability distribution
of the query sample’s label ŷ(i)q is computed by applying
the softmax function over the gallery set’s labels. There-
fore, the class of the query sample is computed from the
gallery set with the maximum probability (i.e., argmaxŷ(i)q ∈G
p(ŷ(i)q |x

(i)
q ,G)). This process can be viewed as an attention

mechanism pointing to a corresponding sample in the gallery
set. It is important to note that the estimated label of the query
sample is not the same as the label in the query set (i.e.,
ŷ(i)q 6= y(i)q ). This is because the label of query sample only
represents its class [14]. In addition, as mentioned previously,
the labels in the query set are used for network training,
meaningwe can train the network twice per query-gallery pair
by swapping the two sets.

In Eq. 5, qi and gj are embedding vectors mapped from
the image space into a latent space. One potential method for
performing mapping for each sample is to train an embedding
network and apply the network to each sample independently
(e.g., qi = f (x(i)q ), gj = f (x(j)g ) for i = 1, ..., |Q|, j =
1, ..., |G|, where f is a CNN). We made f an FEN and
searched the ResNet family [33] to find the optimal FEN
structure. However, embedding each sample independently
means we cannot encode information regarding the entire
set, so the classification function in Eq. 5 is simply nearest
neighbor classification based on an inner product. To resolve
this issue, we train a CEN that embeds the feature vector
further by incorporating all other samples. This can improve
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the accuracy of classification, particularly in cases where
some samples are very close to each other (i.e., hard samples).

Specifically, CEN_Q is the CEN for set Q, which reads
samples in G through the softmax function over the cosine
similarity measures.3 Therefore, the conditional embedding
vectors qi are defined as

qi = fq([f (x(i)q ), ri]), (6)

ri =
|G|∑
j=1

aijgj, (7)

ai = softmax(
|G|∑
j=1

〈f (x(i)q ), gj〉y(j)g ). (8)

f is the FEN (ResNet [33]). The last layer in f is activated
by the tanh function. In Eq. 6, fq is a fully connected
network whose output has the same size as f (x(i)q ). [·, ·] is
a concatenation operator between two vectors. The output
of fq is also activated by the tanh function. In Eq. 7,
aij represents the j-th component of ai. Therefore, the con-
ditional embedding vector qi incorporates all elements in the
set G based on the weighted average gj.
Next, we present the CEN for the set G, which is denoted

as CEN_G. gj is generated by embedding an additional sam-
ple with the samples in set G using bidirectional LSTM
(Bi-LSTM) [6].

gj =
−→
h j +

←−
h j + f (x(j)g ), (9)

−→
h j,
−→c j = LSTM(f (x(j)g ),

−→
h j−1,

−→c j−1), (10)
←−
h j,
←−c j = LSTM(f (x(j)g ),

←−
h j+1,

←−c j+1), (11)

where
−→
h and

←−
h are the outputs of forward and backward

LSTM, respectively. −→c and ←−c are the cells of the corre-
sponding LSTM networks. CEN_G is similar to the network
in [14] as we also add a skip connection between the input
and output.

TABLE 3. Division of training and validation sets in which D, F, and S in
the MOT17 dataset represent the DPM, Faster R-CNN, and SDP,
respectively.

A. TRAINING OneShotDA
To train the network, we generated training samples from
the training sets in the MOTchallenge datasets [8]. Specifi-
cally, we used subsets of the MOT16 and MOT17 datasets
(Table 3). We used public detection methods and classified

3Weuse the similarity measure of an inner product space. Because similar-
ity can be influenced by not only the direction of the inner product, but also
the norm of the feature vector, we activate all feature vectors with a tanh
function.

the samples as true detection results and false alarms. True
detection results are detection results whose intersection over
union (IoU) is greater than the threshold τIoU , where each
ground truth bounding box has at most one true detection
result. This is an assignment problem based on the maximum
total IoU score. We solved this problem using the Hungarian
algorithm [34]. The remaining detection results that were
not chosen by the Hungarian method were classified as false
alarms. Note that because objects in the dataset are frequently
occluded by each other, we filter out small ground truth
bounding boxes using non-maximum suppression with an
IoU threshold τGTIoU prior to identifying true detection results.
Next, a training sample is constructed using two consecu-

tive video frames from the video sequence. Let l be a particu-
lar frame, thenQ andG are the detection sets from l and l+1,
respectively. Additionally, Q and G can be detection results
from l+1 and l, respectively. In this manner, we compute loss
twice using one query-gallery pair by swapping the two sets.
Let LCE be the cross entropy loss, where Q consists of the
detection set at l, and LCE ′ be the loss, whereQ consists of the
detection set at l + 1. These losses measure the classification
error for the query set. If a query sample is either a false
alarm or missing in the gallery set, that sample is not used
to compute loss. Note that the size of the query set |Q| will
be the batch size and the size of the gallery set |G| will be the
number of classes. Therefore, the class size and batch size
are not fixed. This can be achieved based on the attention
mechanism we adopted.

Additionally, identifying false alarms is crucial because
many false alarms are present in detector outputs. To that
end, we attach a fully connected layer (TD_clf) with a size
of one following the FEN. Therefore, the network takes a
feature vector f (·) from the FEN and outputs a prediction
pTD that indicates whether or not the input is a true detection
result. We then define LTD as the binary cross entropy loss,
which measures the classification error between the label of a
true detection result and the predicted probability of the true
detection result (i.e., pTD).
Finally, the final loss L is defined as

L = LCE + LCE ′ + λTDLTD, (12)

where λTD is the weight for LTD. Therefore, training
OneShotDA, including the FEN, CEN, and TD_clf, is accom-
plished using a single training sample by minimizing L in one
step.

B. CORE COMPONENTS OF OneShotDA
As discussed above, we use a one-shot learning framework
for MOT because it has the ability to unravel the associa-
tion problem between an unseen object and existing tracks.
In this work, our one-shot framework was derived from
MatchingNet [14] with many modifications. In this section,
we summarize the role of each component in OneShotDA,
namely the FEN, CEN (CEN_Q and CEN_G), and TD_clf.
• FEN: This network generates a feature vector for a given
input (i.e., x(i)q and x(j)g ), where x(i)q ∈ Q and x(j)g ∈ G.
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We use the ResNet family for this network and investi-
gate the performance of each residual network in terms
of tracking accuracy. (section V-C)

• CEN: This network further embeds a feature vector that
is outputted by the FEN to generatemore robust features.
The features outputted by this network are sufficient for
distinguishing samples from each other, even when they
are close to each other. (section V-C)
– CEN_Q: CEN for the set Q. This network helps a

sample in Q read entire elements of G and outputs
a conditional embedding vector for a given input.

– CEN_G: CEN for the set G. A conditional embed-
ding vector for each element inG is generated using
bidirectional LSTM with the set G itself.

• TD_clf: This network takes a feature vector f (·) and
outputs a prediction pTD, indicating whether or not the
input is a true detection result.

V. EXPERIMENTS AND ANALYSIS
In this section, we analyze the tracking performance of
the OneShotDA tracker on the MOTChallenge datasets
(MOT16 and MOT17). Additionally, ablation analysis is per-
formed to identify the best hyperparameter settings.

A. IMPLEMENTATION DETAILS
In all the experiments, the values of the parameters τD, τIOU ,
and τGTIOU were 30, 0.334, and 0.5, respectively. τmiss was
set to 2.3fps, where fps is the frames per second for
each sequence. Additionally, we have exhaustively searched
Capp,Ckin, and Cβ to find good parameters, and decided
to set to 0.1, 0.1, and 2.0, respectively. Input images were
resized to 288 × 96 pixels and normalized to the range
of 0 to 1. We also augmented the training set with uniform
random rotation in the angle range of [−8.5, 8.5], random
horizontal flipping, and random brightness changes. As men-
tioned previously, the ResNet family was used for the FEN.
In the ablation analysis section, we investigate the perfor-
mances of the ResNet family, ResNet34, ResNet50, and
ResNet101, as well as their output sizes (feature vectors).
Note that the size of a feature vector determines the size of the
Bi-LSTM in CEN_Q because the output cell of Bi-LSTM and
the corresponding feature vector are added inside CEN_Q.
The ResNets were initialized with weights pre-trained on the
ImageNet datasets, except for the final fully connected layers.
The final layer was replacedwith our feature embedding layer
for various output sizes (see the ablation analysis section).
The stochastic gradient descent optimizer with a momentum
0.9 was used for training all the networks, and the initial
learning rate was set to 10−4. The learning rate decreased
after every 3000 iterations based on exponential decay with
a decay rate of 0.95 until the minimum learning rate of 10−7

was achieved. λTD was set to 1.

B. MOTCHALLENGE DATASETS AND METRICS
In this study, we used the MOTChallenge datasets [8] to train
our OneShotDA network and test the tracking performance

of the OneShotDA tracker. The training and validation
dataset separation is detailed in Table 3. The test set of
MOT17 includes a total of seven sequences, each of which
comes with three sets of public detection results. These
three public sets come from different detectors, namely the
deformable part model (DPM) [5], faster-RCNN [9], and
scale-dependent pooling (SDP) [10]. The MOT16 test set
consists of the same sequences as those in MOT17, but it
only contains the DPM detection set. It must be noted that
the ground truth labels are not shared for the same sequences
across MOT16 and MOT17.
The metrics used for measuring tracker performance are

the same as those used in [8]. MOT accuracy (MOTA)
measures performance by aggregating three error sources,
namely false positives, missed targets, and identity switches.
IDF1 [35] computes the ratio of correctly identified detection
results over the average number of ground truth and com-
puted detection results. MOTA and IDF1 are considered the
main criteria for tracker performance. We also report mostly
tracked (MT) objects, mostly lost (ML) objects, the total
number of false positives (FP), false negatives (FN), and
identity switches (IDsw), and the total number of times a
trajectory is fragmented (Frag).

FIGURE 2. Ablation study on different FEN architectures. The x-axis is the
feature size and the y-axis is the MOTA score.

C. ABLATION ANALYSIS
We conducted ablation studies with different hyperparameter
settings to achieve optimal performance on the validation
set and its subsets. In Figure 2, we consider the ResNet
family and corresponding output size for the subsets of our
validation set (i.e., MOT17-05-{F,S} and MOT17-09-{F,S}).
It is important to note that not only does the architecture of
the FEN affect the tracking performance, but the size of the
feature vectors is also a crucial aspect for performance. In this
study, all networks were trained for 5 epochs. The CENs
were consistently initialized for each setting and retrained
from the beginning. The sizes of the feature vectors were
sampled from a logarithmic scale ranging from 64 to 1024
(i.e., {64, 128, 256, 512, 1024}). The analysis results for var-
ious FEN settings are presented in Figure 2. According to the

38066 VOLUME 8, 2020



K. Yoon et al.: OneShotDA: Online Multi-Object Tracker With One-Shot-Learning-Based Data Association

FIGURE 3. Analysis of pTD for the validation set.

results in Figure 2, we selected the ResNet50with 512 outputs
for our FEN. Ourmodel achieves themaximumMOTA (59.3)
using ResNet50-512. Furthermore, it is important to note
that the model seems to suffer from overfitting when the
parameter size is greater than that in ResNet50 (25.6M) or the
feature size is greater than 512. To determine if this assump-
tion was correct, we trained a ResNet101-1024 network with
additional epochs because the low performance of such a
large model could potentially result from a low convergence
rate based on its large parameter size. However, we found that
theMOTA of the large model continued to decrease or remain
constant while its training loss consistently decreased during
continued training.

FIGURE 4. w/ CEN vs w/o CEN, evaluated on the validation set. The tested
model is the ResNet50 with 512 output neurons.

Next, we investigated the contribution of the CEN by
measuring its performance in terms of MOTA and IDF1 on
the validation set. Figure 4(a) presents comparative results
in terms of MOTA, and Figure4(b) presents comparative
results in terms of IDF1. It can be inferred from Fig-
ure 4(a) that our CEN efficiently improves the perfor-
mance on the MOT16 dataset. OneShotDA with the CEN
improves the tracking performance by 2.8% (MOTA) and
1.1% (IDF1). This is because OneShotDA, without the CEN,

struggles to associate objects identified by the DPM detector
whose outputs are much noisier in comparison with those
of Faster R-CNN and SDP. Additionally, performance is
consistently improved by the CEN for the MOT17 dataset
(Figure 4(b)).
The performance in terms of predicting true detection

results (pTD) was also investigated. This analysis helped us
in selecting a good threshold value for identifying true detec-
tion results in the detection outputs. Figure 3 presents the
average-precision (AP) score for each threshold value. The
values are evenly distributed at intervals of 0.15. We achieve
an AP of 0.981 at a threshold value 0.45. Therefore,
we chose 0.45 as the threshold value for pTD when testing
our OneShotDA tracker on the test set.

D. MOT PERFORMANCE ANALYSIS
In this experiment, we used a ResNet50-512 network as the
FEN and trained the network with additional epochs. Our
network was trained for a total of 8 epochs.

We first present the performance analysis of our network
as a binary classifier. Each prediction is considered the output
of a classification representing how likely it is for two objects
to be assigned the same identity. As shown in Figure 5,
the average precision of the precision-recall curve is 0.8957.
The classification results for the validation set indicate that
OneShotDA is trained properly andmakes precise association
predictions.

FIGURE 5. Precision-recall curve.

Finally, we present performance comparisons between the
OneShotDA tracker and existing state-of-the-art methods
such as HCC [17], LMP [19], GCRA [36], KCF16 [37],
MOTDT [30], JBNOT [20], eHAF17 [39], TLMHT [22],
EAGS16 [38], MHT_DAM [13], MHT_bLSTM [23], and
EDMT17 [40]. These methods were evaluated on the
MOTChallenge server.4 To provide a reasonable comparison,
only officially published and peer-reviewed entries in the
MOT16 andMOT17 benchmarks were considered. Addition-
ally, we collected MHT-based trackers, categorized as online

4https://motchallenge.net/
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FIGURE 6. Tracking results on the MOT17-09-FRCNN dataset. In the top row, (a)−(c), present the results for JBNOT [20] and in the bottom row,
(d)−(f) present our results for the same sequence. The man wearing a black jacket in the 100th frame is consistently tracked by our tracker. However,
JBNOT fails to track the man because he is occluded by other objects.

FIGURE 7. Tracking results for the MOT17-11-SDP dataset. In the top row, (a)−(c) present the results for JBNOT [20]. In the bottom row, (d)−(f) present
our results for the same sequence. After the occlusion occurs, many ID-switches take place in the JBMOT tracker, but our tracker consistently tracks
objects, even during occlusions (e.g., ID-64, ID-65, ID-69, and ID-72).

trackers in this study, for the purpose of simple comparisons.
Trackers were grouped according to their tracking mode
(offline and online). In Tables 4 and 5, our method exhibits
performance comparable to those of existing state-of-the-art
methods. It is noteworthy that OneShotDA ranks first among
online trackers on the MOT17 benchmark. Our tracker out-
performs all other online trackers in the MOT17 group by
0.5% if we compare it with MOTDT. However, our methods
did not outperform the JBNOT, the state-of-the-art offline
method in MOT17.

Our tracker seems to prefer DNN-based detectors to tra-
ditional detectors based on the fact that it ranks first among
online trackers on the MOT17 dataset but ranks lower on the
MOT16 dataset. We determined that our simple implemen-
tation of the function app(·) for tracks could degrade model
performance on the MOT16 dataset. The function app(T (i)

l )
simply retrieves an image patch of T (i)

l , which is an image of
the latest update with a detection result. Because the detec-
tor outputs in MOT16 are comparatively noisy, we believe
this function is insufficient for returning an image feature
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FIGURE 8. Qualitative results. (a)-(c): MOT16-05, (d)-(f): MOT16-06, (g)-(i): MOT17-01-FRCNN, (j)-(l): MOT17-03-SDP, (m)-(o): MOT17-07-SDP.
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TABLE 4. Results on the MOT16 dataset. We grouped methods according to their tracking mode (offline and online). The red numbers for each metric
represent the best performance (offline/online) and the blue numbers represent the second best performance (online). The methods marked with * are
MHT-based trackers. (Accessed on August 1, 2019.)

TABLE 5. Results on the MOT17 dataset. We grouped methods according to their tracking mode (offline and online). The red numbers for each metric
represent the best performance (offline/online) and the blue numbers represent the second best performance (online). The methods marked with * are
MHT-based trackers. (Accessed on August 2, 2019.)

typifying a track. Because the function app(·) can be of any
type, incremental updates of appearance features can resolve
this issue.

We further examined the performance of our method
by incorporating qualitative analysis. In Figures 6 and 7,
the robustness of our tracker against ID-switches is ana-
lyzed via frame-by-frame investigation. We compare the
results to JBNOT [20], which achieved the top rank on
the MOT17 dataset in terms of MOTA but with inferior
ID-switch performance compared to our tracker (Table 5).
In Figure 6, the top row presents partial results for JBNOT on
the MOT17-09-FRCNN dataset, and the bottom row presents
the results for our method on the same sequence. This fig-
ure suggests that our tracker consistently tracks the man
with the black jacket (ID-6 in our results). However, this
object is lost by JBNOT, which initiates a new track with
ID-13 after the object is occluded by other objects. Figure 7
presents the results on the MOT17-11-SDP dataset, where
the top row represents JBNOT and the bottom row represents
our model. These results demonstrate the robustness of our
tracker against ID-switches. Our tracker consistently tracks
objects, even during heavy occlusions (e.g., ID-64, ID-65,
ID-69, and ID-72 in our results), while many switches occur
for the JBNOT tracker. Finally, we present the qualitative
results in Figure 8.

VI. CONCLUSION AND FUTURE WORK
In this study, a novel data association mechanism called
OneShotDA was presented and integrated with MHT to

perform online MOT. The proposed network classifies exist-
ing tracks by pointing to corresponding detection results
using an attention mechanism. OneShotDA can solve the data
association problem of MOT and identify false positives in
detector outputs. To train the proposed network, we employed
a novel training strategy tailored for one-shot learning that
is suitable for data association tasks. We also demonstrated
how training samples can be generated from MOTChallenge
datasets. In a series of experiments, our OneShotDA tracker
delivered performance comparable to the performances of
existing state-of-the-art methods. Additionally, our tracker
ranked first among online trackers on the MOT17 dataset.
For future work, we plan to devise an incremental learn-
ing method to learn the appearance function of a track
(i.e., app(T (i)

l ) in this work). In online tracking mode, detec-
tion results come in a sequential order, meaning incremental
learning can help our tracker in updating learned appearance
features based on newly associated detection results.
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