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ABSTRACT Existing image generation models have achieved the synthesis of reasonable individuals and
complex but low-resolution images. Directly from complicated text to high-resolution image generation still
remains a challenge. To this end, we propose the instance mask embedding and attribute-adaptive generative
adversarial network (IMEAA-GAN). Firstly, we use the box regression network to compute a global layout
containing the class labels and locations for each instance. Then the global generator encodes the layout,
combines the whole text embedding and noise to preliminarily generate a low-resolution image; the instance
embedding mechanism is used firstly to guide local refinement generators obtain fine-grained local features
and generate a more realistic image. Finally, in order to synthesize the exact visual attributes, we introduce
the multi-scale attribute-adaptive discriminator, which provides local refinement generators with the specific
training signals to explicitly generate instance-level features. Extensive experiments based on theMS-COCO
dataset and the Caltech-UCSD Birds-200-2011 dataset show that our model can obtain globally consistent
attributes and generate complex images with local texture details.

INDEX TERMS Generative adversarial network, global generator, local refinement generator, instancemask
embedding, attribute-adaptive discriminator.

I. INTRODUCTION
Conditional deep generative models have realized quite
exciting progress in text-to-image generation. The widely
used Generative Adversarial Networks (GANs) [1], which
jointly learn generators and discriminators, have generated
promising individual images on simple datasets. However,
once there are heterogeneous objects and scenes in the
text, the quality of the generated image becomes drastically
worse [2]. This is mainly because most existing approaches
only focus on global sentence embedding without consider-
ing that each word has a different level of information related
to the image. Besides, the ambiguity of text and the unknown
shapes of instances make the generation process more dif-
ficult to constrain [3]. As a result, those images generated
by current models usually have lower resolution and blurred
texture. Moreover, instance attributes represent important
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image feature information [4], but existing methods use the
sentence-conditional discriminator which only provides the
coarse-grained training feedback, making it hard for gener-
ators to disentangle different regions and learn fine-grained
attributes.

To address these three limitations, our proposed
IMEAA-GAN harnesses a pre-trained box regression net-
work [5] to obtain a global layout which contains class labels
and bounding boxes, then generates complex images from
this layout through a coarse-to-fine process, where the global
generator initially generates a low-resolution image and two
local refinement generators hierarchically synthesize high-
resolution images by combining the instance-wise attention
and the instance mask embedding. Additionally, our model
adopts the word-level and attribute-adaptive discriminators
to provide fine-grained feedback, thus, the local refinement
generators can be instructed to synthesize specific visual
attributes.

The contributions of this paper can be listed as follows:
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1) To overcome the complexity and ambiguity of a whole
sentence, we explicitly utilize the word-level embedding as
input and use box regression network to obtain the global
layout that contains spatial positions, object sizes, and class
labels.

2) In order to make local refinement generators learn
instance-level and fine-grained features, we propose the
instancemask embeddingmechanism to add pixel-level mask
constrains. Therefore, our generators can get more details and
semantic information for high-resolution image generation.

3) Two word-level and attribute-adaptive discriminators
instead of commonly used sentence-conditional discrimina-
tor are employed to classify each attribute independently and
generate exact signals for generators to synthesize certain
visual attributes.

II. RELATED WORK
As one of the most commonly used image generation models,
GANs include generators and discriminators. The generator
is mainly used to learn pixel distributions and generate real-
istic images, while the discriminator should distinguish the
received images as real or fake. They continually update in
order to achieve dynamic equilibrium [6].

Many methods based on GANs have been proposed to
improve image quality, and there are many input types.
Zhu et al. [7] showed using sketches to modify images.
Based on this, Lu et al. [8] adopted contextual GAN
to synthesize images from sketch constraints. Similarly,
Huang et al. [9] proposed an image-to-image translation
model. In order to synthesize images from category labels,
Brocket et al. [10] introduced a class-conditional model.
Sharma et al. [11] improved the text-to-image generation by
using dialogue. However, due to the complexity of the input
text, Johnson et al. [12] proposed the sg2immethod to convert
the input text into scene graphs for image generation.

Among these various inputs, the text is the easiest and the
most convenient type to perform manipulation. An increas-
ing number of researchers have shown interest in text-to-
image generation, and there are mainly two manifolds in the
research community.

A. SINGLE-STAGE TEXT-TO-IMAGE GENERATION
Many approaches directly generate images from text without
intermediate representations. For example, Reed et al. [13]
have achieved simple image synthesis directly from cap-
tions without reasoning any semantic layouts. By contrast,
Dong et al. [14] input both the image and text into con-
ditional GAN (CGAN) to generate manipulated contents.
Based on CGAN, Li et al. [15] proposed the Triple-GAN,
which contains an extra classifier to label the generated image
with its matching text for data augmentation, the labeled
image-text pairs then can be used as the training data. Sim-
ilarly, Dash et al. [16] proposed the TAC-GAN to generate
diverse images by distinguishing real images from gener-
ated images and classifying real images into true classes.
Nguyen et al. [17] introduced the PPGN, which is similar to

TAC-GAN and contains a conditional network, to generate
images from captions. Furthermore, based on conditional
GANs, Cha et al. [18] improved the adversarial training pro-
cess by forming positive-negative label pairs and employing
an auxiliary classifier to predict the semantic consistency of
a given image-caption pair.

All of these models produce diverse images directly from
descriptions and their main focus isn’t in synthesizing high-
resolution images, so they only use single-stage generation.

B. MULTI-STAGE TEXT-TO-IMAGE GENERATION
It’s difficult to directly generate high-quality images from
complex text, Denton et al. [19] adopted the LapGAN to
generate images by constructing a Laplacian pyramid frame-
work. However, this model still has limitations, the most
obvious one is that its deep networks increase the training
difficulty, resulting in model collapse. To solve this problem,
Zhang et al. [20] employed StackGAN which contains two
generators to synthesize imageswithin two stages. Afterward,
they improved the previous architecture by proposing the
StackGAN++ [21] which is designed as a tree structure.
But these two models only encode text into a single sen-
tence vector for image generation. Similar to scene graphs,
Hong et al. [22] introduced the text2img method, they uti-
lized the inferred layouts to generate images, Li et al. [23]
also obtained graphic layouts with wireframe discriminators.
Given a coarse layout, Zhao et al. [24] generated images by
disentangling each instance into a certain label part and uncer-
tain appearance part. Hinz et al. [25] evaluated the detect-
ing frequency of objects and synthesized multiple instances
at various spatial locations based on an object pathway.
Likewise, Li et al. [26] improved the grid-based attention
mechanism by coupling attention with the layout. In order to
minimize the differences between real and fake images, Yuan
and Peng [27] showed symmetrical distillation networks.
Then Sun and Wu [28] put forward a new feature normal-
ization approach to synthesize visually different images from
given layouts. Xu et al. [29] introduced the AttnGAN which
aggregates the attention mechanism [30] and the DAMSM
loss into text-to-image generation.

However, AttnGAN only leverages a global sentence vec-
tor and takes all instances equally, thus it may miss the
detailed instance-level information. Our local refinement
generators are able to uncover such difference by applying
the instance mask embedding. Moreover, the proposed word-
level attribute-adaptive discriminators have the capacity to
disentangle each attribute independently in order to instruct
two local refinement generators to synthesize certain visual
attributes.

III. BACKGROUND
A. BOX REGRESSION NETWORK
Box regression network can effectively reason scene lay-
outs from descriptions or scene graphs [31]. This network
takes a sentence embedding or final object embedding as
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FIGURE 1. Overall framework of the mask regression network.

input and outputs the predicted bounding boxes B1:T =
{B1,B2, · · · ,BT }. The t-th bounding box is parameterized
as Bt = (bt , lt ) where bt = (bxt , b

y
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w
t , b

h
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the location (x, y) and size (w × h) of the related object and
lt ∈ {0, 1}L+1 represents the one-hot class label of the t-th
box. We define L as the number of real object categories
and the (L + 1)-th label as an end-of-text indicator. The joint
probability is calculated as:
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t |lt ) is the box coordinate probability

and p(lt ) represents the label distribution. It is hard to directly
model the joint probability since it contains various parame-
ters. Therefore, the coordinate probability of the t-th box is
decomposed as:
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where k indicates the number of mixture components,
the label of the t-th object lt and π

xy
t,k , π

wh
t,k ∈ R, µxyt,k , µ

wh
t,k ∈

R4,
∑xy

t,k ,
∑wh

t,k ∈ R4×4 are parameters of the Gaussian
Mixture Model (GMM) [32], [33]. These parameters are
calculated by the outputs of LSTM at each step:

[ht , ct ] = LSTM (Bt−1; [ht−1, ct−1]) (5)

lt = W lht + bl (6)

where ht is the hidden state, ct is the t-th cell state. Similarly,
π
xy
t,k , π

wh
t,k , µ

xy
t,k , µ

wh
t,k and

∑xy
t,k ,

∑wh
t,k are computes as:

θ
xy
t = W xy[ht , lt ]+ bxy (7)

θwht = Wwh[ht , lt , bx , by]+ bwh (8)

where θ
xy
t = [πxyt,1:k , µ

xy
t,1:k ,

∑xy
t,1:k ] and θwht =

[πwht,1:k , µ
wh
t,1:k ,

∑wh
t,1:k ] are respectively concatenated to

a single vector θxyt and θwht , and [·, ·] represents the
concatenation.

Inspired by the recent progress of the box regression net-
work, we explicitly use it to predict locations for various
instances. Different from sg2im [12] and text2img [22],
we use word embedding instead of final vectors computed
by graph convolutional network [34] or a sentence vector as
input to obtain bounding boxes. Each box in our model not
only predicts the location but also indicates the size and class
label of each instance, which greatly differs from sg2im [12],
the global layout is thus synthesized for the further multi-
stage generation.

B. MASK REGRESSION NETWORK
Mask regression network [35] has been used for mask seg-
mentation in many computer vision tasks. And
Hong et al. [22] have constructed shape masks from captions
for image generation. As shown in Fig. 1, the mask regression
network encodes the bounding box tensor Bt into a binary
one Bt ∈ {0, 1}h×w×l where h × w represents the instance
size and l is the category label. After a down-sampling block,
the encoded features are fed into Bi-LSTM and concatenated
with noise z. If and only if the bounding box contains the
related class label, the binary tensor Bt is set to 1, other parts
outside the box are all set to 0. After applying this mask
operation, these masked features are then fed into a residual
unit which allows the network to possess a deeper encoding
ability by applying the skip connection [36]. Afterward, the
predicted segmentation mask pt ∈ Rh×w with all elements in
the range (0,1) is obtained through several up-sampling layers
for image generation.

Contrary to previous methods that use segmentation
mask annotations for both low-resolution and high-resolution
image synthesis, our approach employs the predicted pixel-
level instance masks only as constraints to two identical
local refinement generators so that its up-sampling path can
preserve the capacity to refine local texture details. Hence,
the synthesized instances are coherent with inferred masks
while discarding ambiguous features and containing pixel-
level details.

IV. IMEAA-GAN
The proposed IMEAA-GAN performs text-to-image synthe-
sis in three steps: the box regression network infers global
layouts to obtain categories, sizes, and locations of objects.
Then the global generator generates relatively low-resolution
global images from these layouts. Two local refinement gen-
erators finally synthesize high-resolution and photographic
images.
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FIGURE 2. Global layout inferred by box regression network.

A. GLOBAL LAYOUT GENERATION
We employ the box regression network to initially infer a
global layout L from word-level embedding vectors. The
global layout, as an intermediate representation, contains the
corresponding bounding boxes for the related instances. The
generation process of a global layout is illustrated in Fig. 2.

The box regression network is designed as an encoder-
decoder architecture. For each instance, the network infers
the box Bt = (bt , lt ), and bt = (bxt , b

y
t , b

w
t , b

h
t ) ∈ R4.

Firstly, our IMEAA-GAN takes the text as input, with a pre-
trained Bi-LSTM which is used as a text encoder, the whole
text is encoded into word embedding vectors and also a
global text embedding ϕ. Every word is related to two hidden
states, we concatenate the two states to indicate the semantic
information of a word. Thus a feature matrix of all the words
is obtained, each column of this matrix represents a word fea-
ture vector. At the same time, we concatenate the last hidden
states of two directions to get the global text embedding ϕ.
Then we take LSTM [37] as the decoder to approximate the
class label lt and the coordinates bt , these GMM parameters
are mentioned in function (1). To achieve this, we decompose
the conditional joint probability as:

p(B1:T |ϕ) =
T∏
t=1

p(Bt |B1:t−1, ϕ) (9)

where T is the number of instances. We firstly predict the
category lt for the t-th object, then compute the bt based on lt :

p(Bt |ϕ) = p(bt , lt |ϕ) = p(lt |ϕ) p (bt |lt , ϕ) (10)

here, the class label ll is calculated by softmax and the coor-
dinates bt are modeled by GMM:

p(lt |B1:t−1, ϕ) = soft max(et ) (11)

p(bt |lt ,B1:t−1, ϕ) =
K∏
k=1

πt,kN (bt ;µt,k ,
∑

t,k
) (12)

where et is the softmax logit calculated by the t-th step outputs
of each LSTM unit. Similarly, these parameters πt,k ∈ R,
µt,k ∈ R4, and

∑
t,k ∈ R4×4 that have been mentioned in

function (3) and (4) are also computed in this way, k indicates

the number of mixture elements. Finally, a global layout L
that includes box coordinates and class labels for all entities
is generated.

B. IMAGE GENERATION
Our IMEAA-GAN takes advantage of the multi-stage text-
to-image generation strategy [38]. Despite there are many
methods, such as Obj-GAN [26], and our IMEAA-GAN
both use the multi-stage generation, other methods are not
robust to complex and ambiguous descriptions and the pixel-
level features are not sufficiently used for image synthesis.
Obj-GAN has achieved image-level semantical consistency.
However, during the generation process, Obj-GAN imple-
ments segmentationmask annotations for both low-resolution
and high-resolution image synthesis, it is labor-intensive to
collect these annotations. In addition, applying them in low-
resolution image generation cannot efficiently improve the
image quality, since these images are not finely synthesized
and the image features are more tend to be random vec-
tors. By contrast, our approach calculates the pixel-level
instance mask embedding instead of collecting mask annota-
tions. More importantly, we adopt the instance mask embed-
ding only in two local refinement generators. In this way,
our IMEAA-GAN can obtain the capability of capturing
visual features and the flexibility of generating fine-grained
instances.

Given a coarse layout L0, the global generator Gimg0 ini-
tially generates an image I0 with 64×64 resolution. Then the
local refinement generator Gimg1 employs the instance-wise
attention and instance mask embedding to refine different
regions of the first generated image in order to synthesize
a high-quality image. Here, two local refinement generators
that have the same architecture are utilized for generating
higher resolution images. For the sake of brevity, we will not
show the generation process of the 256× 256 image because
it is the same as the 128× 128 image.

1) GLOBAL GENERATOR
The global layout provides the semantic structure of the
corresponding text. Fig. 3 shows that given a pre-generated
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FIGURE 3. Architecture of the global generator.

FIGURE 4. Architecture of the local refinement generator.

layout L0, the global generator Gimg0 is designed to produce
an image that conforms to both the layout and text.

We first compute the global layout embedding vector µ0 ∈

Rh×w×d by down-sampling the global layout L0 and add
noise z by spatial replication and depth concatenation. The
text embedding ϕ calculated by the pre-trained LSTM in the
box regression network, the layout encoding µ0, and noise
z are concatenated and fed into a residual unit implemented
by several residual layers. Our model jointly aggregates the
bounding box and text information into a latent feature rep-
resentation, and we further apply one up-sampling layer to
generate the global hidden feature vector y0 from the latent
representations. After the final 3 × 3 convolution layers, the
global image with 64 × 64 resolution is initially generated.
Specifically:

y0 = F0(µ0, ϕ, z) (13)

I0 = Gimg0 (y0) (14)

where F0 is modeled as neural networks, y0 is the global
hidden layer feature vector. Conditioned on y0 , the global
generator Gimg0 then generates the low-resolution image I0.

2) LOCAL REFINEMENT GENERATOR
In the first stage of generation, local details are not explicitly
utilized for instance-level image generation, most of the syn-
thesized images lack fine-grained features, resulting in overly

smooth textures. To generate high-resolution images, we fur-
ther employ the local refinement generator, and the overall
architecture is illustrated in Fig. 4. During the refinement
process, we only repeat two times due to the memory limita-
tion of GPU. With two identical local refinement generators
Gimg1 and Gimg2 , we first generate the 128×128 images then
synthesize 256× 256 images.

a: INSTANCE-WISE ATTENTION
Our local refinement generator is designed as the encoder-
decoder structure. It first encodes the global layout L1 by
several down-sampling layers to obtain the layout encoding
vector µ1 ∈ Rh×w×d (d indicts the layout feature dimen-
sion). Considering that traditional grid attentionhas been suc-
cessfully used for image captioning [39], image-to-image
translation [40], and visual questioning and answer-ing [41];
the attention-based generative adversarial network AttnGAN
uses attention mechanism for image generation; our two local
refinement generators need to encode various context infor-
mation of L1 along the channel dimension. Hence, as shown
in the bottom of Fig. 5, we employ the instance-wise attention
to select the context relevant features.

Specifically, with the sub-region vectors Vregion of the pre-
generated image I0, our local refinement generator retrieves
the relevant instance vectors from the layout L1. Afterward,
it assigns instance-wise attention weights to each instance
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FIGURE 5. Overall framework of the proposed instance mask embedding mechanism.

vector V ′t and then calculates the weighted sum of the input
information. The instance-wise context vector of the t-th
object is calculated as:

V t
context =

T∑
t=1

wtV ′t (15)

where t ∈ (1, 2, · · · ,T ) denotes the number of objects,
V ′t and wt represent the embedding vector and the attention
weight of the t-th instance, respectively.

b: INSTANCE MASK EMBEDDING MECHANISM
Different parts of bounding boxes may overlap during the
refinement process, multiple pixels may cover the same pixel,
and the output shapes do not always align with the ground
truth. These problems can be solved as a space sampling
issue where the proposed instance mask embedding can pose
spatial and morphological constraints on instance feature
projection.

In general, many methods use mask annotations, which are
not flexible to obtain, to separately add the shape of each
instance. As a result, the generated images as a whole may
present poor scene layouts though each instance is correctly
rendered. Differently, we employ the predicted pixel-level
instance mask embedding for image synthesis, in this way we
can avoid consuming too much model capacity and unstable
training.

As shown in the top of Fig. 5, given a global layout L1,
we use the mask regression network to obtain the aggregated
mask Pglobal ∈ Rh×w. Our down-sampling block is made up
of a 3× 3 convolution (stride-2) followed by batch normali-
zation and ReLU activation, the residual unit is implemented
with three 3 × 3 convolution layers and a skip connection,
and the up-sampling block consists of a 4× 4 deconvolution
(stride-2) followed by the batch normalization and ReLU
activation. Then the aggregated mask Pglobal is cropped to
get the t-th instance mask embedding Pt To clearly represent
the overlapping parts andmake the generated features comply
with the instance mask embedding, the most relevant context
vector should be selected by the local refinement generator.

Thus, for the t-th instance, we copy the instance-wise context
vector V t

context to the instance mask embedding Pt , the pixel-
level feature vector V which contains latent pixel details is
calculated by:

V = maxt:1≤i≤T Pt ⊗ V t
context (16)

where ⊗ is the vector outer-product, t is the number of
instances in the image.When there are several pixels covering
a single pixel, we perform max-pooling to select the corre-
sponding pixel that associated with the most related instance-
wise context vector V t

context , then employ pixel representation
at this position.

Meanwhile, in order to integrate the global information
fromGimg0 toGimg1 , we inject the global hidden layer feature
vector y0 into the refinement stage (see Fig. 4). y0, µ1,
and V as input are aggregated by concatenation along the
channel dimension and subsequently fed into a residual unit.
We further apply one up-sampling layer as the decoder to
calculate the local hidden feature vector y1. As the input of
the final 3×3 convolution layers, the hidden layer vector y1 is
subsequently mapped to an image with resolution 128×128.
Specifically:

y1 = F1(y0 + µ1,V ,Vcontext ) (17)

I1 = Gimg1 (y1) (18)

where F1 is modeled as neural networks, y0 is the global
hidden feature vector, and µ1 represents the high-resolution
layout encoding. The pixel-level feature vector V and the
instance-wise context vectorVcontext are calculated and aggre-
gated into the concatenation of µ1 and y0 to get the local
hidden feature vector y1. Then the local refinement gener-
ator outputs a high-resolution image I1 conditioned on the
hidden feature vector. Additionally, we also apply another
local refinement generatorGimg2 and finally have synthesized
images with the resolution 256× 256.

3) ATTRIBUTE-ADAPTIVE DISCRIMINATOR
The discriminator should have a large receptive field to differ-
entiate synthesized and ground truth [42], this requires either
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FIGURE 6. Overview of the image discriminator (a) and the proposed attribute-adaptive discriminator (b).

bigger convolution kernels or a considerably deeper network,
resulting in an increasedmodel capacity and repeated pattern-
ing images. To this end, we employmulti-scale discriminators
Dimg0 , Dimg1 , and Dimg2 to separately train different resolu-
tion images. The sentence-level discriminator is adopted for
Dimg0 , the identical Dimg1 and Dimg2 are designed as word-
level attribute-adaptive discriminators.

Generative models tend to synthesize the ‘‘average’’
pattern instead of the related attribute features, this is
mainly because the global sentence-wise discriminator can-
not be attached to a specific type of visual attribute and
only provides the coarse training feedback. Therefore, our
attribute-adaptive discriminators Dimg1 and Dimg2 are trained
to recognize each attribute and discriminate whether it exists
in the synthesized image. Each attribute-adaptive discrimina-
tor is made up of word-level discriminators to disentangle dif-
ferent attributes with fine-grained training signals. the overall
structure of the image discriminator and the proposed word-
level attribute-adaptive discriminator is shown in Fig. 6.

The attribute-adaptive discriminator consists of a set
of word-level discriminators {D1,D2,, · · · ,DN }. Given an
image, the image encoder outputs image features, see Fig. 6
(b), we implement the global average pooling to all feature
layers to compute the one-dimensional image feature vector
e. Meanwhile, we use the text encoder to get word vectors
{w1,w2, · · · ,wT }, then respectively feed them into word-
level discriminators. Take the t-th word vector wt as an exam-
ple, the one-dimensional sigmoid word-level discriminator
Fwt is used to decide whether the synthesized image contains
a visual attribute that related to wt . Specifically, the word-
level discriminator Fwt is represented as:

Fwt (en) = σ (W (wt ) · en + b(wt )) (19)

where σ is the sigmoid function, en represents the one-
dimensional image vector of the n-th image feature layer,
W (wt ) denotes the weight matrix and b(wt ) is the bias.

We also reduce the influence of less significant words
in the discrimination process. For this, we apply the word-
level instance-wise attention to indicate the correlation degree
between the word and the visual attribute. The attention
mechanism mainly has two aspects: calculating attention dis-
tributions; computing the average of the weighted sum based
on attention distributions. Note that the discriminator should
have a multi-scale receptive field to detect multi-scale image
features, the attention distribution αt,n is calculated as:

αt,n =
exp(St,n)
T∑
t=1

exp(St,n)

, St,n = (v)Twt (20)

where αt,n is the attention weight assigned to the t-th word of
n-th image feature layer. St,n is the attention scoring function
calculated by the dot product model. v denotes the average of
word vector wt .
With the attention distribution, the final score of the word-

level discriminator is multiplicatively aggregated as:

D(I , x) =
T∏
t=1

[
N∑
n=1

γtnFwt (en)]

αt,n

(21)

where I represents the generated image, x denotes the text,
T is the total number of input words, αt,n represents the
attention distribution. γtn is the weight of softmax function,
and this parameter is used to determine the importance of
each word for the layer n.
Hence, compared with the sentence-level discriminator

that operates at coarse-level and only determines whether the

VOLUME 8, 2020 37703



J. Ni et al.: Instance Mask Embedding and Attribute-Adaptive Generative Adversarial Network for Text-to-Image Synthesis

synthesized image roughly matches the text, our attribute-
adaptive discriminators can provide feedbacks at different
stages and identify the existence of related visual attributes.

C. OBJECTIVE FUNCTION
Our final objective function consists of a GAN adversarial
loss [1] and aDAMSM loss [29]. TheGANcross-entropy loss
function LGAN is determined by the adversarial training of
image generators and attribute-adaptive discriminators. Both
generators and discriminators all consist of an uncon-ditional
loss and a conditional loss. The generator objective is defined
as:

LGAN(G)

=

∑
i=0,1,2

LGimgi = −
1
2
[EI∼PGimgi

logDimgi (I )

+EI∼PGimgi
logDimgi (I , x)] (22)

where the first item represents the unconditional loss, the sec-
ond item is the conditional loss, I and x denote the synthe-
sized image and the related text, respectively.

The adversarial loss for each discriminator also consists of
an unconditional and a conditional item:

LGAN(D)

=

∑
i=0,1,2

LDimgi = −
1
2
[EI∼Pdata logDimgi (I )

+EI∼PGimgi
log(1− Dimgi (I ))+ EI∼Pdata logDimgi (I , x)

+EI∼PGimgi
log(1− Dimgi (I , x))] (23)

where Pdata represents the distribution of the ground truth.
Additionally, we adopt the DAMSM loss introduced in

AttnGAN to calculate the fine-grained image-text matching
loss. Hence, our final objective loss is obtained by:

L = LGAN + λ1LDAMSM (24)

where λ1 is a hyper-parameter. LDAMSM is the loss of the
Deep Attentional Multimodal Similarity Model (DAMSM)
pre-trained on ground truth images and related descriptions.

V. EXPERIMENTS
A. EXPERIMENTAL SETUPS
Extensive experiments are conducted to qualitatively and
quantitatively evaluate the proposed IMEAA-GAN. We use
a single Tesla P100 with 16GB video memory, Linux 4.4.0-
135-generic operating system, and PyTorch 0.4.1 framework.
Our model is trained for 200 epochs with a batch size of 16 on
MS-COCO, and 800 epochs with a batch size of 10 on the
Caltech-UCSD Birds-200-2011 (CUB) dataset. We set the
learning rates of generators and discriminators all to 0.0002,
the hyper-parameter of DAMSM loss is set λ1 = 50 on MS-
COCO and λ1 = 5 on CUB. We use the Adam algorithm
[43] to optimize the adversarial training. The exponential
decay rates β1, β2 ∈ [0, 1) for the first and second moment
estimates are set to 0.5, 0.999, respectively.

1) DATASETS
We perform experiments on MS-COCO and CUB datasets.
The MS-COCO dataset [44] has pixel-level annotations
and contains 82,783 training images, 40504 validation, and
40,775 testing images. There are 80 object categories in this
dataset, each image has 5 text descriptions and corresponding
instance labels.

Derived from the CUB-200 dataset, the CUB dataset
[45] includes a total of 11,788 images that provide class
labels, bounding boxes, and bird attributes information. It has
200 different bird categories, each image has 10 descriptions
describing the bird attributes. We employ 150 bird categories
(including 8,855 images) as our training set while those other
50 categories (including 2,933 images) as the testing set.

2) EVALUATION METRICS
We use the Inception Score (IS) [46], Fréchet Inception
Distance (FID) [47], and R-precision [29] to quantitatively
evaluate the generation performance of IMEAA-GAN.

A pre-trained Inception v3 network [48] is adopted to
compute the IS and FID. The IS evaluates the image quality
and diversity, namely: this metric measures the uniqueness
of synthesized images and the number of object categories
[49], while the FID calculates theWasserstein-2 distance [50]
between the ground truth and synthesized images accord-
ing to final layer activations. A lower FID indicates a
shorter distance between the generated image distribution
and ground truth image distribution. Therefore, the larger
the IS value while the smaller the FID value, the better
the model performance. Same as AttnGAN and MirrorGAN
[51], we also apply R-precision to measure the matching
degree between the image and text. Specifically, we randomly
select 99 descriptions from the dataset, then compute cosine
distance to indicate the similarity (in feature space) between
the generated image and the related text. We sort these 100
(including a ground truth text) descriptions and select the
top k most similar descriptions to calculate the R-precision.
In practice, we set k = 1, meaning that the R-precision
indicates whether the ground truth text more closely matches
the synthesized image than those 99 randomly sampled text
descriptions.

B. QUALITATIVE RESULTS
Our model has produced high-fidelity 256×256 images con-
taining complex scenes and multiple instances, Fig. 7 shows
the synthesized results on MS-COCO. Conditioned on the
instance mask embedding, IMEAA-GAN is able to separate
instances from the background, reduce overlapping pixels.
Given the similar input, due to the use of attribute-adaptive
discriminators, IMEAA-GAN can also synthesize various
detailed attributes. For example, the sheep in the third column
of Fig. 7 show that our approach can well distinguish the
word-level information and generate diverse images corre-
sponding to various features.
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FIGURE 7. Qualitative examples generated by IMEAA-GAN on the MS-COCO dataset.

FIGURE 8. Qualitative examples generated by IMEAA-GAN on the CUB dataset.

To prove the generalization ability of our IMEAA-GAN,
we also perform experiments on the CUB dataset. As shown
in Fig. 8, the generate high-quality 256× 256 images vividly
display the color and texture of different birds, there are
almost no indistinguishable instances and overlapping parts
by using instance mask embedding mechanism, Moreover,
with the guidance of attribute-adaptive discriminators, our
images present correct and fine-grained attributes.

We adopt the multi-stage generation strategy to synthe-
size high-resolution images. During the refinement stage, we
have attempted to stage up the generator to 4. However, the
training process becomes unstable and difficult to control due

to the complexity of deep neural networks and the memory
limitation of the GPU. Therefore, we only apply one global
generator and two local refinement generators for the optimal
generation. The intermediate results of different stages on
CUB and MS-COCO are illustrated in Fig. 9.

Figure 9 shows that IMEAA-GAN is capable of refining
images to match the text. The global generator initially gen-
erates coarse-grained 64 × 64 images (e.g. Fig. 9(a)), but
these synthesized images lack fine-grained textures. Then
two local refinement generators generate fine-grained images
(e.g. Fig. 9(b), Fig. 9(c)). The context-wise instance vectors
can be obtained by our generators, so the synthesized images
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FIGURE 9. Example results of different stages of the IMEAA-GAN on MS-COCO (left) and CUB (right) datasets.

FIGURE 10. Qualitative comparison of different methods on the MS-COCO dataset.

are further well-improved, contain more accurate texture fea-
tures and clear backgrounds. For example, in the second right
row of Fig. 9, there is no short beak in the initial 64 × 64
image, our local refinement generators are able to encode
the ‘‘short beak’’ information and synthesize the missing
features.

Further, as illustrated in Fig. 10, we compare the IMEAA-
GAN with other methods conditioned on the same text. The
sg2im method converts the input text into scene graphs to
infer semantic layouts, and this approach has achieved the

synthesis of 128 × 128 images. But scene graphs lack core
object attributes and spatial information (e.g. positions and
sizes), it is difficult to generate details that consistent with
semantic layouts. In addition, the information conveyed by
scene graphs is very limited, the features of an instance are
not only determined by its position and class labels but also
interactions with others, so it fails to solve the overlapping
pixels and separate different object appearances.

As shown in the second row of Fig. 10, AttnGAN has
synthesized 256 × 256 images. Conditioned on a sentence
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FIGURE 11. Qualitative comparison of different methods on the CUB dataset.

vector, the effect of each word is not fully considered, it
assigns all instances with the same weight. Thus, lacking
word-level embedding and ignoring interactions between dif-
ferent instances are difficult for it to generate high-quality
images. Besides, it uses sentence-level discriminators that
only provide coarse-grained feedback, so its generators tend
to generate texture associated with the wrong word. This can
explain why the synthesized results appear realistic features
but lack meaningful layouts and correct attributes.

The recent MirrorGAN [51] has made great progress on
complex image generation, the example results are shown in
the third row of Fig. 10. Thismethod outperforms the first two
models, it guarantees the semantical consistency in multiple
object generation, the synthesized images match the text at
the image level. Yet, MirrorGAN lacks investigations on
uneven instance distribution and feature occlusion, the visual
appearance and instance interactions are not finely regulated.
For example, the ‘‘cattle’’ in the first image of the third row
contain reasonable appearance, but the ‘‘green hillside’’ is
inappropriately shown as the ‘‘dry field’’.

Different from these aforementioned methods, IMEAA-
GAN adopts word-level attribute-adaptive discriminators.
As presented in the last row of Fig. 10, the synthesized
instances have correct attributes. Besides, due to the use
of instance mask embedding and instance-wise attention
mechanism, as well as the maximum pooling of multiple
pixels, overlapping pixels between different instances have
been solved. So these generated instances, which contain
clear shapes and texture features, are more recognizable and
semantically meaningful.

We also perform comparative experiments on the CUB
dataset as shown in Fig. 11. Since sg2im mainly aims at
the positional relationship between different instances, every
image in CUB only contains a single object, so we just
compare the IMEAA-GAN with AttnGAN and MirrorGAN.

Observing the second and third columns of Fig. 11, though
these two methods both accurately capture attribute features,
IMEAA-GAN can better display the main attributes and
differentiate birds from their backgrounds. In general, our
approach has the capacity to synthesize individuals with more
vivid details as well as more clear shapes.

Figure 12 demonstrates that IMEAA-GAN can generate
diverse images using the same input. The results contain
various shapes and complex scenes, this is mainly owing to
word-level attribute-adaptive discriminators which provide
specific signals. Therefore, only changing a few words, under
the guidance of discriminators, the generators can synthesize
images with detailed attributes, and these samples look simi-
lar but unique to each other.

TABLE 1. Quantitative comparison of different methods on the MS-COCO
dataset.

C. QUANTITATIVE RESULTS
As shown in Table 1 and Table 2, wemeasure the performance
of different methods in terms of IS, FID, and R-precision,
the best results are in bold. Based on the MS-COCO
and CUB datasets, compared with MirrorGAN, we have
almost increased IS by 15.19% and 4.17%, R-precision
by 2.96% and 2.63%. Compared with the officially pre-
trained AttnGAN, our model decreases the FID by 8.03%
on MS-COCO and 32.90% on CUB, which confirms that
IMEAA-GAN is able to generate images with more diverse
objects and higher quality than other methods.
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FIGURE 12. Diverse results of attribute-adaptive generation.

FIGURE 13. Visualization and comparison of attribute-adaptive discriminators (a) and sentence-level discriminators (b).

Our model can obtain the most relevant instance at the
position where has overlapping pixels, so these synthe-
sized results are closely consistent with global layouts and
ground truth images. Hence, as demonstrated in Table 1 and
Table 2, feeding generated results into the pre-trained Incep-
tion v3 network, we get better performance of the IS and FID.
In addition, we also obtain the highest R-precision, which
indicates that the images and attributes generated by our
generators are most relevant to descriptions. However, other
methods occur lots of overlapping pixels and blurred objects,
and the Wasserstein-2 distances between ground truth and
generated samples are quite large. So it is hard to adaptively
disentangle corresponding visual features under linguistic
expression variants. By comparison, IMEAA-GAN greatly
improves the quality and diversity of generated images,
as well as the text-image matching degree.

Besides, observing that the IS values based on CUB differ
significantly from the MS-COCO, this is because all images

TABLE 2. Quantitative comparison of different methods on CUB.

in CUB are birds and the feature distributions are similar,
while the MS-COCO contains different instance categories
and complex scenes, the feature distributions among various
objects are greatly different. Therefore, the IS values on
MS-COCO are generally larger than that of the CUB.

D. ABLATION STUDY
To verify the effectiveness of the proposed discriminators,
as shown in Fig. 13 (a), we visualize our word-level attribute-
adaptive discriminators. Meanwhile, to make a comparison,
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FIGURE 14. Ablation comparison of the instance mask embedding effect.

we adopt two commonly used sentence-level discrimina-
tors which have the same structure as our baseline model,
the visualization maps of sentence-level discriminators are
presented in Fig. 13 (b). The highlighted regions indicate
the feedback information provided by discriminators. With
feedbacks, generators are instructed to synthesize related
attributes and instances. The discriminators in our baseline
model are conditioned on a whole sentence, so it is hard to
highlight word-level regions, thus, resulting in an excessively
large range of highlighted areas. What’s worse, the baseline
method even omits highlighting when synthesizing certain
attributes, see images in the third row of Fig. 13(b).

All these illustrate that sentence-level discriminators can
only provide the coarse-grained information and fail to offer
effective feedback signals. In contrast, our attribute-adaptive
discriminators are word-level that can provide generators
with detailed attribute feedbacks and highlight the related
regions. Therefore, our generators can focus on the most
relevant regions to perform pixel-level attribute generation.

Further, we also demonstrate the necessity of instance
mask embedding for the local refinement generators. The
image quality of the ablated version and our full model
are shown in Fig. 14 (a) and Fig. 14 (b), respectively. The
ablated model has the same settings as our full IMEAA-
GAN except that it does not use the instance mask embedding
(Fig. 14 (a) w/o IME). Images in Fig. 14 (a) lack detailed and
complete features, for example, the zebras and giraffes in the
first row are only synthesized with scattered features. It is
difficult for the ablated model to synthesize corresponding
instances in the correct locations, so the image accuracy and
fidelity are quite low. With the instance mask embedding

(Fig. 14 (b) w/ IME), the synthesized images can meet the
shape and location constraints. Even for complex scenes,
for example, the giraffes in Fig. 14 (b), there are almost no
overlapping pixels and indistinguishable instances.

VI. CONCLUSION
In this paper, we present a novel Instance Mask Embed-
ding and Attribute-Adaptive Generative Adversarial Net-
work (IMEAA-GAN) for text-to-image generation. With the
instance mask embedding, which provides shape constraints
and solves the overlapping problem between different pixels,
our two local refinement generators are able to refine the
initial image synthesized by a global generator. We also pro-
posed the word-level attribute-adaptive discriminators, which
focus on individual attributes and provide effective feedback
to discriminate whether the generated instances match the
attribute descriptions, so as to guide generators synthesize
accurate features. Experimental results illustrate that our
model is capable of generating complex images with high-
fidelity attributes on different datasets. However, once the
text contains various scene settings and instances, the image
quality drops drastically. Our future work will focus on using
knowledge graphs to infer corresponding semantic layouts
and generating multiple high-resolution images from a single
semantic layout.
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