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ABSTRACT Despite much effort has been devoted to skin lesion segmentation, the performance of existing
methods is still not satisfactory enough for practical applications. The challenges may include fuzzy lesion
boundary, uneven and low contrast, and variation of colors across space, which often lead to fragmentary
segmentation and inaccurate boundary. To alleviate this problem, we propose a multi-scale context-guided
network named as MSCGnet to segment the skin lesions accurately. In MSCGnet, the context information is
utilized to guide the feature encoding procedure. Moreover, because of the information loss in spatial down-
sampling, a context-based attention structure (CAs) is designed to select effective context features in the
decoding path. Furthermore, we boost the performance of MSCGnet with iterations and term this upgraded
version as iterativeMSCGnet, denoted as iMSCGnet. To supervise the training of iMSCGnet in an end-to-end
fashion, a novel objective function of deep supervision, which consists of the terms of each encoding layers
and the terms from each MSCGnet output of iMSCGnet, is employed. Our method is evaluated extensively
on the four publicly available datasets, including ISBI2016 [1], ISBI2017 [2], ISIC2018 [3] and PH2 [4]
datasets. The experimental results prove the effectiveness of proposed components and show that our method
generally outperforms the state-of-the-art methods.

INDEX TERMS Skin lesion segmentation, multi-scale context, attention, deep supervision.

I. INTRODUCTION
Melanoma has been considered as the most dangerous type of
skin cancer. It’s less than 6.5% of all skin cancer but 75% of
(skin cancer) deaths are related to melanoma [5]–[7]. In order
to analyze the skin lesion, which might be skin cancer, der-
moscopy is commonly used in imaging skin because it is
safe, non-invasive and effective [8], [9]. However, based on
dermoscopic images, accurate skin lesion location by experts
for melanoma diagnosises is high time-consuming, subjective
and labor-intensive [9], [10]. Therefore, a smart automatic
skin lesion segmentation method is highly desired in the
computer-aided diagnosis (CAD) systems [11]–[13], which
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can enhance the diagnosis capability of experts. Nevertheless,
because of the complex issues (e.g., fuzzy lesion boundary,
various lesion appearance, and low contrast between lesions
and their surrounding normal skin), skin lesion segmentation
is still a challenging task.

Currently, aiming to achieve accurate segmentation, most
researchers utilize convolutional neural networks (CNNs)
to design deep-learning-based methods [14]–[18]. As a
classical framework of biomedical image segmentation,
UNet [14] achieves high performance by adding shortcuts
between the layers of its encoder and decoder. Inspired
from UNet, a rewiring method for shortcuts is proposed
to link subnetworks densely by UNet++ [19]. However,
due to the low contrast of some skin lesions, it is hard
to segment the lesion accurately. The main reason is that
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FIGURE 1. Skin Lesion segmentation based on the multi-scale context
information. Column 1: three dermoscopic images. Column 2: their
corresponding ground truths (GT). Column 3 and 4: the segmentation
results of UNet [14] and our method, respectively. Compared with UNet,
our method can achieves better performance.

deep-learning-based methods without context information
would be confused while meeting the skin lesion whose
appearance is similar to that of its surrounding normal skin.
This problem will lead to fragmentary segmentation and
fuzzy boundary. Some examples are given in Fig. 1. The
third column is the results of UNet, and it can be observed
that extra context information makes network more discrim-
inative to detect the low contrast lesion shown in the forth
column. In order to overcome this problem, several meth-
ods [20], [21] adopt the context information to improve the
segmentation performance. In [20], Mirikharaji et al. refines
the skin segmentation by combining the skin image and its
context information in an auto-context scheme. Bi et al. [21]
design a multi-stage architecture including context informa-
tion as an extra input to segment the skin lesion. How-
ever, the context information is only used as the input
information. It can not guide the feature extraction well
at different scales, which contain different-level semantic
information.

In this paper, we propose a multi-scale context-guided
network for skin lesion segmentation, which is denoted as
MSCGnet. Different from traditional context-based methods
taking only one scale into consideration, MSCGnet utilize
context information from multi-scale feature layers. Inspired
by [22], [23], which shows that coarse segmentation results
can infer the context information, we resize a coarse segmen-
tation result to different scales and fuse them into all layers
of UNet. Due to the information loss in the procedure of
down-sampling [24], [25], a context-based attention struc-
ture is introduced in the decoding path to obtain effective
context information. Shown in the last column of Fig. 1,
our MSCGnet can produce better results than UNet due to
the multi-scale context information. Furthermore, inspired
by [21] introducing a multi-stage segmentation to refine the
results step by step, MSCGnet can be updated to an iterative
MSCGnet, named as iMSCGnet. In iMSCGnet, except the
first context information from the result of UNet, the suc-
cessive context information comes from the result of the

previous MSCGnet. In training phase, a weighted loss func-
tion, which comprises of the terms from each encoding layers
of an MSCGnet and the terms from each MSCGnet output of
iMSCGnet, is designed to train the whole model end-to-end.

The proposed method is evaluated on four public datasets
(ISBI 2016 [1], ISBI 2017 [2], ISIC 2018 [3] and PH2 [4]).
The experimental results demonstrate the effectiveness
of iMSCGnet, and the main contributions of this paper
include:
• A Multi-Scale Context-Guided network denoted as

MSCGnet is proposed for skin lesion segmentation by using
the context information to guide the feature extraction in the
encoding and decoding layers.
•Aiming to improve the performance step by step, an end-

to-end iterativeMSCGnet named as iMSCGnet is introduced.
In iMSCGnet, the initial context information is from the result
of UNet, and the result of each MSCGnet is treated as the
context information of the next MSCGnet.
• A novel objective function of deep supervision, which

consists of the terms from each encoding layers of an
MSCGnet and the terms from each MSCGnet output of
iMSCGnet, is designed to train the whole model end-to-end.

The preliminary conference version of this work was pre-
sented in ISBI 2019 [26]. This paper is a substantial exten-
sion, including:
• A context-based attention structure is designed in the

decoding path.
• Deep supervision of the encoder is introduced to super-

vise the training of iMSCGnet.
• The experimental results on new datasets are presented

for demonstrating the effectiveness of our iMSCGnet.
The remainder of this paper is organized as follows: the

related work is reviewed in Sec. II. Then the overview of
MSCGnet is illustrated and introduced in Sec. III. Sec. IV
introduces the proposed MSCGnet. An iterative version of
MSCGnet and the objective function are detailed in Sec. V
and VI, respectively. The experimental results and discus-
sions are conducted in Sec. VII. Finally, Sec. VIII concludes
the whole paper.

II. RELATED WORK
A. SKIN LESION SEGMENTATION BASED ON
HAND-CRAFTED FEATURES
In the past decades, many classical algorithms [27]–[32] have
been developed to segment skin lesions. In [28], lesion seg-
mentation is achieved using a histogram analyzing method.
Wong et al. [29] adopt a iterative stochastic region merging
method to segment lesions. According to the techniques for
tracking curve movement, the deformable models may be
divided into two categories, including parametric and geo-
metric models. The active contour model is a part of the
parametric model. In [32], the skin lesion segmentation is
performed by a biologically inspired geodesic active con-
tour technique. However, the above methods rely on the
hand-crafted features, which can not capture the high-level
semantic information.

VOLUME 8, 2020 39701



Y. Tang et al.: iMSCGnet: Iterative Multi-Scale Context-Guided Segmentation of Skin Lesion in Dermoscopic Images

FIGURE 2. The architecture of MSCGnet. MSCGnet consists of two encoders and a decoder. The context information from an context encoder is
embedded into multi-scale layers of MSCGnet. Thus, the inputs of MSCGnet are a dermoscopic image X and a context image C . Considering the
information loss of the auto-encoder [24], [25], a context-based attention structure (CAs) is designed to select context features in the decoding path.
The structure of CAs is shown on the right side. Different from the traditional channel attention mechanism, a resized demoscopic image is also an
input of the attention structure. More details about CAs are presented in Sec. IV-B. This figure is best viewed in color.

B. SKIN LESION SEGMENTATION BASED ON DEEP
LEARNING
Recently, deep learning methods have won a great suc-
cess in skin lesion segmentation [20], [21], [33]–[45].
Yuan et al. [33] train the traditional fully convolutional net-
works (FCN) [18] using a jaccard distance loss to segment
the skin lesions. The SkinNet [34] replaces the conventional
convolution layers with dense convolution blocks in encoding
and decoding of UNet [14] for skin lesion detection. Some
studies also improve segmentation accuracy by employing
context information in CNN models. Mirikharaji et al. [20]
combine image appearance information and contextual infor-
mation in an auto-context scheme to detect the lesion bound-
aries. Bi et al. [21] design a multi-stage FCN (mFCN-
PI) architecture which employ context information to detect
lesion region repeatedly. In mFCN-PI, the context from the
previous probability map is fed into FCN along with the
dermoscopic image to obtain segmentation results. However,
the above methods only make use of the single-scale context
information.

Some researchers [35], [36] also explore the potential of
CNN by usingmulti-scale context in skin lesion segmentation
task. In [35], Yu et al. propose a fully convolutional resid-
ual network (FCRN), which applies the multi-scale context
information by the skip connection for skin lesion segmen-
tation. However, FCRN has difficulty in restoring the shape
of skin leisons when faced with challenging cases. To auto-
matically delineating skin lesion, Wang et al. [36] suggest
the pyramid attention network (PA-Net) which is based on
an encoder-decoder architecture. In PA-Net, the proposed
pyramid attention module (PAM) jointly uses pyramid pool-
ing [46] and attention structure to integrate the multi-scale
context information at the beginning of the decoder.

Different form above context-based methods [20], [36],
which pay more attention to some special layers, our

proposed iMSCGnet implements the context fusion in all
layers. Moreover, under a novel deep supervision, multi-scale
context information can be used to effectively guide the fea-
ture extraction in the whole model.

III. OVERVIEW
A good skin lesion segmentation method should be able to
analyze the lesions according to their context information due
to the nonuniformity of contrast and/or color. It means that,
in a skin lesion region, some lesions are salient but others
are ambiguous. Obviously, the segmentation of ambiguous
skin lesions will benefit from that of their surrounding salient
lesions. According to this observation, some existing meth-
ods [20], [21] adopt the context information as an input of
their models. However, the single-scale context information
from the input can not guide feature extraction or feature
selection of different scales effectively because the size and
the shape of skin lesions are various.

In this work, we propose a multi-scale context-guided net-
work, denoted as MSCGnet, which incorporates the context
information into different layers of an encoder and a decoder.
It can guide the multi-scale feature extraction in the encoding
and decoding paths. The architecture is shown in Fig. 2.
Inspired by [22], [23], which shows that coarse segmen-
tation results can infer the context information, the coarse
segmentation is used to obtain multi-scale context features
through successive convolution operations. In the decoding
path, a context-based attention structure (CAs) is designed to
select the discriminative context features. More details will
be introduced in Sec. IV. In order to refine the results step
by step, we design an iterative mechanism including multiple
MSCGnet, and the iterative version is named as iMSCGnet.
The details of iMSCGnet will be discussed in Sec. V, and its
corresponding objective function will be presented in Sec. VI.
This function, which comprises of the terms from each encod-
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ing layers of anMSCGnet and the terms from eachMSCGnet
output of iMSCGnet, is designed to train iMSCGnet
end-to-end.

IV. MSCGNET FOR SKIN LESION SEGMENTATION
In this section, we will introduce the details of the proposed
multi-scale context-guided network. The architecture of
MSCGnet will be present in Sec.IV-A, and its context-based
attention structure (CAs) will be illustrated in Sec. IV-B.

A. MSCGnet
Generally, the context information is useful for improving the
performance in many visual applications [47], [48]. As men-
tioned above, the information of salient lesions is also useful
for segmenting the ambiguous lesions in the surrounding
region of salient lesions. Thus, we hope to enhance the abil-
ity of skin lesion segmentation by introducing multi-scale
context information into the encoding and decoding layers.
The architecture of MSCGnet is shown in Fig. 2. In our
MSCGnet, the multi-scale context information is used to
guided the feature learning in both encoding and decoding
paths, which is helpful for accurate semantic segmentation
due to the provision of local and global information [49].
In MSCGnet, the inputs are the dermoscopic image X and
the context imageC , and the output is the result of skin lesion
segmentation P.

In the encoding path, the context information is incorpo-
rated via the addition operation +© of features shown in Fig. 2.
Aiming to ensure the scale consistency, the feature map of the
context image goes though the same encoding processing as
that of the dermoscopic image. The encoders of the context
image and the dermoscopic image consist of multiple repet-
itive blocks including two 3 × 3 convolutions followed by
a rectified linear unit (ReLU) and a 2 × 2 max pooling. The
multi-scale features of the context image and the dermoscopic
image are added element by element (i.e., +© in Fig. 2) before
max pooling operation.

In order to alleviate the influence of information loss
caused by consecutive pooling operations in the encoding
path, the skip connections between the same resolution layers
of the encoder and the decoder proposed in UNet [14] are
also utilized in our MSCGnet. From the experimental results,
it is observed that, except the information symmetry via the
skip connections, extra information obtained from the context
image and the dermoscopic image can effectively improve
the performance of skin lesion segmentation. Thus, in the
decoding path, a context-based attention structure (CAs) is
designed to achieve accurate segmentation results. The details
of CAs will be presented in the next section (i.e., Sec. IV-B).

B. CONTEXT-BASED ATTENTION STRUCTURE
Because of the information loss in the auto-encoder [24],
[25], we design a context-based attention structure (CAs) to
select context features in the decoding path. It can help each
encoding layer obtain effective context information according
to its previous feature layer. Some visualization examples are

FIGURE 3. Comparison between CAs and the traditional element-wise
addition. A© and +© denote our context-based attention structure CAs and
the element-wise addition, respectively. Two samples and their
corresponding ground truths are listed at the bottom of this figure. Based
on A© and +©, the feature maps of the samples are shown in the middle of
this figure. (a–d) are visualizations of feature maps at different places.
The feature maps in the first row are extracted from the first sample and
the second row is for the second one. Obviously, our context-based
attention structure can achieve more effective features.

given in Fig. 3. A© and +© are the context-based attention
structure CAs and the element-wise addition, respectively.
From column (a) and column (c), we can see that the fea-
tures obtained from A© are more effective than that from +©,
especially for ambiguous lesions. It means that the feature
selection of the context information is necessary.

Shown in Fig. 2, the context-based attention structure
(i.e., A© in Fig. 2) is implemented after each up-sampling
operation. The details of CAs is illustrated on the right of
Fig. 2. Different from the traditional channel attentionmecha-
nism [50], the resized demoscopic RGB image is also an input
of the attention structure. The main reason is that demoscopic
images can provide more details than context images. Some
visualization examples are listed in Fig. 4. A© and A©w/o
represent the attention structure with and without the demo-
scopic image, respectively. From column (a) and column (c),
it can be observed that, for ambiguous lesions, the attention
structure including the demoscopic image can provide more
robust features than that without the demoscopic image.

In CAs, after concatenating the context feature and the
resized demoscopic image, a global average pooling, a con-
volution followed by ReLU and a convolution followed by
Sigmoid will be implemented to output a weight vector. Then,
a multiply operation is utilized between the context feature
and the weight vector to select effective context information.
Finally, the selected context features and the corresponding
features of the decoding path will be added element by
element.
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FIGURE 4. Comparison between CAs with and without the dermoscopic
image. A© and A©w/o represent CAs with and without the dermoscopic
image, respectively. Two samples and their corresponding ground truths
are listed at the bottom of this figure. Based on A© and A©w/o, the feature
maps of the samples are shown in the middle of this figure. (a–d) are
visualizations of feature maps at different places. The feature maps in the
first row are extracted from the first sample and the second row is for
the second one. It can be observed that more details can be preserved by
the context information of the dermoscopic images.

V. ITERATIVE MSCGnet
Inspired by [51], [52], the iterative mechanism can effectively
improve the segmentation performance. Thus, we update the
proposed MSCGnet to an iterative version denoted as iMCS-
Gnet. The diagram of iMSCGnet is illustrated in Fig. 5. Given
the stage s ∈ {1, 2, . . . S}, the input of the sth MSCGnet
is the dermoscopic image X and the context image Cs, and
its output is Ps. In iMSCGnet, C1 is provided by UNet, and
Cs+1, s ∈ {1, . . . S − 1} comes from the result Ps of the sth

MSCGnet.

VI. OBJECTIVE FUNCTION
Inspired by the deep supervision introduced in [53]–[55]
which can help deep networks achieve high performance ben-
efiting from deep semantic information, we train iMSCGnet
by a novel objective function L. Shown in Fig. 6, the intro-
duced L comprises of the terms Ls,lF from the l th encod-
ing layers of the sth MSCGnet and the terms LsP from
the sth MSCGnet output of iMSCGnet. It is defined
as

L =
S∑
s=1

αs
L∑
l=1

(
LsP + β

s,lLs,lF
)
, (1)

where αs and βs,l are the weights of the sth MSCGnet and the
l th feature layer of the encoding path in the sth MSCGnet,
respectively; L is the number of the encoding layers; S is
the iterative number of iMSCGnet. The deep supervision

FIGURE 5. The diagram of the iterative MSCGnet. At the sth stage,
the input of the sth MSCGnet is the dermoscopic image X and the context
image Cs, and its output is Ps. C1 is provided by UNet when s = 1, and
Cs+1 = Ps, s > 1.

is shown in Fig. 6. According to the definition of jaccard
distance loss [33], LsP and Ls,lF are defined as

LsP=1−

∑
(i,j)

G(i, j)Ps(i, j)∑
(i,j)

G(i, j)2+
∑
(i,j)

Ps(i, j)2−
∑
(i,j)

G(i, j)Ps(i, j)
, (2)

and

Ls,lF =1−

∑
(i,j)

G(i, j)Fs,l(i, j)∑
(i,j)

G(i, j)2+
∑
(i,j)

Fs,l(i, j)2−
∑
(i,j)

G(i, j)Fs,l(i, j)
,

(3)

where (i, j) represents the spatial index; Ps is the predicted
result of the sth MSCGnet; Fs,l denotes the predicted result
provided from the l th feature layer of the encoding path in the
sthMSCGnet;G(i, j),Ps(i, j) andFs,l(i, j) are the (i, j)th values
of the ground truth, Ps and Fs,l , respectively. The objective
function L can supervise the training of iMSCGnet in an end-
to-end fashion.

VII. EXPERIMENTS
In experiments, we evaluate the performance of iMSCGnet
on four publicly available datasets. The datasets are from
ISBI2016 [1], ISBI2017 [2] and ISIC2018 [3] challenge
named as ‘‘Skin Lesion Analysis Towards Melanoma Detec-
tion’’ and PH2 [4]. All datasets provide RGB dermo-
scopic images and their corresponding ground truths. In the
ISBI2016 dataset [1], there are 900 training images and
379 testing images, which varies from 542 × 718 to
2848 × 4288. The ISBI2017 challenge dataset [2] contains
2000 images for training, 150 images for validation and
600 images for testing. The image size of ISBI2017 varies
from 540 × 722 to 4499 × 6748 pixels. In ISIC2018,
the training set consists of 2594 RGB dermoscopic images
with spatial resolutions ranging from 540 × 722 to 4499 ×
6748. The ground truths of ISIC 2018 [3] validation and
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FIGURE 6. Deep supervision for iMSCGnet. The objective function of iMSCGnet includes Ls
P and Ls,l

F , where s ∈ {1,2, . . .S} and l ∈ {1,2, . . . L}.

An example of Ls,l
F is detailed on the right side and the up-sampling operation is used to resize the size of feature maps to the size of the ground truth.

The whole function is presented in Eqn. 1, and (S, L) is set to (4,5) in the experiments.

test data have not yet been released. Thus, we divide the
training data into 80% training (2076 images) and 20%
validation set (518 images), which are used to evaluate
the performance of our approach. In order to guarantee
the robustness of the model against different parts of the
available data, five-fold cross-validation is used. In PH2 [4]
public dataset, there are 160 non-melanoma cases and
40 melanoma cases with the size varying from 553× 763 to
577× 769.
To evaluate the segmentation capability of the proposed

iMSCGnet on ISBI2016 [1], ISBI2017 [2] and PH2 [4],
we choose three metrics [1], [2] including Jaccard index (JA),
Dice coefficient (DI) and accuracy (AC). They are defined
as:

JA =
|TP|

|FP| + |FN | + |TP|
, (4)

DI =
2× |TP|

|FP| + |FN | + 2× |TP|
, (5)

AC =
|TP| + |TN |

|FP| + |FN | + |TP| + |TN |
, (6)

where TP, TN, FP and FN are the number of true positives,
true negatives, false positives and false negatives, respec-
tively. For ISIC2018, except JA and DI, we also use the
threshold Jaccard index JAth [3] to evaluate the performance.
JAth is defined as

JAth =
{

0 JA < 0.65
JA JA ≥ 0.65.

(7)

Because the height to width ratio of most images is close
to 3:4, we resize all images to 160 × 224 and normalize
them in the image-wise level. To alleviate the overfitting
of iMSCGnet, the data augmentation, including rotation in
the range of (-25◦, 25◦) and randomly horizontal and ver-
tical flipping, is employed to enlarge the training dataset.

The channel number of 5 layers are set as 16, 32, 64, 128 and
256, respectively. The iteration number S = 4 in iMSCGnet.
In Eqn. 1, αs and βs,l are two tunable parameters. In all
experiments, αs, s ∈ {1, 2, 3, 4} are set to {0.7, 0.8, 0.9, 1},
and βs,l = 0.01, s ∈ {1, 2, 3, 4} and l ∈ {1, 2, 3, 4, 5}.

In the training phase, Adam optimizer [56] with an ini-
tial learning rate 0.0001 is used to minimize the objective
function (i.e., Eqn. 1) of iMSCGnet and the mini-batch
size is 16. All experiments are implemented on a com-
puter with an i7-5930K CPU and NVIDIA GTX1080Ti
GPUs.

This section is organized as follows: in Sec. VII-A, VII-B
and VII-C, the ablation studies on four datasets are performed
to analyze the effectiveness of the proposed components.
Then, in Sec. VII-D, we conduct the comparison experiments
of the context information embedded in different layers, e.g.,
shallow feature layers, deep feature layers and all feature
layers. In Sec. VII-E, we do the parameter analysis about
the iteration number S. In order to prove the effectiveness of
increasing weights in the iterative scheme, the comparison
experiments are carried out in Sec. VII-F. Finally, the perfor-
mance of iMSCGnet is compared with other state-of-the-art
methods in Sec. VII-G.

In the ablation experiments, several abbreviations are
defined for clarity. Between the features of the dermoscopic
image and the context image, the element-wise addition struc-
ture of fusing the context (i.e., +© in the encoding path)
is named as CFs. The concatenation operation labeled as
CON is used for the comparison with CFs. In the decoding
path, the context-based attention structure (i.e., A©) is denoted
as CAs. About the analyses of the objective function (i.e.,
Eqn. 1), the whole deep supervision is marked as DS. For
comparison, a simplified version only including the multiple

stage supervision, which is
S∑
s=1

αsLsP, is called asMS. Further-

VOLUME 8, 2020 39705



Y. Tang et al.: iMSCGnet: Iterative Multi-Scale Context-Guided Segmentation of Skin Lesion in Dermoscopic Images

TABLE 1. Ablation studies on the PH2, ISBI2016, ISBI2017 and ISIC2018 datasets. The bold number indicates the best performance in each column.
iMSCGnet is the iterated multi-scale context-guided network. CON denotes the concatenation operation. CFs means the context fusion structure in the
encoder. CAs represents the context-based attention structure in the decoder. SS and MS are the single stage supervision and the multiple stage
supervision, respectively. DS denotes the whole objective function defined in Eqn. 1. iMSCGnet + 1 represents iMSCGnet with the 1 module.

FIGURE 7. Qualitative evaluation of ablation study on three datasets. The samples in row (a-c), row (d) and row (e-g) are from PH2,
ISBI2016 and ISBI2017, respectively. Red and blue contours are ground truths and segmentation results, separately.

more, single supervision of the last stage LSP is represented
by SS.

A. ABLATION STUDIES ON PH2
In the section, 200 dermoscopic images from PH2 are tested
on the model, which is trained on the ISBI2017 training
data [2]. It can be used to verify the generalization ability of
ourmethod. The quantitative and qualitative results are shown
in Table 1 and Fig. 7, respectively. It can be seen that:
• Compared with CON in Table 1, CFs significantly

improves all metrics. For example, under the supervi-
sion of MS, the improvements of JA, DI and AC are
(2.04%, 1.59%, 1.34%). The reason would be that the
element-wise addition is better for fusing the spatial infor-
mation of the context image.

• Benefit from CAs, the performances of JA, DI and AC
are further improved in Table. 1. It means that the selected
context information can help the decoder to obtain better
segmentation results.
• Among SS, MS and DS, the supervision with more

supervisors generally enhances the ability of the skin lesion
segmentation. Obviously, the deep supervision can help the
model encode more semantic information and make it more
discriminative.
• In Fig. 7, three samples from the PH2 dataset are shown

from row (a) to row (c). The multi-scale context information
(CFs and CAs) and the deep supervision (DS) are useful
for skin lesion segmentation. The contours of segmenta-
tion results show in the last column are close to that of
ground truths. It means that our proposed method can achieve
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accurate segmentation boundaries due to the multi-scale con-
text information.

B. ABLATION STUDIES ON ISBI2016 AND ISBI2017
In the section, ablation studies are executed on the ISBI2016
(900 images for training and 379 images for testing)
and ISBI2017 (2000 images for training, 150 images for
validation and 600 images for testing) datasets. Table 1
presents the quantitative results, and the qualitative evalu-
ation is shown in row (d-g) of Fig. 7. It can be observed
that:
•On the two datasets,CFs andCAs can improve JA, DI and

AC generally. Under the supervision of MS, iMSCGnet
with CFs and CAs outperforms iMSCGnet with CON in
terms of JA, DI and AC. The improvement of (JA, DI,
AC) is (0.65%, 0.54%, 0.22%) on the ISBI2016 dataset, and
(1.25%, 0.91%, 0.45%) for the ISBI2017 dataset.
• Compared with the SS supervision, the MS supervi-

sion can achieve better performances on the two datasets.
Moreover, the DS supervision can further improve the
performances of iMSCGnet, because the deep supervi-
sion can lead to effective pattern encoding in multi-scale
layers.
• In row (d-g) of Fig. 7, the segmentation results in the

last column are close to the ground truths due to the supports
of CFs, CAs and DS. Benefiting from the context informa-
tion, the segmentation results of low-contrast skin lesions
are notable. The main reason is that these ambiguous skin
lesions can be mined according to the salient lesions around
them.

C. ABLATION STUDIES ON ISIC2018
In this section, we conduct the ablation experiment on
ISIC2018 training data, which divided into 80% for training
and 20% for validation [57]. To fully evaluate the segmen-
tation performance of iMSCGnet, five-fold cross-validation
is performed and we report the mean of the five results
in Table 1. We can see that:
• The employments of CFs and CAs both raise the value

of all metrics including JA, DI and JAth in Table 1. Under
the supervision of MS, CFs and CAs get improvements of
(0.85%, 0.55%, 1.33%) and (0.76%, 0.47%, 1.33%) in terms
of (JA, DI, JAth), respectively.
• iMSCGnet with the DS supervision gains an improve-

ment of (JA, DI, JAth), because the multiple supervisors make
the model encode more discriminative features. With the
assistance ofDS, the segmentation accuracy of the iMSCGnet
with CAs and CFs is higher than iMSCGnet with CON with
a large margin: (1.89%, 1.27%, 3.22%) in (JA, DI, JAth).

D. STRUCTURE ANALYSIS OF MULTI-SCALE CONTEXT
GUIDANCE
To further analyze the structure of iMSCGnet, we conduct
experiments on ISBI2017 to explore the effectiveness of con-
text information at different layers. Based on this motivation,
the context information is embedded in the first layer, the fifth

layer and all layers, respectively. Four samples are listed
in Fig. 8. The segmentation results are shown in columns 3,
4 and 5, separately. We can observe that:
• Based on the context information embedded in the first

layer, the iMSCGnet pays more attention to salient skin
lesions while being poor at the segmentation of low-contrast
lesions. Because of the low-level semantic information and
the limited receptive field, it is hard for iMSCGnet with
low-level context information to mine ambiguous lesions in
a large range.
• Different from the low-level context information,

the context information used in the fifth layer includes more
semantic patterns. From the results shown in the fourth col-
umn, it is found that some ambiguous lesions can be mined
successfully. However, due to lacking details contained in the
low-level context information, the results of some ambiguous
lesions are unclear, especially the result of the first sample.
• Thanks to multi-scale context information, our

iMSCGnet achieves the best segmentation results in both
salient and ambiguous lesion regions. Shallow context fea-
tures contain local patterns and deep context features are rich
in the global context information. Thus, the combination of
multi-scale context information can enhance the discrimina-
tive ability of iMSCGnet.

E. PARAMETER SENSITIVITY INVESTIGATION ON
ITERATION NUMBER S
In order to explore the performance of iMSCGnet with dif-
ferent iteration number S, we conduct the comparison exper-
iments on the ISBI2017 and PH2 datasets. JA and DI are
applied as the evaluation indicator and the result is demon-
strated in Fig. 9. It is observed that iMSCGnet obtains the
highest JA and DI when S = 4. The iterative scheme can be
regarded as a process of finding the optimal value. It means
that the iteration number, which is larger than the optimal
value, might lead to worse segmentation results. Thus, in all
experiments, we set S to 4.

F. PARAMETER SENSITIVITY INVESTIGATION ON
ITERATION WEIGHT αs

Aiming to investigate the parameter sensitivity of the weights
αs in Eqn. 1, we design a comparison experiment between
iMSCGnet with different combinations of the weights αs.
Because the iteration number S is set as 4, we choose
{1, 1, 1, 1} and {0.7, 0.8, 0.9, 1} for comparison. The first
combination consists of equal weights and incremental
weights for the second one. Some examples are shown
in Fig. 10. We can see that:
• No matter what weight is given, the segmentation results

can be refined stage by stage, because the iteration mech-
anism can help iMSCGnet refine the results of skin lesion
segmentation by reducing the distance between the solution
and the optimal one.
• iMSCGnet with the incremental weights achieves bet-

ter segmentation accuracy than that with equal weights.
The main reason is that the results of early stages are
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FIGURE 8. Examples of the segmentation results of iMSCGnet with different structures. In order to analyze the effectiveness of
the context information embedded in different layers, the context information is fused in the shallow layer (i.e., layer 1),
the deep layer (i.e., layer 5) and all layers (i.e., multi-scale), respectively. Column 1: four dermoscopic images. Column 2:
ground truths (GT). Column 3-5: segmentation results.

FIGURE 9. Parameter sensitivity investigation on iteration number S. The iteration number is varied along the x-axis
and the percentage of metrics according to the iteration number is plotted on the y-axis.

not reliable. Thus, a large wight of the early stage will
lead to noises in the final result. According to this obser-
vation, the weights {0.7, 0.8, 0.9, 1}, where small val-
ues are assigned to the early stages, are adopted in the
experiments.

G. COMPARISON WITH THE STATE-OF-THE-ARTS
Here, we analyze iMSCGnet on the PH2, ISBI2016,
ISBI2017 and ISIC2018 datasets. On the Ph2 dataset,
we compare iMSCGnet with different state-of-the-art meth-
ods: mFCN-PI [21], Peng et al. [58], DermoNet [59],
Xie et al. [60], DCL-PSI [37], Goyal et al. [41] and

FrCN [40]. On the ISBI2016 dataset, we choose the
state-of-the-arts as follows: Team-CUMED [35], Team-
Rahman [61], DermoNet [59], Mirikharaji et al. [20],
Deng et al. [62], mFCN-PI [21], Yuan et al. [33], Nasr-
Esfahani et al. [63], Xie et al. [60] and DCL-PSI [37].
On the ISBI2017 dataset, the comparison methods are: Team-
BMIT [64], Team-NLP LOGIX [65], Team-MtSinai [66],
FocusNet [67], Li et al. [38], SkinNet [34], Tu et al. [39],
Tschandl et al. [68], DCL-PSI [37], FrCN [40] and PA-
Net [36]. For the ISIC2018, FrCN [40], GAN-FCN [69]
and MobileGan [57] are adopted. All details are listed
in Table 2, 3, 4 and 5. It can be seen that:
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FIGURE 10. Parameter sensitivity investigation on iteration weight αs. Column 1: dermoscopic images. Column 2: ground truths (GT). Column
3-6: results of four stages with different combinations of iteration weights.

TABLE 2. Comparison with other methods on the PH2 dataset. The bold
number indicates the best performance in each column.

TABLE 3. Comparison with other methods on the ISBI2016 dataset. The
bold number indicates the best performance in each column.

• Because the PH2 dataset is very small, the state-of-the-
art methods usually train their models on other big datasets
(e.g., ISBI2016 and ISBI2017). Then, the models are tested
on the PH2 dataset for evaluating their generalization abil-
ity. In Table 2, the training data of the first part is the
ISBI2016 dataset, and the ISBI2017 dataset for the second
part. It can be found that our method generally outperforms
other methods. Due to the large training set of ISBI2017, our
iMSCGnet achieves significant improvements of JA, DI and
AC. It means that our method has strong generalization abil-
ity. It is very useful for lots of applications, which are lack of
enough training samples.
•On the ISBI2016 dataset, ourmethod also obtains the best

results. The main reason is that, under the deep supervision,
multi-scale context information effectively guide the feature
extraction in an iterative fashion.
• On the ISBI2017 dataset, the proposed iMSCGnet gen-

erally achieves better results than most of the state-of-the-
art methods. In Table 4, we can see that FrCN [40] has

TABLE 4. Comparison with other methods on the ISBI2017 dataset. The
bold number indicates the best performance in each column.

TABLE 5. Comparison with other methods on the IBSI2018 dataset. The
bold number indicates the best performance in each column.

better DI and AC than ours. However, in Table 2, com-
pared with FrCN [40], our method gets an improvement of
(3.42%, 1.59%, 0.63%) in terms of (JA,DI ,AC). It means
that FrCN [40] might tend to overfit to the training set of
ISBI2017. Obviously, our iMSCGnet gains strong general-
ization ability on the PH2 dataset while achieving comparable
performances on the ISBI2017 dataset.
• The ISIC2018 dataset is a new challenging dataset pub-

lished last year. Due to inter-observer and intra-observer
variability, the metrics used in the ISBI2016 and ISBI2017
datasets can not accurately measure the segmentation accu-
racy [3]. Thus, on the ISIC2018 dataset, a new measurement,
denoted as JAth, is designed to evaluate the performance of
skin lesion segmentation. Shown as Table 5, our method still
outperforms other state-of-the-arts.

VIII. CONCLUSION
In this work, we propose the multi-scale context-guided net-
work, denoted as MSCGnet, which introduces the context
information into multi-scale feature layers to enhance the
performance of the skin lesion segmentation. In the encoding
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path, multi-scale context information is extracted to guide
the feature learning. In the decoding path, the context-based
attention structure is proposed to effectively select the context
information. Furthermore, we upgrade the MSCGnet to its
iterative version, named as iMSCGnet. iMSCGnet can refine
the segmentation result step by step, and be trained in an
end-to-end fashion under the deep supervision of a novel
objective function. The experimental results on four challeng-
ing datasets demonstrate the effectiveness of the proposed
iMSCGnet.
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