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ABSTRACT Hashing aims at learning discriminative binary codes of high-dimensional data for the
approximate nearest neighbor searching. However, the distance ranking obtained by traditional methods is
not optimum in the Hamming space, and it degrades the performance for retrieval tasks. To tackle the above
problem, an unsupervised ensemble hashing is proposed to improve the ranking accuracy by assembling the
diverse hash tables independently in this paper. We observe that the higher the accuracy is the larger diversity
the base learner has, and the more effective the ensemble method is. Based on this principle, two special
ensembles hashing approaches are proposed to increase diversity by bootstrap sampling with data-dependent
methods. Especially, the results are better when the minimum Hamming distance is large and the variance of
the Hamming distance is small. This proposed method is conducted in the experiments and the results show
that it can achieve about 10%-25% performance compared with the baseline algorithm, which achieves
competitive results with the state-of-the-art methods on the CIFAR-10 and LabelMe benchmarks.

INDEX TERMS Unsupervised hashing, ensemble method, accuracy and diversity, hamming distance,
distance variance.

I. INTRODUCTION
In the machine learning, nearest neighbor search [1], [2]
is one of the widely used technologies, and it has been
applied in many areas, e.g. , data retrieval [3], [4], scene
text recognition [5] and computer vision [6]. Practically,
it’s not necessary to output the exact nearest neighbors for
each query on the large-scale datasets that are increasing
from the Internet. Thus, hashing is an approximate nearest
neighbor search approach which has attracted more and more
attention for its higher speed and lower storage cost [7], [8].
The aim of hashing is to pursue a mapping which enables
the high-dimensional data represented in a low-dimensional
space with a short code consisting of a sequence of bits [9],
[10], while the similarities are similar in both spaces.

Due to the low storage cost and fast query speed, hash-
ing has been widely adopted for ANN search in large-scale
datasets [11], [12]. In a word, hashing is an approach of
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transforming the data item to a low-dimensional representa-
tion, or equivalently a short code consisting of a sequence of
bits [9]. The learning-based hashing methods can be divided
into three main streams: semi-supervised [13]–[15] , super-
vised [16]–[19] and unsupervised methods [15], [20]–[23].

Most hashing methods are based on semi-supervised [13],
[14], [24] and supervised methods [25], [26]. They are devel-
oped to improve the quality of hashing by incorporating
supervisory information in form of class labels, including
Semi-supervised hashing (SSH) [15], Binary Reconstructive
Embedding (BRE) [27], minimal loss hashing (MLH) [28],
Kernel-Based Supervised Hashing (KSH) [19], Two-Step
Hashing (TSH) [18], Fast Supervised Hashing (FastHash)
[17], and Supervised Discrete Hashing (SDH) [16]. Unfortu-
nately, thesemethods cannot perform on the data that does not
have any given label information in practice, and this limits
the application scale.

To tackle the above problem, some unsupervised meth-
ods [20] have been developed to learn hash functions only
using unlabeled data while preserving similarities of data in
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FIGURE 1. (a) Performance curve with 32 bits binary codes. The
normalized minimum, maximum distance (b) and distance variance
(c) curves for our method on the CIFAR-10 [36] dataset. The horizontal
axis is the ensemble number.

the raw space. The representative algorithms in this cate-
gory include Locality Sensitive Hashing (LSH) [29], Locality
sensitive binary codes from shift-invariant kernels (SKLSH)
[30], Spectral Hashing (SH) [22], PCA Hashing [15], Itera-
tive quantization (ITQ) [31], Isotropic Hashing (IsoH) [22],
Anchor graph hashing (AGH) [32], Harmonious Hashing
[33], Learning Binary Codes with Bagging PCA (BPCAH)
[21] and Sparse Projections for High-Dimensional Binary
Codes (SP) [34]. Recently, they have achieved good improve-
ment, but they cannot obtain a unique Hamming distance
ranking since the diversity of the binary codes drawn from
different learning procedures. This makes the retrieval per-
formance unstable and degraded in large-scale data.

In this paper, we employ an ensemble method to integrate
multiple hash tables independently generated by different
base learners, so as to improve the ranking accuracy [35].
Our theoretical analysis reveals that the ensemble method
is effective, especially when base learners simultaneously
have high accuracy and large diversity. According to this,
we employ bootstrap sampling to enhance the diversity of
the data-dependent methods, such as ITQ [31]. It is interest-
ing that the results are better when the minimum Hamming
distance is large and the variance of the Hamming distances
is small, and this can be seen in Fig. 1 on the CIFAR-10
[36] dataset with our method. Fig. 1 (a) shows that the per-
formance continues to rise until convergence but it does not
overfit. The ensemble performancewill converge to bounding
as we add more ensembles. The normalized minimum Ham-
ming distance and distance variance respectively increase and
decreases until convergence, and they reach a specific bound
at last, and it is shown in Fig. 1 (b) and (c).
Our main contributions are as follows:
• An unsupervised ensemble hashing method is proposed
to improve the Hamming distance ranking accuracy for
unsupervised hashing;

• We analyze the proposed method theoretically, which
indicates that it is critical that the base learner has high
accuracy and large diversity simultaneously for ensem-
bling;

• Two effective ensemble hashing approaches are pro-
posed to increase the diversity by bootstrap sampling
with data-dependent methods.

The rest of the paper is organized as follows. In Section II,
we discuss the related work briefly. Section III describes
the details of our unsupervised ensemble hashing method
and two specific ensemble hashing methods designed. The
experimental results are presented in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK
Recently, many efforts have been done to solve the hash-
ing problem, and we briefly review the most tightly related
work in this section. Comprehensive reviews on hashing and
benchmark evaluation can be found in [37].

A. UNSUPERVISED HASHING
The data-independent hashing methods projection functions
are independent of training data. In locality-sensitive hashing
(LSH) [29], after two adjacent data in the raw data space are
transformed by the same map or projection, the probability
that the two data points are still adjacent in the new space
is large. There are many different variants of LSH [29].
It not only supports Euclidean space but also supports more
dimensions, such as cosine similarity [38], Gaussian kernel
[39] and shift-invariant kernels (SKLSH) [30]. Its advantage
is that it is simple and easy to use, with a linear search time,
but it requires a very long bit hash codes or a lot of hash tables
to achieve the expected performance.

In data-dependent methods, principal component analy-
sis (PCA) [40] as a linear orthogonal transform is often
employed to learn the projection functions [15], [22], [31],
[41], and it is derived from the data. However, the obtained
binary hashing codes in terms of each projected data is not
optimum for the different variances of each projected data.
One simple way is to balance the variances with a random
orthogonal transformation [41] and make them the same in
the low-dimensional space. Gong et al. [31] proposes to
preprocess the data by principal component analysis (PCA)
[40] and pursue an orthogonal rotation matrix to minimize
the quantization error when the data is mapped to the vertices
of the binary hypercube. In order to enable the projected
data to have equal variances, only the top eigenvectors are
utilized to generate a piece of short but strong codes [21],
while Isotropic Hashing (IsoH) [22] directly learns projection
function to make the variances same. Additionally, locality
preserving projection (LPP) [42] is used to replace the PCA
[40] to obtain non-linear projection to preservemore informa-
tion. Different from the above single-model based methods,
the motivation of this study is how to ensemble these models
to achieve better performance.

B. ENSEMBLE APPROACHES
Ensemble classification and regression approaches [43]–[47]
have attracted a great deal of interest in recent years. The
classification problem can be solved by combining the dif-
ferent ensembles non-linearly or majority voting, while lin-
early weighted ensembles can also optimize the regression
problem. Bagging [43] and Boosting [48] are two common
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ensemble techniques. They resample data from all data to
construct different training datasets, which are utilized to
learn different classifiers. Different from bagging that is
based on random sampling in all the data with replacement,
the training set is chosen based on the performance of the
earlier classifiers in the boosting method. More specially,
examples that are incorrectly predicted by previous classifiers
in a series of classifiers are chosen more often than examples
that are correctly predicted.

Few hashing methods use ensemble techniques to improve
retrieval performance. Different from complementary Hash-
ing (CH) [49] that proposes to adopt the boosting-based
approach to build complementary hash tables, BPCAH [21]
exploits the bagging method to learn several pieces of diverse
short codes and concatenate them into long codes.

In recent works [24], [47], a bagging-boosting-based
multi-hashing with query-adaptive re-ranking [24] is
proposed for semi-supervised hashing. The variance on the
projected dimensions is utilized for similarity-preserving
mapping [26] and the samples are weighted in the training
phase [50]. The ensemble hashing is proposed by training
each hash function (or bit) independently from each other
[47] and considering higher accuracy, larger diversity and the
optimal weights for predictors simultaneously [51]. However,
these methods pay less attention to both accuracy and diver-
sity [51], which motivates us to extend the projection-based
methods using an ensemble trick.

III. THE PROPOSED METHOD
The goal of hashing is to learn mapping functions to preserve
similarities of samples between Hamming and Euclidean
spaces. The following notations are used in the rest of this
study for readers to understand. The samples are denoted as
X = {x1, x2, . . . xn} with xi ∈ Rd , and {Hl}Ll=1 represents
L hash tables, where each hash table is Hl(x) =

{
hi(·)

}k
i=1

consisting of k hash functions. Here, hi(x) = sgn
(
g(x)

)
,

where g(x) is a prediction function and sgn() is a sign func-
tion. The output of the hash table is k-bit binary codes Bl ∈
{1,−1}k , so each sample is replaced with k binary codes. The
Euclidean distance between samples x1 and x2 are denoted as
D12, while d12 is their distance in Hamming space.

A. OBSERVATION AND MOTIVATION
Our observation is that the Hamming distance rankings by the
traditional methods are not unique, even conflict with each
other, which is illustrated in Fig. 2. In the Euclidean space,
D(x1, x2) > D(x1, x3) shown in Fig. 2 (a), which indicates
that x1 is more similar to x3 than to x2, which indicates that x3
is more similar to x1 than to x2, and the similarity proportion
is 1.35. After they are mapped into the Hamming space with
two different hash tablesH1(x) andH2(x) shown in Fig. 2 (b),
their distance rankings are distance rankings are conflicted:
d ′12 < d ′13 by H1(x) and d ′′12 > d ′′13 by H2(x). Because the
traditional methods focus on the similarities between samples
and neglect the distance ranking.

FIGURE 2. Our observations (see Section III-A for details). The Euclidean
distances between samples x1, x2 and x3 are shown in (a), where the
similarity proportion of d12 and d13 is equal to 1.35. These samples are
mapped into Hamming space by ITQ [31] method with two different hash
tables H1(x) and H2(x), which is illustrated in (b). Their distance rankings
are conflicted: d ′

12 < d ′

13 by H1(x) and d ′′

12 > d ′′

13 by H2(x). But the
calibrated ranking (d ′

12 > d ′

13) by our method is consistent
(d12/d13 = 1.2) with that in Euclidean space, which is shown in (c).

We define the hashing method that generates diverse hash
tables as ambiguous methods in this study. Suppose two
binary codes Bi = sgn[gi(X )] and Bj = sgn[gj(X )] are
encoded by two hash tables Hi and Hj, the probability of the
diversity between the binary codes Bi and Bj can be written
as:

P{Bi = Bj} = P{sgn[gi(X )] = sgn[gj(X )]}

∝ exp(− ‖ W iX −W jX ‖2F ) (1)

where ‖ · ‖F denotes the Frobenius norm andW is the projec-
tion function. Here, exp represents the exponent distribution
and enable the probability values between 0 and 1. When
Bi equals to Bj, the W i closes to the W j, so the probability
approaches to 1. in contrast, the probability will be 0 when
the Bi is different from Bj. Fig. 3 illustrates the normalized
average ambiguity of ambiguous hashing methods (ITQ [31],
SKLSH [30] and LSH [29]), and they are calculated accord-
ing to Eq. 1 on the CIFAR-10 [36] dataset.

Distance ranking benefits to achieve better performance
for retrieval tasks through preserving the similarity from the
Euclidean space into Hamming space. The distance ranking
can be calibrated by combining the Hamming distances d ′

and d ′′, and similarity proportion (1.2) nears to the original
value (1.35), which is shown in Fig. 2. This reveals that the
calibrated ranking can preserve the neighborhood relation:
not only achieve good results, but it is more accurate. This
idea that ensembles results from multiple weak learners has
been proved to be efficient in classification and regression
problems [52]. Therefore, we are motivated to utilize an
ensemble approach to improve retrieval performance and an
ensemble hashing is proposed in this study.

B. OUR METHOD
As observed above, the Hamming distance measured by dif-
ferent hash tables may be not identical, while different hash
tables may generate non-unique Hamming ranking.

Let {Hl}Ll=1 denote L hash tables constructed by the base
methods (such as ITQ [53], SKLSH [30] and so on), and k
is the code length of one hash table Hl =

{
hi(·)

}k
i=1. For
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FIGURE 3. The normalized average ambiguity of different ambiguous
hashing methods on the CIFAR-10 [36] dataset. The horizontal axis
denotes the code length of each hash table. The normalized average
ambiguity is shown in the vertical axis.

two samples x and y, the Hamming distance evaluated by the
l-th hash table can be denoted as dl(x, y). Its corresponding
similarity fl(x, y) can be directly converted by the Hamming
distance, and this is denoted as:

fl(x, y) =
k − dl(x, y)

k
. (2)

This reveals that the Hamming distance and the similarity are
in one-to-one correspondence. Thus, we can acquire L diverse
similarity {fl}Ll=1 corresponding to the Hamming distance. It
is obvious that the individual similarity fl is not accurate and
robust, and it may be far away from the real similarity in the
Euclidean space.

Let S denotes a real similarity between two samples. The
similarity error of the individual can be expressed as (fl − S)2.
Previous analysis has illustrated that the individual error
(fl − S)2 is always large. Here, we propose to utilize the
ensemble approach to reduce this error. For samples x and
y, define the ensemble Hamming distance and ensemble sim-
ilarity between them as dL(x, y) and fens(x, y), so dL(x, y) =∑L

l=1 dl(x, y). Then we have

fens(x, y) =
L × k − dL(x, y)

L × k

=
1
L

(
L × k −

∑L
l=1 dl(x, y)
k

)
=

1
L

( L∑
l=1

k − dl(x, y)
k

)

=
1
L

L∑
l=1

fl
(
x, y

)
, (3)

where k denotes the code length of individuals. This formula
denotes that the ensemble similarity fens is a convex combina-
tion of the component individual similarity. The general form
can be written as:

fens =
∑
l

wl fl, (4)

where wl is the normalized weight coefficient, and
∑

l wl =
1. When all individuals are treated equally, the weight can be
denoted as wl = 1/L.

Recall Fig. 2 (b), if the two ranking results are the same
or both false, the individuals similarity {fl}Ll=1 is invariable or
the similarity error (fl −S)2 of individuals is extremely large,
and the ensemble method is not effective no longer.

Then, the similarity error can be decomposed by [45]:∑
l

wl
(
fl − S

)2
=

∑
l

wl
(
fl − fens + fens − S

)2
=

∑
l

wl
(
fl − fens

)2
+
(
fens − S

)[
2
∑
l

wl fl −
(
fens + S

)]
=

∑
l

wl
(
fl − fens

)2
+
(
fens − S

)2
, (5)

where (fl − S)2 and (fens − S)2 are the similarity error of
individual and the convex-combined ensemble, respectively.
The decomposition can be re-written as:(

fens − S
)2
=

∑
l

wl
(
fl − S

)2
−

∑
l

wl
(
fl − fens

)2
. (6)

The first term,
∑

l wl(fl−S)
2, is the weighted average error of

the individuals. Its value depends on the accuracy of individu-
als. The second term,

∑
l wl(fl− fens)

2, is the ambiguity term,
which can be seen as the similarity variance of the individuals.
Since this is always positive, it is subtracted from the first
term, meaning the ensemble is guaranteed lower error than
the average individual error. The larger the ambiguity term
is, the lower the ensemble error is.

This is a very interesting result for ensemble research,
providing a very simple expression for the effect due to error
correlation in an ensemble. Eq. 6 shows that the error of the
convex-combined ensemble will be less than or equal to the
average error of the individuals, that is:(

fens − S
)2
≤

∑
i

wi
(
fi − S

)2
. (7)

In fact, one of the individuals may have lower error than the
average, and even lower than the ensemble.

According to the decomposition, we can conclude two
necessary principles for our ensemble method as follows:
• In terms of the first term of the decomposition, the lower
the error of individuals is, the smaller the weighted
average error of individuals is, and the better the
convex-combined ensemble result should be. Therefore,
it is necessary for individuals (weak learners) to have
higher accuracy;

• The ambiguity term (the second term) denotes that larger
diversity between individuals is necessary to reduce the
ensemble error;

• The weight is used as the confidence of the individual.
Optimal weights should be chosen carefully to enable
each ensemble to decrease the ensemble error.

This denotes that if we increase the individual accuracy
(the average error term) or enlarge the diversity (the ambi-
guity term), the ensemble results will be more effective.
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Unfortunately, as the diversity of the individuals rises, so does
the value of the average error term (the first term). This
reveals that diversity itself is not enough, and we need to
balance between diversity and individual accuracy, in order
to achieve the low overall ensemble error.

C. WHAT MAKES THE SIMILARITY VARIANCE INCREASE?
According to the above analysis, increasing the similarity
variance helps to reduce the ensemble error when the base
learner is fixed. We note that similarity variance measures
how far a set of individuals similarity (fl) is spread out. A
small variance indicates the individual’s similarity tends to
be close to the expected value (fens). In order to explore what
makes the similarity variance increase, we have the following
theorem.
Theorem 1: The similarity variance is proportional to the

diversity of hash tables, i.e. fi − fj ∝‖ H i −H j ‖
2
F .

Proof: For samples x and y, their binary codes gen-
erated by the i-th hash table can be written as H i(x) =
sgn

(
xW (i)) and H i(y) = sgn

(
yW (i)), respectively. The Ham-

ming distance between them can be computed as di(x, y) =
[k −H i(x) ◦H i(y)]/2, where " ◦ " represents inner product.
Then we have the corresponding similarity as follows:

fi(x, y) =
k − di(x, y)

k

=
k − [k −H i(x) ◦H i(y)]/2

k

=
k +H i(x) ◦H i(y)

2k
. (8)

Similarly, for the j-th hash table, we have fj(x, y) =
[k +H j(x) ◦H j(y)]/2k . Therefore, the similarity diversity
can be denoted as:

fi(x, y)− fj(x, y) =
1
2k

[
H i(x) ◦H i(y)−H j(x) ◦H j(y)

]
.

(9)

Like the same signed magnitude relaxation as in literature
[16], the above function can be relaxed as:

fi(x, y)− fj(x, y)

=
1
2k

[(
xW (i))(yW (i))T

−
(
xW (j))(yW (j))T]

=
1
2k

[
x
(
W (i)W (i)T

−W (j)W (j)T)yT]. (10)

According to the above equation, when the samples x and y
are fixed, we find that the similarity diversity is determined by
the hash tables. As an extreme example, if the hash tables are
restricted to be orthogonal to each other W (i)TW (j)

= 0, the
diversity between two hash tables is the largest. It is obvious
that the matrixW (i)W (i)T is orthogonal to matrixW (j)W (j)T,
yet the similarity diversity is also the largest. Certainly, if the
generated hash tables are the same, namely, W (i)

= W (j),
i.e. , the similarity fi and fj will be identical and the similarity
variance is zero, so the ensemble method is useless. The
larger the diversity of hash tables is, the bigger the similarity
variance is, and the more effective the ensemble method is.

D. BOOTSTRAP
Theorem 1 reveals that the diversity of hash tables is impor-
tant for the similarity variance. Motivated by the Learning
Binary Codes with Bagging PCA (BPCAH) [21], we employ
bootstrap sampling to increase the diversity of hash tables for
data-dependent method. Especially, we randomly sample a
small subset of p training data X (l)

= {x(l)1 , x
(l)
2 , . . . , x

(l)
p } to

learn diverse hash tables each time. This process is repeated
several times and the obtained short codes are concatenated
into one piece of long codes. The objective function can be
written as:

max
W (l)
∈Rd×k

1
p
tr
(
W (l)TX (l)X (l)TW (l)

)
s.t.W (l)TW (l)

= Ik , (11)

where W (l)
∈ Rd×k denote the top PCA [40] vectors cor-

responding to the l-th individual, and k is the length of
short codes, and tr() is the matrix trace, and Ik is a t-
by-t identity matrix. The final projection matrix W =[
W (1),W (2), . . . ,W (L)] can be obtained by repeating the
above process with L times. If each block is regarded as a
hash table, BPCAH [21] can be seen as a specific example of
our method. However, our method is different from BPCAH
[21] in following aspects:
• BPCAH [21] is just a special case of our method. We
propose a flexible ensemble hashing framework and
analyze the significance of accuracy and diversity in
improving the ensemble performance. But the BPCAH
is just a special case of our framework;

• Individuals based on different basic learners with higher
accuracy can be selected to reduce the weighted average
error in our method. Additionally, the individuals can be
learned by the same base learner or not in our frame-
work. But all the individuals of BPCAH [21] are learned
by performing the same operation on a different subset
of training data;

• In contrast to the deterministic method in BPCAH [21],
ambiguous methods are utilized to generate diversity
even without utilizing the bootstrap technique in this
study.

E. TWO ENSEMBLE HASHING ALGORITHMS
The previous sections have revealed that the higher accuracy
and the larger diversity the individuals have, the more effec-
tive the ensemble method is. According to these principles,
the ensemble performance can be boosted by increasing the
accuracy of individuals or enlarging the individual’s diversity
or meet both of them simultaneously. We now introduce two
special designed ensemble cases in the study.

1) WEIGHTED BAGGING PCA HASHING (WBPCAH)
Different from the BPCAH [21], we utilize the bootstrap
technique to generate diverse short codes by stronger individ-
uals with higher accuracy, so BPCAH [21] can be seen as a
specific case of our method. Then these pieces of short codes
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are concatenated into one piece of long codes to improve
performance effectively.

Let {λt }kt=1 denote the top k eigenvalues after performing
PCA [40] on training data and a is the transformation vector.
{zi = aT xi}ni=1 ∈ Rk are the PCA-projected data, where z̄ =
1
n

∑
zi = 0 and the corresponding variance is {vt }kt=1 with

vt = var(zt ). According to the definition of PCA, we have
vt/

∑k
t=1 vt = λt/

∑k
t=1 λt .

In order to preserve the information of the samples as much
as possible, we assign the weight of a hashing bit that has
large variance. This can be denoted as:

gi = vi/
∑k

t=1
vt . (12)

This weight is utilized to balance the variances of different
dimensions, so as to increase the individual performance.
Then, the final objective function can be re-written as:

max
W (l)
∈Rd×k

1
p
tr
(
G(l)W (l)TX (l)X (l)TW (l)

)
s.t.W (l)TW (l)

= Ik ,
∑
i

gi = 1,

gi = vi/
∑k

t=1
vt . (13)

where G(l) is a k × k weight matrix corresponding to the l-th
individual, and its diagonal element is the weight gi.

2) BAGGING PCA-ITQ (BPCA-ITQ)
ITQ [31] is a fast and competitive hashing method, and it tries
to learn an orthogonal rotation matrix R to refine the initial
projection matrix learned by PCA, so the quantization error
of mapping the data to the vertices of binary hypercube is
minimized. Its objective function can be written as:

minQ(B,R) =‖ Y − VR ‖2F , (14)

where V = X (l)W (l) denotes the PCA-projected data for the
l-th individual, and B is binary codes matrix and ‖ · ‖F
denotes the Frobenius norm. In practice, ITQ [31] outper-
forms both PCAH [15] and WPCAH with a large margin,
so it is a good base learner as an individual for ensembling
to achieve better accuracy than that of other learners. Addi-
tionally, ITQ [31] itself is an ambiguous method, and it can
generate diversity without bootstrap technique. Next, we will
evaluate the similarity variance between individuals.

We randomly select samples {xi∈Rd
}
m
i=1 and {yj∈Rd

}
q
j=1

from X as test sets, where xi 6= yj. Given samples xi and
yj, their similarity measured by the l-th hash table can be
denoted as fl

(
xi, yj

)
. The convex combination of the L hash

tables is fens
(
xi, yj

)
=
∑L

l=1 wl fl
(
xi, yj

)
, where the weight wl

is set as wl = 1/L since all hash tables are learned by the
same base learner. Then the average similarity variance can
be written as:

υ =
1
mq

m∑
i=1

q∑
j=1

L∑
l=1

wl
(
fl
(
xi, yj

)
− fens

(
xi, yj

))2
=

1
Lmq

m∑
i=1

q∑
j=1

L∑
l=1

(
fl
(
xi, yj

)
− fens

(
xi, yj

))2
. (15)

TABLE 1. Description of datasets.

Analysis and discuss. As stated above, it has demon-
strated that the ensemble approach is effective to improve
the retrieval performance, so does the ranking accuracy. In
this section, we will discuss how does the Hamming distance
ranking change as the ensembles increase in detail.

We randomly select M samples {xi∈Rd
}
M
i=1 from X as a

test set. Given data xi, its Hamming distance to others can be
denoted as γij = dh(xi, xj),∀j = 1, . . . ,M , j 6= i, then the
minimum Hamming distance can be written as:

µi = min{γij}Mj=1. (16)

Then, this distance is normalized as µ̂i = µi/(L × k) and
γ̂ij = γij/(L × k), where k is the individual size, and L is the
ensemble number. The average minimum Hamming distance
of all M test data is

µ =
1
M

M∑
i=1

µ̂i. (17)

The average distance variance is

γ =
1
M

M∑
i=1

M∑
j=1

(γ̂ij − γ̄i)2, (18)

where γ̄i = 1
M

∑M
j=1 γ̂ij denotes the expected value.

IV. EXPERIMENTS
Datasets: To evaluate the effectiveness of our ensemble algo-
rithms, we conduct extensive experiments on two real-world
image datasets: CIFAR-10 [36] and LabelMe [54].
CIFAR-10 [36]: the dataset consists of 60K 32× 32 color

tiny images which are categorized into 10 classes, namely,
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. Gray-scale GIST descriptors [55] are used to represent
them and they are computed at 8 orientations and on 4 differ-
ent scales, resulting in 320-dimensional feature vectors.
LabelMe [54]: this dataset consists of 22, 019 images,

which are scaled to 32× 32 pixels, and then represented
by 512-dimensional GIST descriptors. We summarize the
size and dimensionality of the datasets in Table 1. For each
dataset, we randomly select 1, 000 data points as queries and
use the rest as gallery database and training set.
ComparedMethods:Wecompare the proposedBPCA-ITQ

and WBPCAH with several state-of-the-art hashing algo-
rithms, including locality sensitive hashing (LSH) [29], spec-
tral hashing (SH) [22], principal component analysis based
hashing (PCAH) [15], weighted PCA Hashing (WPCAH)
[21], iterative quantization (ITQ) [31], learning binary codes
with bagging PCA (BPCAH) [15] and Especially, LSH [29]
is a data-independent method that does not use the training
data. PCAH [15],WPCAH [21] and ITQ [31] can be regarded
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TABLE 2. The similarity variance changing with the number of individuals for BPCAH [21] and WBPCAH on CIFAR-10 [36] and LabelMe [54] datasets.

FIGURE 4. Precision of top 500 returned images with different numbers
of bits on the two datasets.

as the base learners for our ensemble approach. BPCAH
[21] can be seen as a specific example of our framework.
Additionally, recent works such as URPH [35], DeepBit [56],
HashGAN [57], are employed as the comparison methods.
In this paper, there are two parameters to be set, the size of
each bootstrap training set p and the size of each individual
(ensemble) k . We set p = 20% × n and k = 16 for all
the comparisons, where n is the total number of data. The
ensemble number is set as L = 16, and the ensemble code
length can be denoted as L × k .
Evaluation Protocols:To perform fair evaluation, we adopt

the Hamming ranking search commonly used in the litera-
ture. All data in the database are ranked according to their
Hamming distance to the query and the top K samples will be
returned. The ground truth of each query instance is defined
as its 50 nearest neighbors based on Euclidean neighbors [53].
The retrieval performance is measured with three widely used
metrics: mean average precision (MAP) [3], precision of the
top K returned examples and precision-recall curves. The
precision, recall and MAP [3] are defined as follows:

Precision =
the number of retrieved relevant points

the number of all retrieve points
, (19)

Recall =
the number of retrieved relevant points

the number of all relevent points
, (20)

MAP =
1
|Q|

|Q|∑
i=1

1
ni

ni∑
j=1

Precision(Rij). (21)

where qi ∈ Q is a query, and ni is the number of sample
relevant to qi in the dataset. The relevant samples are ordered
as {x1, x2, . . . , xni}, andRij is the set of ranked retrieval results
from the top result until getting to xj. All the experiments
are carried out on an Intel Core Duo 3.6GHz laptop of 6G
memory with MATLAB2017a.

A. RESULTS
Fig. 4 evaluates the retrieval precision for top 500 returned
images with the different numbers of bits on the two

datasets. The proposed WBPCAH consistently performs bet-
ter than the competitor BPCAH [21], although the advantage
becomes smaller as the code size increases. The cause lies in
the base learners, and WPCAH for our approach has higher
accuracy than the PCAH [15], which is as a base learner
of the BPCAH [21]. As the ensemble size increases, the
performance of BPCAH [21] rises rapidly and almost reaches
the performance of WBPCAH. This may be due to the fact
that the similarity variance for BPCAH [21] is larger than our
WBPCAH.

From Fig. 4, we can also find that the proposed BPCA-ITQ
method already performs better than the compared methods.
This may be because the bootstrap sampling is utilized to
increase the diversity for BPCA-ITQ method. LSH [29],
which is a data-independent method, also improves as the
code size increases, and it almost reaches the performance
of PCA-ITQ at 256 bits. Perhaps surprisingly, the perfor-
mance of PCAH [15] consistently decreases as the code size
increases. If each hash bit is regarded as an ensemble, our
ensemble framework may be helpful in understanding this
interesting phenomenon.

The experimental results that are shown in Table 2 reveals
that accuracy itself is not enough, and we need to get the right
balance between diversity and ensemble accuracy, in order to
achieve the lowest overall ensemble error. The bias-variance
decomposition for quadratic loss states that the generalization
error of an estimator can be broken down into two compo-
nents: bias and variance. These two usually work in opposi-
tion to each other: attempting to reduce the bias component
will cause an increase in variance and vice versa. Summarily,
the proposed methods exceed the baseline algorithms and
achieve completive results with the recent works.

Fig. 5 illustrates the precision and precision-recall curves
respectively using 64, 128 and 256 bits on the CIFAR-10 [36]
dataset, which is also conformed from Fig. 4. Fig. 6 shows
the precision and precision-recall curves on the LabelMe
[54] dataset. The results illustrate that our proposed method
BPCA-ITQ achieves superior performance to other methods.

MAP [3] is one of the most comprehensive criterions to
evaluate the retrieval performance in the literature [31], [58],
[59]. Table 3 shows the MAP [3] scores for all the algorithms
on the two datasets. The BPCAH [21] and BWLH [51] are
the unsupervised hashing, which are most related works to
our method, and the results shows that our BPCA-ITQ has
achieved the highest MAP [3] scores with different code
lengths on all the datasets. At the same time, our method
can get competitive performance to the recent state-of-the-art
methods (such as, URPH [35], HashGAN [57]).
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FIGURE 5. The precision and precision-recall curves using 64, 128 and 256 bits on the CIFAR-10 [36] dataset, respectively.

FIGURE 6. The precision and precision-recall curves respectively using 64, 128 and 256 bits on the LabelMe [54] dataset.

B. ABLATION STUDY
The results in Fig. 7 (a) illustrate that WPCAH has outper-
formed the traditional methods ( e.g., PCAH [15]) on all the
bits. Therefore, if the WPCAH method is employed as a base
learner, the accuracy will be higher than learning by the PCA
and the lower error will boost the ensemble performance.
The reason is that the bootstrap which is based on random
sampling in the training data can increase the ambiguity of
each individual.

To visualize the effects of the ensemble number, three
ensemble hashing methods (Ensemble BPCAH, Ensemble
PCA-ITQ, and Ensemble BPCA-ITQ) are employed to eval-
uate their similarity variances with respect to L on the
CIFAR-10 [36] dataset. Here, we set bootstrap training set
p = 5000 and code length k = 16 in the comparison.
The results in Fig. 7 (b) reveals that the methods that

using PCA-ITQ as the base learner obtain larger simi-
larity variance than that using BPCAH [21]. Especially,
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TABLE 3. Mean Average Precision (MAP) [3] on CIFAR-10 [36] and LabelMe [54] datasets which is shown in the first row. The code length is shown in
the second row. The bold font presents the best result.

FIGURE 7. Ablation study on the CIFAR-10 [36] dataset. Retrieval
precision curves of PCAH [15] and the proposed WPCAH with various bits
on the CIFAR-10 [36] dataset shown in (a). In (b), three methods:
Ensemble BPCAH, Ensemble PCA-ITQ and Ensemble BPCA-ITQ, are
employed to test the similarity variance, and the horizontal axis is the
ensemble number.

the proposed Ensemble BPCA-ITQ consistently performs
better than Ensemble PCA-ITQ since the bootstrap tech-
nique can increase the diversity between hash tables.
Additionally, as the ensemble numbers increase, the sim-
ilarity variance curves tend to be smooth and steady.
Note that the special case BPCA-ITQ satisfies the higher
accuracy and the larger diversity simultaneously, and this
enables the method effective for ensembling to obtain better
performance.

In order to explore the performance with respect to the
ensemble number, we conduct experiments on two datasets
(CIFAR-10 [36] and LabelMe [54]) with two hashing meth-
ods (Ensemble SKLSH and Ensemble PCA-ITQ), where the
test set is M = 2K . The results are shown in Fig. 8, where
the normalized minimum distance, distance variance, and
precision curves are denoted as the green, red and blue curves
respectively.

It can be seen that the normalized minimum Hamming
and the precision curves are continually raising, while the
distance variance is decreasing, as the ensembles increase.
This shows that theminimumHamming distance and distance
variance are well relative to the ensemble results. In detail,
the ensemble results are better when the minimum Hamming
distance is large and the distance variance is small. The secret
of ensemble hashing helps to understand why the ensemble

FIGURE 8. A series of normalized minimum distance (green curve),
distance variance (red curve) and precision (blue curve) curves of two
hashing methods (Ensemble SKLSH and Ensemble PCA-ITQ) on two
datasets (CIFAR-10 [36] and LabelMe [54]).

method is effective to improve the ranking accuracy and to
design effective hashing methods.

V. CONCLUSION
An ensemble method is used to calibrate the Hamming dis-
tance ranking on ambiguous methods in this paper. We con-
clude that high accuracy and large diversity are two necessary
standards of our ensemble hashing, therefore we attempt to
apply the bootstrap sampling to increase the diversity for
data-dependent methods.
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However, our method will suffer from severe redundancy
of multiple hash tables and the multiple hash tables may also
cause larger storage costs.We find that the Hamming distance
closely related to the improvement of performance may be
helpful in designing even more effective hashing methods in
the future. Additionlly, neural network is powerful to rep-
resent the object with deep and hierarchical features, which
benefits to generate hashing tables for accurate performance.
It is complementary to this work and we will explore it in
future works.
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