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ABSTRACT Traffic demand in wireless communication systems has emerged as a key issue over recent
decades. An ever-increasing trend is projected for the next few years, with explosive data traffic expected to
materialize and mobile users imposing new quality of service requirements. This growing traffic demand,
combined with increasingly complex heterogeneous network (HetNet) scenarios, has presented ever more
challenges for mobile network operators in terms of service, coverage, load balancing, and quality of service.
Considering the traditional association mechanism based on maximum power received, HetNets tend to
remain unbalanced, making it challenging to satisfy mobile users’ traffic requirements. In this paper, instead
of trying to maximize the achievable downlink rate per user, we couple the cell range expansion (CRE)
technique with a particle swarm optimization (PSO) algorithm to maximize the number of users whose
downlink requirements are met. The proposed scheme considers both the loads of base stations and the
signal-to-interference-plus-noise ratio (SINR) of user equipment to model an objective function that seeks
to compute specific CRE bias values per small base station. The proposed scheme is also compared with
some classical PSO implementations. Numerical results validate the performance of the proposed schemes,
which effectively fulfill users’ data traffic requirements by reducing network imbalance.

INDEX TERMS Cell range expansion, heterogeneous mobile networks, load balancing, particle swarm
optimization, user association.

I. INTRODUCTION
The proliferation of multimedia devices and the advent
of the Internet of Things have intensified demand for
high-speed data connection services. According to Cisco’s
2017-2022 Visual Networking Index Report [1], global
mobile data traffic is expected to increase sevenfold between
2017 and 2022, reaching 77.5 exabytes per month by 2022.

This growing demand for high volumes of data carried
over mobile networks has been driven mainly by augmented
and virtual reality applications, high-definition video plat-
forms and tactile Internet services [2]. Thus, this trend is
pushing mobile network operators (MNOs) to deploy and
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manage broadband services with more rigorous quality of
service (QoS) requirements. It is widely accepted that the
current mobile broadband network infrastructure may satis-
factorily meet the needs of some of these applications. How-
ever, certain services will impose additional requirements for
the next generations of mobile networks on MNOs. In this
context, there has been a consolidation of the ultra-dense
networks (UDN) concept with the adoption of low-powered
and short-range small base stations (SBSs) [3]. By deploying
additional base stations, operators can extend network cov-
erage close to end-user devices, thereby providing improve-
ments related to system spectral efficiency, performance, and
serviceability.

To enhance traffic volume, the 3rd Generation Partnership
Project (3GPP) proposes multitier heterogeneous networks
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(HetNet), in which SBSs are organized under macro base
stations (MBS) to fulfill QoS and traffic volume require-
ments. The HetNet concept overlays low-power and low-cost
base stations with conventional macro cellular networks.
By deploying such low-power SBSs to bridge indoor cover-
age gaps or cell edges, coverage extension can be achieved in
a cost-effective way [4]. That said, network densificationwith
different types of BSs tends to cause considerable network
imbalance problems, since MBSs typically have much higher
transmission power than do SBSs [5]. Given the conventional
max-power association mechanism, user equipment (UE)
tends to associate with the cell with the highest received
downlink power. Consequently, the distribution of users and
services over the network becomes imbalanced [6], [7], with
user associations mainly concentrated on the MBSs.

There are several definitions of ‘load’ in mobile cellular
networks, which tend to be related to the number of users
attached to a BS. If the maximum number of UEs supported
by a BS varies and the total number of radio resource blocks
used by UEs is constant, then the traffic flow experienced
by the BS is directly proportional to the attached number
of UEs [8]. Therefore, the load balancing problem becomes
one of the central challenges facing heterogeneous mobile
networks. The association mechanism between UEs and BSs
must achieve the best possible use of network resources to
provide a better quality of service to end-users.

The 3GPP standardized technique known as cell range
expansion (CRE) is a promising alternative for achieving a
better user balance in a mobile network [5], [9]. Through
CRE, a bias factor is assigned to each SBS to virtually
extend or shrink the coverage area (i.e., the boundary of
SBS in Fig. 1), thus making UEs more suitable to connect
to an SBS. Hence, it is possible to better exploit the use
of radio resources given a higher distribution of users over
the mobile network. By considering CRE-related implemen-
tation challenges, it is possible to highlight the proper cal-
culation of bias values per HetNet layer [10]–[13] or the
computation of a specific bias value for each SBS [12], [14].
Such approaches have been implemented mainly through
methods that require the solving of combinatorial optimiza-
tion problems (e.g., [15], [16] and the references therein),
based on maximizing the sum of users’ data link rates.
In doing so, these approaches do not take into account users’
specific requirements in the assessment of CRE adoption.
Maximizing system serviceability can be a good strategy.
However, trying to meet users’ traffic requirements by adopt-
ing application-aware approaches could represent a more
effective solution.

Moreover, growing mobile traffic demand is leading
to even more complexity in network operation processes.
Although there are several methods proposed in the litera-
ture to improve network performance, how to automatically
handle the complexity of mobile networks through evolu-
tionary techniques and algorithms has become an emerging
research topic [17]–[21]. Evolutionary approaches and other
artificial intelligence- (AI-) related techniques may include

FIGURE 1. Cell Range Expansion of SBSs in downlink HetNets.

multidisciplinary methods from machine learning, bioin-
spired algorithms, and fuzzy neural networks and have been
applied to optimize computer systems in diverse and complex
scenarios [20]. The social and collective behavior of species
can be used to manage complex systems through bioinspired
algorithms. This approach can provide some improvements
in designing, maintaining and optimizing self-organized net-
works (SONs) [22]. These techniques have relatively low
complexity, enabled by recursive feedback-based learning
and local interactions [20]. Therefore, the integration of
bioinspired techniqueswith network operation techniques has
become a promising field to be applied in improving load
balance and user association processes in a HetNet.

Furthermore, these techniques may be combined with
software-defined networking (SDN) and network function
virtualization (NFV) technologies. They are considered two
of the most promising enabling technologies to provide better
management of network resources [23]–[25]. For instance,
by the use of SDN virtual slices with these AI-based schemes,
MNOs andmobile virtual network operators (MVNOs) could
orchestrate the network components to adjust their user
association mechanisms, following the service level agree-
ments (SLAs) defined with end-users.

In addition, no significant attention has been given to the
use of user data traffic requirements to define specific bias
values per BS. Balancing the load per layer can cause some
BSs to be overloaded or lightly loaded. Thus, it is essential to
balance the load per BS and aggregate computational-time
network resource optimization, which is compatible with
real-time mobile network operation without the adoption of
additional signaling mechanisms, to better meet traffic and
quality of experience requirements for mobile devices.

Hence, we propose the use of a bioinspired algorithm to
implement CRE in dense HetNet environments. Through the
use of the particle swarm optimization algorithm (PSO), it is
possible to perform a search for specific bias values per
SBS in a HetNet. This exploration process takes into account
the fulfillment of users’ traffic requirements to influence
the movement of particles in the search space. We present
analytical models and parameters utilized to represent the
particle’s position and velocity in the PSO implementations
contemplated. Therefore, the main contributions of this paper
are summarized as follows:
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• We develop a cell range expansion approach combined
with the particle swarm optimization algorithm to con-
sider specific traffic requirements of mobile users and
better network balancing control. The adoption of PSO
as an optimization tool seeks the unified calculation of
all SBSs’ bias values.

• We formulate a user association problem that seeks to
maximize the number of UEs with fulfilled downlink
requirements, unlike related literature that attempts to
maximize only the aggregate throughput rate obtained
by mobile users.

• We comprehensively analyze the objective function per-
formance under different bias values and investigate the
combination of parameters and its influence on the user
association problem and network load balancing.

• Through extensive numerical results on a large multi-
macro cell HetNet obtained by developing a detailed
simulator, we evaluate the performance of our scheme by
comparing it to the conventional unified biasing scheme
(i.e., a single bias value per tier). The results show that
our proposed scheme can be a promising application for
ultradense HetNets to achieve satisfactory levels of user
service and load balancing in the mobile network.

The remainder of this paper is organized as follows.
Related works are discussed in section II. The system
model is presented in section III to describe the scenario
implementation, decision variables used, and a brief discus-
sion of bioinspired computing techniques to highlight some
key features of the particle swarm optimization algorithm.
In section IV, the analytical formulation of the problem is
described. Section V presents the experiments performed,
the parameters used in this work, and a discussion of the
numerical results obtained. Finally, section VI presents the
final considerations of this paper and discusses future works.

II. RELATED WORK
This section provides a thorough overview of the work related
to user association mechanisms and the use of bioinspired
approaches in heterogeneous mobile networks.

By considering the increasingly dynamic, heterogeneous,
large-scale and complex scenarios associated with the HetNet
research field, several works have surveyed the adoption of
computational intelligence techniques within the processes of
operation and optimization of a HetNet [20]–[22]. In [20],
there is a discussion of the application of AI-based tech-
niques for evolving smarter HetNet infrastructure and sys-
tems, focusing on the research issues of self-configuration,
self-healing, and self-optimization, presenting a discussion
of the pros and cons of using each of the related techniques.
Additionally, the study cites some PSO-based schemes for
the proposition of low-power user association in HetNets
and cell outage compensation management. [20] suggests
that future research and development of HetNet technolo-
gies must address new requirements of M2M (machine-to-
machine) and IoT (Internet of Things) services by adopting
effective management and optimization techniques inspired

by bioecosystems, e.g., GA (genetic algorithms) and ACO
(ant colony optimization) of swarm intelligence.

The application of swarm intelligence in communications
networks is comprehensively discussed in [21]. Differ-
ent aspects of bioinspired mechanisms and various algo-
rithms that have been proposed in the literature to improve
the performance of artificial systems are surveyed in the
paper. It emphasizes the main aspects of swarm intelligence
observed in social species to explore intelligent features
(e.g., flexibility, robustness, decentralized control, self-
evolution, etc.), which can be applied to communication
networks. Additionally, some fundamental SONmechanisms
and design principles are discussed for wireless communica-
tion systems, highlighting the applications of such methods
to the maintenance, operation and optimization processes of
a network.

In [22], particular attention is given to the application
of bioinspired mechanisms to examine the use of various
algorithms in artificial SON systems. Some open research
issues are shown, including SON design trade-offs, self-X
capabilities in LTE-Advanced systems, cognitive machine-
to-machine (M2M) self-optimization, cross-layer design,
resource scheduling, and power control. It also presents some
comparisons of critical SON issues from the perspective
of physical-layer and media access control- (MAC-) layer
operations. The authors suggest that swarm intelligence can
represent a promising solution for managing SONs. However,
proposing bioinspiredmethods that are universally applicable
to diverse network environments is still a challenging task.

The authors of [26] propose a PSO-based algorithm (P5G)
to explore the optimization of different key performance indi-
cators (KPIs) by allocating virtual elements called reusable
functional blocks (RFBs) in the context of software-defined
networks (SDNs). PG5 attempts to manage RFBs to deliver
high-definition videos to end-users through a typical scenario
composed of MBSs, SBSs, and EPC (evolved packet core)
nodes. Despite the fact that it does not consider user-specific
traffic requirements, the results show that P5G performs close
to the optimal solution, and the computation time of P5G is
regularly low.

PSO is applied in [27] to dynamically obtain the per-BS
biasing values to maximize the achievable throughput. The
system model considers a downlink three-tier HetNet, with
different path loss models for each type of BS. The PSO
implementation uses a decreasing inertia factor to balance the
exploration and exploitation phases. Additionally, the pro-
posed approach can provide fairness among users by con-
trolling the load per BS. Nevertheless, user-specific traffic
requirements are not considered to influence the movement
of particles in the search space.

The authors in [28] analyze the user association problem by
applying an algorithm that represents a Bayesian BS selection
game to consider the characteristics of the SBSs and the type
of user traffic requirements, seeking to increase the chances
of an appropriate association that will reduce the end-to-
end latency of users. The probability of proper association,
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the achieved latency concerning conventional CRE, and the
max SINR-based cell selection/user association algorithms
used in LTE-Advanced are used to validate the proposed
approach. Additionally, considering that this paper works
with a low-density scenario of base stations, the technical
feasibility of the proposal can be inconclusive due to the use
of combinatorial optimization techniques.

In the study presented in [12], stochastic geometry tech-
niques are used to analyze the user association problem to
consider optimal bias values that tend to maximize the data
rates obtained by mobile users. Additionally, the study pro-
poses bias factors in closed form to explicitly evaluate the
impact of different network settings on the virtual coverage
areas. Furthermore, the work does not consider specific user
traffic characteristics to perform a more accurate analysis of
the user association mechanism.

[29] proposes an approach for joint cell selection and
resource allocation. This approach aims to reduce the load of
MBSs, releasing as many resource blocks (RBs) as possible,
pushing the users to SBSs. The results obtained through
simulation are promising and show that the proposed scheme
may be better than the CRE scheme. One of the main
disadvantages observed is that the approach assumes a set
of nonstandardized signals, which may represent excessive
overhead, making the proposal unsuitable for ultra-dense
network scenarios.

The authors of [30] present a load balancing and associ-
ation approach, based on the knapsack optimization (KO)
algorithm, to attempt the distribution of UEs across SBS
layers. There is a set of restrictions related to BSs’ service
capacity and the amount of RBs needed by UEs to satisfy
their QoS requirements. However, as the number of users
and BSs increases (e.g., in ultradense networks), the solution
may not have the scalability and convergence time required
for multitier HetNets since KO problems can be considered
NP-hard.

In [31], the authors propose the first rule for small cells
(SCF). The goal is to force UEs to associate with the nearest
SBSs. The receiving SINR should be higher than a predeter-
mined threshold limit. Otherwise, UEs tend to associate with
the MBS. By adjusting the threshold parameter, the authors
show that the rule can provide much better performance than
the best-SINR association mechanism (without the use of
CRE).

In addition, most of the aforementioned works are limited
to using Shannon’s theorem (as opposed to the standard
3GPP-LTE discrete modulation-and-coding scheme (MCS)
function), which may unrealistically overestimate network
capacity. The use of a discrete MCS function will signifi-
cantly complicate the selection of the right association for
cell-edge users since it does not have the convexity and
strictly increasing properties of Shannon’s theorem [32].

III. SYSTEM MODEL
In this section, we describe a system model and formulate an
optimization problem for the computation of specific CRE

bias per SBS to consider users’ traffic requirements. We con-
sider a downlink HetNet, which comprises K independent
network tiers of BSs with K = 1, 2, . . . , k and a typical
UE at <3. User and BS locations are sampled through inde-
pendent homogeneous Poisson point process distributions
(HPPP). Generally, the kth layer has density λk , and its BSs
are randomly generated from HPPP φ(λk ), while the user
positioning is generated by HPPP φ(λu).

By considering a two-layer model, for instance, we have
K = 2, and we can consider tier-1 as the representation
of BSs that have the highest power (MBSs) and low pres-
ence density in a given topology, while tier-2 may rep-
resent randomly deployed base stations, which have low
power (SBSs), high density, and a distribution within the
proposed scenario. Since the power transmission of BSs in
tier-k is represented by Pk , we can assume that P1 � P2.
Additionally, to contemplate a UDN scenario, we consider
that λ1 � λ2.

The set of all BSs is denoted by ϕ, where ϕ = (δ∪γ ). The
set of MBSs is represented by δ = {M1,M2,M3, . . . ,Mm},
and the set of SBSs is denoted by γ = {S1, S2, S3, . . . , Ss},
where ϕ is indexed by 1 ≤ j ≤ b (i.e., b = m + s).
The set of UEs is denoted by π = {U1,U2,U3, . . . ,Uu},
with 1 ≤ i ≤ u, and ψ = {θ1, θ2, θ3, . . . , θs} is the set
of bias values for SBSs. Moreover, the ith user requests a
class service defined as the tuple ρi = (ηi, τi), where ηi and
τi are the average flow throughput (Mbps) and compression
factor (ratio of processed-to-raw data), respectively. Hence,
the ith UE’s required data rate can be expressed by the
product (ηi · τi).

A. CELL RANGE EXPANSION FOR MAX-SINR
There are several cell association algorithms based onmetrics
such as RSRQ (Reference Signal Received Quality), RSRP
(Reference Signal Received Power) or SINR [33], [34]. RSRP
and RSRQ are the ones with the lowest additional communi-
cation complexity, since these parameters have already been
specified in LTE [35]. In [36], the user association mecha-
nism is evaluated considering these metrics, and it is shown
that SINR-based selection can achieve a better downlink
rate.

Hence, in this model, we assume that received SINR is a
key indicator of the UE rate and outage performance due to
its direct relationship with Shannon’s theorem [12]. With the
Max-SINR association criteria, the ith UE tends to associate
with jth BS, such that j = argmax(SINRij),∀j ∈ ϕ. Con-
sidering a two-tier HetNet (K = 2) and the fact that MBSs
typically have much higher transmission power (P1 � P2),
the UEs tend to be associated mainly withMBSs. By adding a
CRE bias to the SINR of each SBS, the UEs tend to be better
distributed between BSs, and each UE can possibly achieve a
better long-term rate. When the ith UE tends to associate with
the MBS tier (tier-1), selecting an MBS k ∈ δ, the received
SINR (ζ ) satisfies (1) and (2):

ζik > (ζij), ∀j ∈ δ, k 6= j. (1)

ζik > (ζij + θj), ∀j ∈ γ, (2)
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where θj represents the CRE bias value for the jth SBS.
Additionally, by the adoption of CRE, the ith UE selects the
`th SBS when the received SINR satisfies (3) and (4):

(ζi` + θ`) > ζij, ∀j ∈ δ. (3)

(ζi` + θ`) > (ζij + θj), ∀j ∈ γ, j 6= ` (4)

By setting proper CRE bias values for the SBSs as
described above, the SBSs expand or shrink their downlink
coverage, thereby causing more or fewer users to be associ-
ated with the SBSs. When the ith UE is associated with the
jth BS, the downlink SINR (ζij) can be expressed as:

ζij =
Pjhij∑

k∈ϕ,k 6=j Pkhik + PN
, (5)

where Pj is the transmission power of the jth BS, hij is the
effective gain channel between the ith UE and the jth BS and
PN represents the thermal power noise. Hence, the achievable
per-channel downlink rate at the ith UE from the jth BS can
be expressed as [32]:

Ri = e` ·
nsc · nsym
Tsubframe

, (6)

where e` represents the per-subcarrier efficiency in terms of
bits per OFDM symbol for a given threshold SINR. There-
fore, e` is obtained through an MCS function, denoted by
µ(ζij). The terms nsc, nsym and Tsubframe are the number
of subcarriers per channel, number of OFDM symbols per
subframe and duration of a subframe, respectively. By con-
sidering a fair resource allocation scheme, in which the total
number of resource blocks (RB) is equally divided between
the associated users, the total number of RBs obtained by the
ith UE from the jth can be expressed as:

nRBi =
⌊nRBj
Lj

⌋
, (7)

where nRBj represents the total number of resource blocks
available in BS j, while Lj represents the load of BS j,
i.e., the total number of UEs associated with BS j. Moreover,
the number of resource blocks received by a single UE should
be higher than a minimum threshold defined by TB, which
seeks to emulate the transport block concept. The notation
(b·c) represents the floor function that gives as its output the

greatest integer less than or equal to
nRBj
Lj

to guarantee that the

number of resource blocks (nRBi ) is an integer value. Finally,
Table 1 summarizes the acronyms used.

B. DECISION VARIABLES
X represents a binary matrix that expresses the association
between the ith UE and the jth BS. Hence, the xij element can
be expressed by Eq. (8):

xij =

{
1 if the ith UE is associated with the jth BS;
0 otherwise.

(8)

In addition, Y denotes an array of binary values that rep-
resents the fulfillment of the UE’s downlink requirements,

TABLE 1. Brief description of acronyms.

i.e., the element yi = 1, if the ith UE has its download
requirements met, according to Eq. (9):

yi =

{
1 if the ith UE’s DL requirement is met;
0 otherwise.

(9)

Moreover, Z represents an array of binary values that the zj
element denotes when the jth BS is serving at least one UE,
as described by Eq. (10):

zj =

{
1 if the BS j is serving at least one UE;
0 otherwise.

(10)

Finally, Sπ represents the sum of the UEs’ downlink rate,
as an indication of the aggregate total flow obtained by users,
as described by Eq. (11):

Sπ =
∑

Ri, ∀i ∈ π. (11)

C. PARTICLE SWARM OPTIMIZATION ALGORITHM
The field of bioinspired computing attempts to replicate how
biological organisms and suborganisms operate using ideas
from abstract computing of biological systems [37]. In gen-
eral, bioinspired computing seeks to optimize a problem to
iteratively examine the improvement of a candidate solution
over a given measure of quality. The particle swarm opti-
mization (PSO) algorithm, which is inspired by animal group
behavior, is one of these techniques. In PSO, the population
is called a swarm, and each individual in the swarm is known
as a particle [38].

The purpose of PSO is to perform a biased stochastic
exploration of the global optimum solution through the search
space of a problem. A group of particles is used to exploit
the problem represented in a multidimensional space. At the
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beginning of execution, the particles are randomly scattered
in the search space, so each particle represents a candidate
solution with an aptitude value that serves to rank its quality
and select the best solutions. The particles must move accord-
ing to equations (12) and (13) until the end of the processing
conditions [39].

Vi(t + 1) = Vi(t)+ c1r1(Pi − Xi)+ c2r2(G− Xi) (12)

Xi(t + 1) = Xi(t)+ Vi+1(t + 1), (13)

where Vi and Xi represent the velocity vector and location of
the ith particle, respectively. The term c1 adjusts the cognitive
particle behavior, and c2 controls the social particle behavior.
In addition, r1 and r2 are random factors belonging to interval
[0, 1]. Finally, Pi represents the previous best position of the
ith particle, while G denotes the current global best position
of the swarm.

Since the first release of the PSO algorithm, some signifi-
cant improvements have been made by other research efforts,
and the algorithm has been successfully applied to many
problems, such as function optimization and others [40], [41].
Due to the ease of implementation and the fast convergence to
acceptable solutions, PSO has received much more attention
in recent years [40] and has been implicated in numerous PSO
variants based on different velocity/position updating rules
[42], different parameter values [43], the use of dynamic and
adaptive parameters [44], [45] and population sizing [46].

For instance, [47] introduces into the original PSO a
parameter referred to as inertia weight (IW) (ω), which mod-
erates the current particle position, changing the definition
of Eq. (12), to that presented in Eq. (14). [48] proposes a
decreasing-IW PSO, where the value of the inertia parameter
decreases along with the algorithm’s interaction number. The
authors of [43] propose the adoption of a constriction factor
(χ ), which redefines the velocity update process according
to (15) and (16) to create better cohesion and balance between
exploration and exploitation within the process search space.

Vi(t + 1) = ωVi(t)+ c1r1(Pi − Xi)+ c2r2(G− Xi) (14)

Vi(t + 1) = χ (Vi(t)+ c1r1(Pi − Xi)+ c2r2(G− Xi)) (15)

χ =
2

| 2−c−
√
c2 − 4c |

(16)

where c is defined by the following expression c = c1 + c2:

IV. PROBLEM FORMULATION
In this section, considering the performance criteria and
decision variables adopted in this paper, we formulate an
optimization problem modeled by the objective function as
follows:

Maximize α ·
∑
i∈π

yi + β ·
∑
j∈ϕ

zi (17)

The goal of (17) is to maximize the fulfillment of UEs by
maximizing the number of users whose downlink require-
ments are met and the number of BSs that have users con-
nected. When trying to maximize the parameter (zi), it is

expected that the number of BSs associated with users and,
hence, the number of RBs used by these UEs increase. The
parameters α and β balance the contributions of the objective
function components. Additionally, the goal of maximization
is based on the choice of set values ψ = {θ1, θ2, θ3, . . . , θs},
which directly influences the values obtained from yi and zi.
In addition, the objective function is subject to the following
restrictions: ∑

j∈ϕ

xij = 1, ∀i ∈ π, (18)

∑
i∈π

nRBi ≤ nRBj , ∀j ∈ ϕ (19)

nRBi ≥ TB, ∀i ∈ π (20)

Constraint (18) guarantees that each UE is associated with
at most one BS, i.e., it is not considered a coordinated multi-
point transmission scenario (CoMP). Constraint (19) ensures
that the number of resource blocks used by the ith UE is less
than or equal to the total number of RBs available at the jth
BS. Finally, the constraint (20) guarantees the feasibility of
the solution by assuring that the number of RBs received by
a single UE should be higher than a minimum threshold TB.

V. SIMULATION MODELS AND EXPERIMENTS
In this section, we present the simulation models and exper-
iments used for performance evaluations. Then, we describe
the numerical results obtained.

A. SIMULATION MODELS
We use the distance-based path loss model and simulation
parameters recommended by 3GPP [49]. Observations on
how performance changes are based on Monte Carlo sim-
ulation in an attempt to emulate the long-term behavior of
the proposed scenario. In these simulations, we consider a
two-tier HetNet (K = 2) with λ2 = 10λ1 and λu = 150λ1 to
reflect a UDN scenario.

We assume that MBSs (deployed outdoors, at rooftop lev-
els) are capable of covering a vast area and supporting a very
high number of UEs. Each MBS site uses fiber or microwave
for backhaul, and the sites are deployed by the MNO using
engineered deployment strategies. On the other hand, we con-
sider SBSs as randomly deployed by the end-users (similarly
to Wi-Fi systems). Hence, the SBS-based deployment does
not follow any engineered strategy, which favors the adop-
tion of HPPP distribution. These SBS systems are usually
backhauled via the users’ existing broadband infrastructure,
i.e., digital subscriber line (DSL), cable modem, ethernet,
or fiber [50].

Moreover, the transmission power is 46.0 dBm for anMBS
and 23.0 dBm for an SBS (i.e., we consider SBSs to be
femto systems). We run 1, 000 simulations for each scenario.
We generate the locations of BSs and UEs using their respec-
tive HPPP densities over an area of 1 km2. We then calculate
the SINR of the possible links and connect UEs to their asso-
ciated BSs using the Max-SINR association policy. Through
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TABLE 2. Physical-layer parameters [49].

TABLE 3. Simulation parameters.

the SINR, it is possible to compute the UEs’ downlink rate
using Eq. (6), based on the number of RBs allocated per
UE. Finally, the major simulation parameters are summarized
in Tables 2 and 3.

Furthermore, we use the 15-rate MCS available in LTE,
as shown in Table 4, to parametrize the rate function µ(ζij),
in accordance with Eqs. (5) and (6). In addition, the class
service requested by each UE, defined as the tuple ρi =
(ηi, τi), is sampled from a random uniform integer distri-
bution parametrized by the integer interval [1, 8], following
values shown by Table 5. For all simulations, an alternative
scenario with CRE bias absence is considered to better evalu-
ate the application of CRE and the degree of network imbal-
ance based on the metrics and decision variables considered
in the objective function of Eq. (17). Therefore, the impact
of the user association policy based on Max-SINR can be
assessed to perform a quantitative analysis based on the num-
ber of UEs meeting DL requirements (yi) and the quantity
of BSs that serve users (zi). Moreover, a sensitivity analysis
approach is used to determine the values for α and β.

B. EXPERIMENTS
We consider multiple experiments to assess the adoption
of PSO as an efficient approach to implementing the CRE
technique and evaluate improvements in the user association
mechanism.

1) EXPERIMENT I: UNIFIED CRE BIAS
In this experiment, all SBSs adopt a unified CRE bias value
[52]. Thus, themain objective of this experiment is to evaluate

the adoption of ordinary CRE bias values, without any type of
optimization technique, to observe its impact on the network
balance and consequently, the UEs’ achievable rates, in com-
pliance with the objective function of Eq. (17).

The CRE bias values used are set in the discrete range
[−10.0, 85.0] dB, with intervals/steps of 5.0 dB. Through
the experiment, we expect to evaluate the network imbal-
ance level, which should be lower than that observed in
the scenario without the adoption of CRE bias, implying
higher downlink rates for the UEs and a better distribution of
load among the BSs. Additionally, the proposed experiment
can assess the most suitable CRE bias values for a unified
approach in the proposed HetNet model. In the remainder of
this work, the unified cell range expansion bias approach is
denoted by UCB for convenience reasons.

2) EXPERIMENT II: PSO-BASED CRE BIAS
In this experiment, the PSO algorithm is proposed to com-
pute specific CRE bias values for each SBS. The proposed
implementation is denoted as PCB. Thus, unlike the UCB
approach, by the use of PCB, we seek to adopt specific CRE
bias values per SBS, which represents the definition of the
elements of the set ψ = {θ1, θ2, θ3, . . . , θs}. Additionally,
the PCB implementation uses a decreasing inertia weight
(Decrease-IW PSO) with a variable population behavior.

Moreover, each particle is a candidate solution to the opti-
mization problem in a d-dimensional space, where d =|
γ |. Thus, the position of the ith particle is denoted by a
vector xi = [xi1, xi2, . . . , xid ], where i = 1, 2, . . . n, and n
represents the number of particles in the swarm. The PCB
fitness function evaluates the swarm particles based on the
objective function defined by Eq. (17). Hence, at the end of
the processing conditions, the best overall position reached
(G) represents the proposed solution for the CRE bias set ψ .

In addition, most metaheuristics consider the trade-off
between exploration and exploitation features. Both features
are critical and should be explored appropriately during the
algorithm execution time. In this context, [53]–[55] discuss
the contradiction of maintaining high diversity and obtaining
fast convergence as simultaneous goals of any metaheuristic.
Additionally, the problem with premature convergence often
persists in multimodal optimization, which results in signif-
icant performance loss and suboptimal solutions. This issue
seems to be formed by the fast information flow among the
swarm, resulting in critical outcomes, such as difficulties of
escaping local optima, low diversity of the population, and
fitness stagnation [44].

Hence, in this PSO variation, the average swarm particle
evaluation at the ith step (Ei) represents evidence of con-
vergence of the solution. Hence, when | Ei − Ei−1 | is
below a certain threshold ε (ε → 0) for at least k steps,
there is an indication of swarm stabilization. Thus, the PCB
approach resets any particle ranked below the mean swarm
evaluation to a new random position. This operation pro-
vokes a decreasing behavior in the overall swarm evaluation.
However, by generating new random candidate solutions,
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TABLE 4. Threshold SINR (dB) to efficiency e` (bits/symbol) [32].

Algorithm 1 PCB Algorithm

1 Input: X ,V , P,E ;
Result: ψ

2 begin
3 initialize X ,V , P← X , c;
4 G← getBest(P);
5 repeat
6 for i← 1 to Np do
7 Vi← getUpdate(Xi,Vi,Pi,G);
8 Xi← Xi + ωiVi;
9 Ei← getEvaluation(Xi);

10 if f (Xi) > f (Pi) then
11 Pi← Xi;
12 if f (Xi) > f (G) then
13 G← Xi
14 end
15 end
16 ωi← getUpdate(ωi);
17 if | Ei − Ei−1 |< ε then
18 c← c+ 1;
19 end
20 if c > k then
21 c← 0;
22 Xi← getUpdate(Xi,Ei);
23 end
24 end
25 until Stop criteria not matched ;
26 ψ ← setBias(G);
27 end

TABLE 5. Application profile [51].

the increase of swarm evaluation on the following iterations
is presumed.

The process of PCB is presented in Algorithm 1.
Lines 2-4 initialize all the variables and calculate the best
position among all particles (G), respectively. From lines
5-25, the algorithm executes the main loop. When a stop
criterion matches the predefined criteria, e.g., the maximum
number of steps, then the main loop is finished. The inside

loop (lines 6-15) updates the velocity, position, swarm eval-
uation, and fitness of each particle with the influence of the
decreasing inertia weight (ωi). Additionally, it checks if the
new position is better than the previous one (line 10). If true,
the new position turns into the previous best position of the
particle found so far (line 11). The global best position is
checked for possible updates (lines 12–14). Then, the iner-
tia weight is updated (line 16). After that, the inside loop
(lines 17-23) checks for indications of convergence. In the
case of stabilization, the algorithm resets the particles’ rank
position above the threshold ε (line 22). The main loop fin-
ishes when the maximum number of steps Np is reached (line
25). The result of the algorithm is the global best position G
(line 26), which defines the set ψ .

According to the objectives of this paper, the PCB
approach can be divided into three main stages (summarized
in Fig. 2), which are as follows: first, initialization of particles
and velocity; second, updating of particle position, updating
of particle velocity and evaluation of solution fitness; third,
assessment of the convergence of the swarm and random
reboot of some particles. To obtain the time complexity of
the proposed mechanism, we analyze the time complexity of
the compound stages.

In the first stage, the most complex calculations are the
initialization of particle position and particle velocity. The
first phase generates a random population of Np particles.
Then, the algorithm performs the computation of the fitness
function for each particle and the initialization of the inertia
weight factor (ω). Later, this stage performs the computation
of the best position of each particle (P). Finally, this phase
computes G as the best fitness of all particles. Considering
the number of particles (Np), the time complexity for this
computation is O(Np · log(Np)).
In the second stage, the main computation is to update all

particle positions and velocities and to evaluate the fitness
solutions at each iteration (step). The time complexity of this
phase depends on the number of steps (t) and particles (Np).
Thus, the time complexity can be equal to O(t · Np). In the
last stage, the main computation is to occasionally update
the swarm population by replacing particles ranked above the
global evaluation. If the global evaluation becomes stagnant
(| Ei − Ei−1 |< ε) for at least k steps, the replacement
process is triggered. In this case, we define the worst and the
best running time. Let m be the number of times the particle
population is partially reset. In the best case, m = 0, which
means there was no stagnation of the global evaluation; thus,
the time complexity is negligible (i.e., the operations declared
in lines 21 to 22 are not executed). In the worst case, when
argmaxm (m > 0), the time complexity can be equal to
O(Np).
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FIGURE 2. Flowchart representation of the PCB algorithm.

TABLE 6. PCB parameters.

FIGURE 3. UCB over α and β values.

The overall time complexity of the PCB algorithm isO(Np·
log(Np) + t · Np). Moreover, we note that time complexity
is mainly governed by the input parameters, which may be
chosen following the considered scenario. Hence, Table 6
presents the parameters used in the PCB approach.

Additionally, the experiment compares the PCB approach
with some additional classical PSO variants. Thus, it is pos-
sible to assess whether these implementations can browse
the search space for better solutions, given the inherent
characteristics of the problem and decision variables ana-
lyzed. Therefore, this experiment considers the use of CoPSO
[43], Increase-IW PSO [56] and Stochastic-IW PSO [57].
However, the use of these PSO variants involves several

FIGURE 4. UCB over several bias values.

FIGURE 5. Ratio of UEs per SBS.

specific parameters, which may vary depending on the imple-
mentation considered. Hence, the determination of such
parameters may represent a secondary optimization problem.
Therefore, by considering these PSO variants in this exper-
iment, the parameter values used in this work are presented
in Table 7, following the evaluated values recommended by
related literature [40].

Moreover, all PSO variations have similar mechanisms of
operation. However, they differ in updating the inertia weight
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FIGURE 6. (a) Normalized numerical values over α and β values (b) Sum of the UE downlink rate (c) Average downlink rate per UE.

TABLE 7. PSO variant parameters.

and constriction factor routine. By considering the algorithm
complexity of classical PSO, we assume that all consid-
ered implementations have equivalent complexity, O(Np · t ·
log(Np)).

C. NUMERICAL RESULTS
In this section, the simulation results are presented to provide
a comparison between the experiments examined to assess the
adoption of PSO as a viable approach for CRE implementa-
tion. We first evaluate the efficiency of UCB as a suitable
and straightforward solution to the problem formulated in
Eq. (17) by comparing it to the solutions obtained through
scenarios with CRE bias absence. We then evaluate the PCB
approach, comparing it with UCB and with the SCF [31]
results. Next, we explore some PSO variants to try to obtain
better results and observations than those obtained through
the PCB approach.

Fig. 3 shows the average performance of the UCB
approach over different values of CRE bias (i.e., 20.0, 40.0,
and 60.0 dB). The values obtained through objective function
(12) are normalized according to the influence of the α and
β parameters. Thus, considering a unified approach (UCB),
we expect to evaluate the most suitable CRE bias values
in the proposed HetNet model. The use of CRE provides
better results than those observed in scenarios with CRE bias
absence. The CRE technique tends to provide better user bal-
ancing across the HetNet, performing an offloading process
by shifting (tier-1) MBS users to (tier-2) SBSs. Additionally,
for all combinations of α and β, the 40.0 dB range is among
the best CRE bias values observed, except for [α = 1, β =
10], where the 60.0 dB range generates equivalent results.
Hence, it is possible to confirm that the application of CRE
is a promising technique to improve load balancing in the
network.

Furthermore, Fig. 4 presents the performance of the
UCB approach for different values defined in the interval

FIGURE 7. PCB and UCB over several bias values.

[−10.0, 85.0] dB. We observe that all curves in the subin-
terval [25.0, 50.0] dB have the most suitable values of the
normalized objective function. Additionally, the subinterval
[−10.0, 20.0] dB indicates low values of yi, which cor-
responds to a scenario without the application of CRE.
We observe that SBSs’ virtual coverage area in this interval
has been excessively shrunk or insignificantly extended, pro-
voking no adjustments to the user association mechanism.

By considering the subinterval [50.0, 85.0] dB, we observe
a decreasing inclination, possibly indicating an excessive
offloading of users from the MBSs, i.e., the UEs are being
pushed towards the SBS layer rather than a specific SBS.
Hence, given the excessive increase of SBSs’ load (Lj),
the expected number of RBs per UE is reduced, leading
to decreasing downlink rates. Moreover, when α ≥ β,
we observe similar behavior between the curves. Otherwise,
when α � β, the variable zi has a higher influence on
the final value of Eq. (17). This peculiarity associated with
the dimensionality of the variable zi, in which the maximum
equals the size of set ϕ, tends to explain this behavior.

Fig. 5 describes the percentage of UEs per SBS in the
[α = 1, β = 1] case. We observe growing behavior as the
bias values increase. The ratio of UEs per SBS reaches up
to 10% for UCB 85.0 dB, which may represent an overload
scenario. This excessive offload helps to explain the reducing
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FIGURE 8. Comparison among the PSO variants.

pattern observed in the objective values presented by Fig. 4.
Hence, more moderate proportions of UEs per SBS may be
suitable for producing a better load balance among BSs in the
proposed model.

Additionally, Fig. 5 introduces results from the PCB
approach by showing a substantial fraction of SBSs serving
between 2.0 and 7.5% of the UEs (the interval within the
median and superior limit). Moreover, the bottom part of the
PCB boxplot reports that 50% of SBSs serve approximately
2% of the UEs. Nevertheless, the UCB boxplots and the PCB
boxplot have different shapes, which may suggest different
effects on the user association mechanism through these
approaches. Furthermore, Fig. 6(a) presents the normalized
numerical values obtained by applying the UCB 40.0 dB
(i.e., the best UCB configuration found) and PCB approaches.
For all scenarios modeled, the PCB approach presents higher
results concerning the definition of Eq. (17).

Based on Fig. 6(b), the PCB approach shows promis-
ing results through the sum of the UEs’ downlink rate
(i.e., Eq. 11). Additionally, the average downlink rate per
UE presented by Fig. 6(c) supports this observation. There-
fore, we may assume that the solutions generated by the
PCB approach tend to produce even better results than those
observed in the UCB approach. Every configuration of α and
β tends to provide similar results, with a slight advantage
when [α = 10, β = 1], especially when considering the ratio
of UEs per serving BS and the average downlink rate per UE.
However, for the remaining analysis, we discuss the results
by considering the case [α = 1, β = 1] to consider an equal
influence on the objective function components.

Fig. 7 presents an analysis of the UCB, SCF, and PCB
approaches based on the ratio of RB utilization and the pro-
portion of UEs with downlinks meeting the requirements.
For the UCB approach, even with the increase in RB uti-
lization, the proportion of UEs with downlink requirements
has a decreasing tendency. Since MBSs have much higher
transmission power compared with SBSs, we assume poor
channel conditions for UEs associated with SBSs. Hence,
the number of bits per OFDM symbol (e`) decreases, which
implies a low level of UEs with their downlink requirements
met. Additionally, the SBS layer (tier-2) may be overloaded,
which indicates idleMBSs orMBSswith few associatedUEs.

Considering the PCB approach, we observed the best
results obtained, with promising levels of UEs with their
requirements met, albeit with lower levels of RB utilization
compared to the UCB approach. This result suggests that the
PCB approach could exploit bias values that provide better
channel conditions for user association between UEs and
BSs. Furthermore, the SCF approach provided better results
than UCB, but with a disadvantage from the PCB approach,
when considering the ratio of UEs meeting the downlink
requirements.

Fig. 8 shows a comparative analysis of the PSO variants,
while the swarm size ranges between 20, 40, 60 and 80
particles. This analysis also includes the maximum values
obtained by the UCB and SCF approaches and considers
the ratio of UEs with downlink requirements met to com-
pare the results. An increasing evaluation behavior is per-
ceived as the swarm population size becomes more extended.
We can presume, considering the HetNet model used in these
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FIGURE 9. CRE bias values for PCB approach over α and β values.

simulations, that swarms with 60 or 80 particles could more
properly exploit and explore the d-dimensional space, where
d =| γ |.
Additionally, when the swarm has 80 particles, we observe

the highest values achieved. Moreover, the Stochastic-IW
PSO variant presents the worst results observed, mainly when
the swarm has 20 particles. Nevertheless, as the popula-
tion size is set to higher values, we can recognize that the
observed results are statistically representative to demon-
strate the effectiveness of the technique employed.

Finally, Fig. 9 shows the dispersion of CRE bias values
obtained by the PCB approach. For all combinations of α and
β, the CRE bias calculated values are mainly in the range
[0, 20.0] dB. Thus, it represents a substantial distinct range
of values from the UCB unified approach, whose best results
are approximately 30.0 dB. For all cases, the median bias is
placed in the [5.0, 10.0] dB interval, thus confirming that the
PCB approach tends to select solutions with low CRE bias
values compared to those observed in previous experiments.
Such behavior suggests that few dBs may be sufficient to
achieve a promising network balance. The burden on the
MBSs is thereby reduced, and the SBS resources tend to be
better utilized.

VI. CONCLUSION AND FUTURE WORK
In this paper, we considered a HetNet environment, propos-
ing user association schemes and load balancing through a
bioinspired approach using a particle swarm optimization
algorithm. In the K -tier HetNet, UEs traditionally connect to
the highest received signal power, resulting in lower associa-
tion with SBSs, thus leading to a network imbalance process.
By imposing a PSO-based user association mechanism that
considers the volume of UEsmeeting downlink requirements,
the proposed scheme offloads the UEs toward SBSs. The
application of this technique may lead to a better balance
in the network without the resolution of combinatorial opti-
mization problems or the use of excessive and nonstandard
signaling. This PSO-based approach shows promising results
by reducing the network imbalance and providing satisfying
throughput levels per UE.

Future works include the adoption of dynamic clustering
methods to reduce search space dimensionality and improve
the effectiveness of the results obtained. CoMP scenariosmay
also be analyzed to consider multiple BS-UE associations to
assess energy and spectral efficiency with high user mobil-
ity. We have foreseen a wider spatial distribution of addi-
tional BSs and UEs, and future works may also evaluate the
adoption of the proposed scheme in device-to-device (D2D)
communications to improve the association process and to
stimulate cooperation behavior among the UEs.
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