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ABSTRACT Crowd emotional contagion occurs in both virtual and physical cyberspace at the same time.
To realistically simulate the process of crowd emotional contagion, the influences of virtual cyberspace
and physical cyberspace should be considered comprehensively. In addition, control strategies significantly
affect the speed and scale of emotional contagion in a crowd. However, control strategies described by
existing studies are inaccurate since few of them consider both physical and virtual cyberspace to jointly
study the influence of control strategies on crowd emotional contagion. To achieve more accurate control,
we first establish a novel personalized emotional contagion computational (NP-ECC) model to study
control strategies of crowd emotional contagion coupling the physical and virtual cyberspace. Second,
we construct a personalized BA scale-free network to calculate the phase transition threshold of the proposed
NP-ECC model more accurately. Finally, we propose two algorithms, control strategies-BA (CS-BA) and
threshold-BA (T-BA), to verify the stability of the NP-ECC model and the accuracy of the phase transition
threshold, respectively. The experimental results show that our method can better control the speed and scale
of crowd emotional contagion and thus can provide guidance for a large-scale crowd evacuation.

INDEX TERMS Control strategies, phase transition, personalized BA scale-free network, crowd emotional
contagion.

I. INTRODUCTION
Recently, sudden natural disasters and public events such as
earthquakes and fires have attracted increasing public atten-
tion and caused negative social impacts due to their extremely
destructive nature [1], [2]. With the rapid development of
society, an individual’s emotions will be affected by informa-
tion in physical and virtual cyberspace as well as individual
personality. At present, control strategies and thresholds of
crowd emotional contagion are mainly analyzed by two types
of approaches. The first is the threshold and control strategies
of emotional contagion in physical cyberspace, i.e., the study
of threshold and control strategies of emotional contagion
among geographically adjacent individuals. For example,
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Wang et al. [3] proposed a emotional contagion calculation
model to solve the problem of emotional contagion con-
trol in physical cyberspace. Diefendorff and Gosserand [4]
suggested that individuals could use emotion self-regulation
strategies to control emotions and avoid large-scale occur-
rence of emotional contagion. Bertozzi et al. [5] consid-
ered an agent-based emotional contagion model coupled
with one-dimensional motion and obtained the threshold
of such a model. The second group of studies explore the
threshold and control strategies of emotional contagion in
virtual cyberspace, i.e., they study the threshold and control
strategies of emotional contagion among individuals in social
networks. For example, Rempala [6] tested susceptibility
strategies to limit the ‘‘capture’’ of negative emotions from
others by playing videos. Hadjikhani et al. [7] studied the
emotional contagion threshold of panic by playing short
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video clips. However, the existing studies independently
explore the control strategies and threshold of emotional
contagion in a single physical or virtual cyberspace without
considering comprehensively the crowd emotional contagion
that will be affected by both physical and virtual cyberspace.
Therefore, they cannot accurately implement control strate-
gies and obtain the phase transition threshold.

In fact, in the real world, an individual’s emotions are
affected by emotional contagion in physical and virtual
cyberspace. While individuals are more susceptible to emo-
tional contagion in the physical cyberspace, the range of
emotional contagion in the virtual cyberspace is wider. Thus,
emotional contagion in dual spaces may have more com-
plex effects on the final emotional state of an individual.
In addition, individual personality is also an important fac-
tor affecting emotional contagion. Thus, in the scenario of
combining virtual cyberspace with a physical cyberspace,
studying the control strategies of crowd emotional contagion
and calculating the phase transition thresholdmore accurately
is a challenging task.

To address this problem, we propose an NP-ECC model
to study control strategies of emotional contagion coupling
the physical and virtual cyberspace and to calculate the phase
transition thresholdmore accurately. To the best of our knowl-
edge, this is the first method developed to study control
strategies while considering both the virtual cyberspace and
the physical cyberspace. The contributions of this research
are as follows.

1) We first propose the emotional contagion mecha-
nism to consider the influences of the virtual and
physical cyberspace as well as personality on crowd
emotional contagion. Then, we propose the control
strategies for emotional contagion coupling the phys-
ical and virtual cyberspace and construct a NP-ECC
model to control the speed and scale of emotional
contagion.

2) We construct a personalized BA scale-free network to
consider the personality difference of individuals and
calculate the phase transition threshold of the NP-ECC
model in such a network.

3) We propose two algorithms CS-BA and T-BA to verify
the stability of the NP-ECC model and the accuracy of
the phase transition threshold, respectively.

The remainder of this paper is organized as follows.
In Section II, we present a brief review of the previous studies
of control strategies and thresholds of crowd emotional conta-
gion. In Section III, we provide an overview of the framework
of our method. In Section IV, we introduce in detail the
control strategies of the NP-ECCmodel coupling the physical
and virtual cyberspace. Afterwards, we study the phase tran-
sition threshold of the NP-ECC model in a personalized BA
scale-free network in Section V. Section VI describes the sim-
ulation algorithm of the NP-ECCmodel in a personalized BA
scale-free network. Experiments are presented in Section VII,
and conclusions are stated in Section VIII.

II. RELATED WORK
Although numerous studies have explored crowd emotions
from the perspective of calculations and simulations, few
existing studies have discussed the problem of emotional con-
tagion coupling the virtual and physical cyberspace [8]–[16].
The so-called emotional contagion refers to an individual’s
emotion being transmitted to individuals through interac-
tions between individuals (such as face-to-face communi-
cation) [17]. Emotional contagion is very important when
one’s emotional state affects the behavior of other individ-
uals. Specifically, an individual’s negative emotion breaks
out through emotional contagion and further affects col-
lective behavior, thus having a relatively substantial social
impact [18], [19]. Computational modeling of emotional
contagion is an important challenge in understanding, pre-
dicting and controlling the process of emotional contagion.
Fortunately, this field has been attracting more and more
researchers [20]–[24].

A. CONTROL STRATEGIES
Because emotional contagion is similar to the spread of infec-
tious diseases in a crowd, researchers have studied emotional
contagion using dynamic epidemiological models, most of
which are based on the susceptible-infected-recovered (SIR)
model [25]–[28]. In addition, studies of emotional contagion
mainly focus on modeling its process and rely on studies
of emotional recognition methods to reveal the dynamic
process of emotional contagion. Few studies have explored
the strategies for controlling emotional contagion [29], [30].
Our ultimate goal of studying control strategies of crowd
emotional contagion is to control the speed and scale of
emotional contagion in emergencies and provide guidance
for crowd evacuation. Some control strategies, including vac-
cination, quarantine and treatment, inspired by infectious
disease control studies, can be used to suppress emotional
contagion [31], [32]. Ledzewicz and Schättler [33] discussed
an optimal single control strategy for general SIRmodels with
vaccines and treatments; however, such control strategies are
aimed at biological epidemics and are unsuitable for con-
trolling emotional contagion. Zhang et al. [34] proposed an
optimization strategy of positive emotion transmission during
crowd evacuation, and established a model to maximize the
use of positive emotional contagion.

In fact, most of the above studies of emotional conta-
gion focus on modeling and simulating the emotional con-
tagion process in a single space, and there is no coupling
of the physical and virtual cyberspace in studying the con-
trol strategies of emotional contagion. Therefore, the speed
and scale of emotional contagion can not be accurately
predicted.

B. THRESHOLDS
To better study the phase transition threshold in a person-
alized emotional contagion model, we can refer to the epi-
demic threshold since the process of emotional contagion is
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similar to the infection process of an epidemic. At present,
most studies on epidemic threshold are based on epidemio-
logical studies of complex networks, most of which are based
on the SIR model [35]–[37]. In [38] and [39], the authors
regard the epidemic threshold as simply the average of those
of complex networks. In previous studies, it was assumed that
the infection rate of all links in complex networks was the
same, as was the recovery rate of all nodes [40]. Chen [35]
studied the heterogeneity of infection rate and recovery rate
in complex networks, but simply divided infection rate and
recovery rate into two tiers without considering the differ-
ence in individual personalities. Therefore, the researchers
could not accurately obtain the epidemic threshold. We can
consider the latter in a network to study the threshold
of personalized emotional contagion spreading in complex
networks.

C. EMOTION CONTAGION IN CROWD SIMULATION
Most studies about control strategies and thresholds of emo-
tional contagion in crowd simulation have focused on a sin-
gle contagion cyberspace. Huang et al. [41] proposed an
Agent-Based Emotion Contagion (ABEC) model to simulate
group violence in the physical cyberspace. Xiang et al. [42]
studied on the emotion contagion in dynamic process of the
virtual pedestrian. Li et al. [43] presented an antagonistic
crowd simulation model (ACSEE) to simulate antagonistic
crowd behaviors in the real-world scenarios. Park proposed a
crowd simulation approach and algorithm to verify emotional
contagion in crowd simulation [44], [45]. Xue et al. [46]
proposed an improved emotional contagion model to simu-
late emotional contagion in crowd movement. Xu et al. [47]
proposed a SMOG-FVDM (Smog Full Velocity Difference
Model) model to simulate the emotional contagion in the real
life. Lv et al. [48] proposed a new emotional contagion mech-
anism by combining the SIR model and the OCEAN person-
ality model to simulate the crowd movement in the political
rallies. They found that the emotion can affect individual

behavior decision and the event from the virtual cyberspace
can trigger group events in the physical cyberspace. However,
the information in physical cyberspace and virtual cyberspace
influence emotional contagion in crowd simulation jointly.
Therefore, these approaches of crowd simulation can not
realistically simulate the process of crowd emotional conta-
gion, and can not accurately predict the speed and scale of
emotional contagion.

III. OVERVIEW
Our goal is to study control strategies of crowd emotional
contagion in scenarios in virtual and physical cyberspace and
to calculate the phase transition threshold more accurately,
so as to better control the speed and scale of emotional
contagion in crowd evacuation. The framework proposed
in this paper includes three main steps, as shown in
Figure 1: the NP-ECC model construction, the phase transi-
tion threshold solution for the NP-ECC model, the NP-ECC
model simulation algorithm. To achieve more accurate con-
trol, we first establish the NP-ECC model to study con-
trol strategies of crowd emotional contagion coupling the
physical and virtual cyberspace. Second, we construct a
personalized BA scale-free network to calculate the phase
transition threshold of the proposed NP-ECC model more
accurately. Finally, we propose two algorithms CS-BA and
T-BA to verify the stability of the NP-ECC model and
the accuracy of the phase transition threshold, respectively.
We will introduce the details of this method in the following
sections.

IV. CONTROL STRATEGIES FOR THE NP-ECC MODEL
To better control the speed and scale of crowd emotional
contagion, we first propose a personalized emotional conta-
gion mechanism, and then propose personalized emotional
contagion control strategies coupling the physical and vir-
tual cyberspace. These will be separately introduced in the
following two subsections.

FIGURE 1. The framework of our method.
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A. PERSONALIZED CROWD EMOTIONAL CONTAGION
MECHANISM COUPLING THE VIRTUAL AND
PHYSICAL CYBERSPACE
To realistically simulate the process of emotional conta-
gion, we consider the influence of virtual and physical
cyberspace and individual personality on emotional conta-
gion. We assume that a region contains a mixed population
of N individuals and can be in one of three states at any
time: susceptible (S), infected (I), or recovered(R). Therefore,
we refer to the classical SIR model [26], [27]. Since we
consider the common influence of virtual and physical
cyberspace on emotional contagion, we divide individuals
into six categories according to their emotional states on the
basis of SIR model as shown in Table 1. Similarly, we use
the OCEAN personality model [49] to study personalized
emotional contagion. The model has five factors: openness,
extroversion, easygoing, neuroticism, and responsibility. The
more neurotic an individual is, the more susceptible he or she
is to emotional contagion [50]. In this paper, we consider the
personality characteristics of ‘‘Neuroticism’’ in the OCEAN
personality model. The emotional states of neurotic individu-
als are divided into the following four categories: calm state,
anxious state, panic state, and hysterical state. We randomly
assign emotional states to each individual and propose Svir (i),
Pvir (i), Sphy(i) and Pphy(i) based on personalized emotional
states. According to the literature [52], the Svir (i), Pvir (i),
Sphy(i) and Pphy(i) of individuals can be divided into four lev-
els corresponding to four different emotional states. Without
loss of generality, we suppose that these variables are subject
to a uniform distribution U (·), as shown in Table 2. In addi-
tion, according to the common sense that individuals have
immersive experiences in the physical cyberspace, we believe
that they are more susceptible to the influence of emotional
contagion in the physical cyberspace, and their emotions are
more easily recovered in the physical cyberspace. Therefore,
we set the strength of emotional contagion and emotional
recovery in the physical cyberspace to be larger than in
the virtual cyberspace. Since the individuals in a calm state
are unlikely to be affected by emotional contagion, we set
Svir (i) = 0, Pvir (i) = 0, Sphy(i) = 0 and Pphy(i) = 0 if the
individual’s personalized emotional state is calm.

TABLE 1. The individuals in the crowd are divided into six categories
according to their emotional states.

When an infected individual i encounters a recovered
individual, the former may probabilistically become a recov-
ered individual. For example, a calm individual (an emotion-
ally recovered individual) can help a panicking individual
(an emotional infector) through face-to-face or online

TABLE 2. Values of Svir (i ), Pvir (i ), Sphy (i ) and Pphy (i ).

communication, thus making the panicking individual in an
emergency become a calm individual with some probabil-
ity. Similarly, when a susceptible individual i encounters an
infected individual, the former may probabilistically become
an infected individual. For example, a panicking individual
(an emotional infector) can infect an emotionally susceptible
individual through face-to-face and online communication,
thus causing the latter individual in an emergency to become
a panicking individual with some probability. To describe
individual i more intuitively, we set up an eight-tuple S(i) =
(Svir (i),Pvir (i), Sphy(i),Pphy(i), Ivir , Iphy, rvir , rphy) to repre-
sent the individual’s personalized emotional model. The
parameters description of eight-tuple as shown in Table 3.

TABLE 3. The parameters used in the eight-tuple.

The combination of physical cyberspace and virtual
cyberspace as well as personality is neglected in the exist-
ing models of emotional contagion. This difference may
lead to new causes of emotional contagion. In the [51],
the individual’s susceptibility positively related to the sensi-
tivity of the individuals. In addition, individuals with differ-
ent personalities have heterogeneous infection and cure rate
which will affect the emotional contagion directly [52], [53].
Considering the individual personality differences, we regard
that the infection rate of the individual is affected by the own
strength of emotional contagion and the infection rate of the
infected individuals. The cure rate of the individual is affected
by the own strength of emotional recovery and the cure rate of
the recovered individuals. That is to say, a susceptible individ-
ual who comes into contact with an infected individual will
be affected by the infection rate of the latter and the former’s
own strength of emotional contagion. Similarly, an infected
individual who comes into contact with a recovered indi-
vidual will be affected by cure rate of the latter and the
former’s own strength of emotional recovery. Thus, we define
the probability of a susceptible individual being infected by
virtual cyberspace’s infected individual is IvirSvir (i), the prob-
ability of a susceptible individual being infected by physical
cyberspace’s infected individual is IphySphy(i), the probability
of a infected individual being cured by virtual cyberspace’s
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recovered individual is rvirPvir (i), and the probability of
a infected individual being cured by physical cyberspace’s
recovered individual is rphyPphy(i). In this subsection, we con-
sider the influence of physical cyberspace, virtual cyberspace
and individual personality on the process of emotional conta-
gion, and define the following new transition rules between
states at any time t .
(1) If i ∈ CPS , j ∈ CVI or j ∈ CPI , i may be infected

by j with probability IvirSvir (i) or IphySphy(i) and become a
member of CPI .
(2) If i ∈ CVS , j ∈ CVI or j ∈ CPI , i may be infected

by j with probability IvirSvir (i) or IphySphy(i) and become a
member of CVI .
(3) If i ∈ CPI , j ∈ CVR or j ∈ CPR, imay be cured by j with

probability rvirPvir (i) or rphyPphy(i) and become a member
of CPR.

(4) If i ∈ CVI , j ∈ CVR or j ∈ CPR, imay be cured by j with
probability rvirPvir (i) or rphyPphy(i) and become a member
of CVR.

B. CONTROL STRATEGIES FOR EMOTIONAL CONTAGION
Based on the mechanism of crowd emotional contagion pro-
posed above, in this subsection we further formulate the
control strategies of crowd emotional contagion coupling the
physical and virtual cyberspace, with such strategies designed
to minimize the speed and scale of crowd emotional conta-
gion in an emergency. To better control emotional contagion,
we should set control strategies for individuals in infected
and susceptible states, respectively. Therefore, we propose
control strategies including preventive control strategies and
treatment control strategies. Preventive control strategies are
mainly aimed at individuals in the susceptible state, and
treatment control strategies mainly target individuals in the
infected state. Preventive and treatment control strategies will
be introduced in the following two parts.

1) PREVENTIVE CONTROL STRATEGIES
Preventive control strategies entail prevention in the physi-
cal and virtual cyberspace. Physical cyberspace prevention,
which tells susceptible individuals in the physical cyberspace
that a dangerous event has been effectively controlled
by the emergency management personnel, is expressed as
fphy1(PSphy(t),Vphy1(t)). Virtual cyberspace prevention, which
tells susceptible individuals in the virtual cyberspace that
a story about a dangerous event has been clarified by the
official media on the network or that solution measures have
been announced, is expressed as fvir1(PSvir (t),Vvir1(t)). As a
result, applying preventive control strategies against negative
or panic emotions in advance will result in susceptible indi-
viduals never panicking about danger, and not spreading such
panic emotions when perceiving them in the future.

2) TREATMENT CONTROL STRATEGIES
Treatment control strategies entail treatment in the physical
and virtual cyberspace. Physical cyberspace treatment, which
allows emergency administrators to spread a positive emotion

to infected individuals in the physical cyberspace to eliminate
panic or negative emotions of infected individuals in the
physical cyberspace, is expressed as fphy2(PIphy(t),Vphy2(t)).
Virtual cyberspace treatment, which allows official media
to spread a positive emotion to infected individuals in the
virtual cyberspace to eliminate panic or negative emotions of
infected individuals in the virtual cyberspace, is expressed as
fvir2(PIvir (t),Vvir2(t)). As a result, emergency managers and
official media can relieve the panic and negative emotions of
infected individuals through such treatment strategies as com-
fort and care. After treatment, infected individuals become
recovered individuals and no longer spread such panic and
negative emotions.

Functions fphy1(PSphy(t),Vphy1(t)), fvir1(PSvir (t),Vvir1(t)),
fphy2(PIphy(t),Vphy2(t)) and fvir2(PIvir (t),Vvir2(t)) represent
the actions of control strategies. Without losing generality,
we define these functions as follows:

fphy1(PSphy(t),Vphy1(t)) = φphy1P
S
phy(t)Vphy1(t), (1)

fphy2(PIphy(t),Vphy2(t)) = φphy2P
I
phy(t)Vphy2(t), (2)

fvir1(PSvir (t),Vvir1(t)) = φvir1P
S
vir (t)Vvir1(t), (3)

fvir2(PIvir (t),Vvir2(t)) = φvir2P
I
vir (t)Vvir2(t). (4)

The parameters used in the above functions are summa-
rized in Table 4. Here, Vphy1(t), Vvir1(t), Vphy2(t) and Vvir2(t)
are face-to-face control signals (e.g., facial expressions, lan-
guage or official documents) that emergency managers and
official media can adjust at any time. The φphy1, φphy2, φvir1
and φvir2 represent the probabilities of successfully imple-
menting control strategies for individuals in the respective
different states, where φphy1, φphy2, φvir1, φvir2 ∈ [0, 1].
Combining the above control strategies with the crowd emo-
tional contagion mechanism proposed in the above subsec-
tion, a control framework of crowd emotional contagion is
established, as shown in Figure 2. The definition of each arc
in Figure 2 is shown in Table 5. Therefore, we can obtain
the average field equation of the NP-ECC model control
strategies as follows:

dPIvir (t)

dt
= f (PSvir (t),P

I
vir (t))+ f (P

S
vir (t),P

I
phy(t))

− f (PIvir (t),P
R
vir (t))− f (P

I
vir (t),P

R
phy(t))

− fvir2(PIvir (t),Vvir2(t))− kP
I
vir (t), (5)

dPSvir (t)

dt
= −f (PSvir (t),P

I
vir (t))− f (P

S
vir (t),P

I
phy(t))

− fvir1(PSvir (t),Vvir1(t))− kP
S
vir (t), (6)

TABLE 4. The constant parameters used in the functions.
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FIGURE 2. Framework of the NP-ECC model. Each circle represents an
individual set in different states in the physical and virtual cyberspace.
Each arc represents a transition rule between each pair of states, and the
weight on each arc represents a change of individual proportions from
one state to another over time. Note that the red arc represents control
strategies.

dPRvir (t)

dt
= f (PIvir (t),P

R
phy(t))+ f (P

I
vir (t),P

R
vir (t))

− kPRvir (t)+ fvir1(P
S
vir (t),Vvir1(t))

+ fvir2(PIvir (t),Vvir2(t)), (7)

dPIphy(t)

dt
= f (PSphy(t),P

I
vir (t))+ f (P

S
phy(t),P

I
phy(t))

− f (PIphy(t),P
R
vir (t))− f (P

I
phy(t),P

R
phy(t))

− fphy2(PIphy(t),Vphy2(t))− kP
I
phy(t), (8)

dPSphy(t)

dt
= −f (PSphy(t),P

I
vir (t))− f (P

S
phy(t),P

I
phy(t))

− fphy1(PSphy(t),Vphy1(t))− kP
S
phy(t), (9)

dPRphy(t)

dt
= f (PIphy(t),P

R
phy(t))+ f (P

I
phy(t),P

R
vir (t))

− kPRphy(t)+ fphy1(P
S
phy(t),Vphy1(t))

+ fphy2(PIphy(t),Vphy2(t)). (10)

It is clear that Equations (5)-(10) establish a dynamic sys-
tem based on ordinary differential equations, which is called
the NP-ECC model. It is a personalized emotional conta-
gion model that combines physical and virtual cyberspace
in prevention and treatment strategies. Since individuals
may overlap slightly in the physical and virtual cyberspace,
to represent the NP-ECC model more accurately we consider

the overlap of individuals in a group and use k to denote
it. Svir and Pvir represent the average emotional contagion
and recovery strength of susceptible and infected individu-
als, respectively, in the same emotional state in the virtual
cyberspace. Sphy and Pphy represent the average emotional
contagion and recovery strength of susceptible and infected
individuals, respectively, in the same emotional state in the
physical cyberspace. The NP-ECC model has the following
initial values:

PSvir (t) ≥ 0, PSphy(t) ≥ 0,PIvir (t) ≥ 0,

PIphy(t) ≥ 0, PRvir (t) ≥ 0,PRphy(t) ≥ 0. (11)

0 ≤ Vvir1(t) = Vvir2(t) ≤ 1× 10−6,

0 ≤ Vphy1(t) = Vphy2(t) ≤ 1× 10−5. (12)

The solutions of the NP-ECC model must satisfy the fol-
lowing constraint at any time:

PSvir (t)+ P
S
phy(t)+ P

I
vir (t)+ P

I
phy(t)+ P

R
vir (t)+ P

R
phy(t)=1.

(13)

Considering the practical meanings of PSvir (t), P
S
phy(t),

PIvir (t), P
I
phy(t), P

R
vir (t) and PRphy(t) in emotion contagion,

we define the domain of the solutions of the NP-ECC
model by � = {(PSvir (t),P

S
phy(t),P

I
vir (t),P

I
phy(t),P

R
vir (t),

PRphy(t))|P
S
vir (t),P

S
phy(t),P

I
vir (t),P

I
phy(t),P

R
vir (t),P

R
phy(t) ≥ 0,

PSvir (t)+P
S
phy(t)+P

I
vir (t)+P

I
phy(t)+P

R
vir (t)+P

R
phy(t) = 1}.

We call PSvir (t), P
S
phy(t), P

I
vir (t), P

I
phy(t), P

R
vir (t) and P

R
phy(t)

the state variables of the NP-ECC model, and apply the tuple
(PSvir (t), P

S
phy(t), P

I
vir (t), P

I
phy(t), P

R
vir (t), P

R
phy(t)) to represent

the state of the NP-ECC model at time t .

V. THE PHASE TRANSITION THRESHOLD OF THE NP-ECC
To better control the speed and scale of crowd emotional
contagion, we need to calculate the phase transition threshold
of the NP-ECC model more accurately. We first construct a
personalized BA scale-free network, and then calculate the
phase transition threshold of the NP-ECC model in such a
network more accurately. We will describe these operations
in detail in the following two subsections.

TABLE 5. Definition of arcs shown in FIGURE 2.
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A. PERSONALIZED BA SCALE-FREE NETWORK
During the process of crowd emotional contagion, the crowd
can be regarded as a complex network with humans being
nodes and human-to-human relationships being the edges that
connect nodes. The BA scale-free network [54], [55] is com-
monly used to study emotional contagion in social networks
since its growth and the preferential attachment characteristic
approximate the process of emotional contagion in real-world
networks. Previous studies have focused on determining
thresholds of crowd emotional contagion under homogeneous
infection and cure rates or heterogeneous infection rates,
without considering the influence individual personality dif-
ferences on infection and cure rates. That is to say, the prob-
ability of any node to transmit emotion to its neighbor nodes
is equal in the BA scale-free network, but the infection rate
between nodes will be affected by individual personality
differences during the process of emotional contagion.

To address this problem, we consider the influences of
individual personality differences on crowd emotional con-
tagion in this paper. Therefore, we construct a personalized
BA scale-free network to analyze and simulate the threshold
of the NP-ECC model. The emotional contagion behavior
of the physical and virtual cyberspace, which is individuals
with a certain probability for emotional contagion walking on
a personalized BA scale-free network. The personalized BA
scale-free network constructed in this paper is amultiplex net-
work formed by two layers. The bottom layer is formed by the
network of physical cyberspace, while the top one is formed
by the network of virtual cyberspace. The coupling of virtual
cyberspace and physical cyberspace is that the nodes of two
layers are connected by randomly generated edges. The indi-
viduals in physical and virtual cyberspace are mapped to the
nodes of two layers in BA scale-free network, respectively.
That is, the individuals in physical and virtual cyberspace
spread emotion on BA scale-free network through the link
edges between nodes. We use G(V ,E) to represent the per-
sonalized BA scale-free network, where | V | is the set of
individuals, and | E | is the set of edges that link individuals.
In the personalized BA scale-free network constructed in

this paper, infection rate and cure rate are heterogeneous of
the each link in network. This is because infection rates of
the links between susceptible nodes and infected nodes are
affected by infection rates of the latter and the relevant node’s
own strength of emotional contagion, and the cure rates of
the links between infected nodes and recovered nodes are
affected by cure rates of the latter and the relevant node’s
own strength of emotional recovery. We denote by LI (i, j)
the infection rates of links between susceptible nodes and
infected nodes, and by Lr(i, j) the cure rates of the links
between infected nodes and recovered nodes as follows:

LI (i, j) =


LI vir (i, j) = IvirSvir (i) if i ∈ CVS

⋃
CPS ,

j ∈ CVI .
LIphy(i, j) = IphySphy(i) if i ∈ CVS

⋃
CPS ,

j ∈ CPI .
(14)

Lr(i, j) =


Lrvir (i, j) = rvirPvir (i) if i ∈ CVI

⋃
CPI ,

j ∈ CVR.
Lrphy(i, j) = rphyPphy(i) if i ∈ CVI

⋃
CPI ,

j ∈ CPR.
(15)

where i is a node in the personalized BA scale-free network,
and j is one of its neighbor nodes.

B. PHASE TRANSITION THRESHOLD OF THE NP-ECC
MODEL FOR A PERSONALIZED BA SCALE-FREE NETWORK
The threshold of crowd emotional contagion is actually
equivalent to the critical point in the non-equilibrium phase
transition, and is the basic index used to determine the sur-
vival or disappearance conditions of emotional contagion.
In this subsection, we study the phase transition threshold of
the NP-ECC model in a personalized BA scale-free network
to better control the speed and scale of emotional contagion
and obtain the number of individuals who change from the
susceptible state to the infected state with the change of the
phase transition threshold.

Since the process of emotional contagion is similar to
the infection process of infectious diseases, we refer to the
threshold of infectious disease spread in a network to study
the threshold of emotional contagion spread in a network.
Previous studies [40] have shown that if both infection and
recovery rates are homogeneous, the threshold of an epidemic
satisfies the following conditions: if β/δ > τ , the epidemic
survives, and if β/δ < τ , the epidemic dies out. Here,
β represents the infection rate, δ represents the cure rate, and
τ represents the epidemic threshold. The literature [35] has
shown that if infection rates are heterogeneous, the epidemic
threshold in BA scale-free networks satisfies the following

conditions: if
∑

(i,j)∈E βij/|E|∑
i∈V δi/|V |

> τ , the epidemic survives, and if∑
(i,j)∈E βij/|E|∑
i∈V δi/|V |

< τ , the epidemic dies out. Here, βij represents

that if node i is currently in the susceptible state, it can be
infected by its neighbor node jwith probability βij. Variable δi
represents that if node i is currently in the infected state, it can
be cured by itself with probability δi. | V | represents the
number of nodes, | E | represents the number of edges, and
τ represents the epidemic threshold.

To research the threshold of crowd emotional contagion
when infection rate and cure rate are heterogeneous, we used
studies [40] and [35] to further explore the phase transition
threshold in the personalized BA scale-free network. Our pro-
posed NP-ECCmodel takes into account the heterogeneity of
infection rate and cure rate. Therefore, we assume that when
phase transition not occurs, the phase transition threshold of
the NP-ECC model satisfies the following conditions:∑

(i,j)∈E LI (i, j)/ | E |∑
(i,j)∈E Lr(i, j)/ | E |

< τ. (16)

We assume that when phase transition occurs, the phase tran-
sition threshold of the NP-ECC model satisfies the following

37718 VOLUME 8, 2020



X. Hong et al.: Control Strategies for Crowd Emotional Contagion Coupling the Virtual and Physical Cyberspace in Emergencies

conditions: ∑
(i,j)∈E LI (i, j)/ | E |∑
(i,j)∈E Lr(i, j)/ | E |

> τ. (17)

Under this condition, Equation (17) indicates that emotional
contagion can survive and infect a non-zero number of
nodes. Otherwise, emotional contagion disappears. We con-
sider heterogeneous infection rate and cure rate due to differ-
ences in individual personalities. In Equations (16) and (17),∑

(i,j)∈E LI (i, j)/ | E | represents the mean infection rate
in the network under the case of a heterogeneous infection
rate,

∑
(i,j)∈E Lr(i, j)/ | E | represents the mean cure rate in

the network under the case of a heterogeneous cure rate, and
τ represents the threshold of emotional contagion. τ = 1

〈kA〉
,

where 〈kA〉 represents the average degree of the personalized
BA scale-free network [40].

We define ametric S to evaluate the phase transition thresh-
old of our NP-ECC model in the personalized BA scale-free
network, where

S =

∑
(i,j)∈E LI (i, j)/ | E |∑
(i,j)∈E Lr(i, j)/ | E |

〈KA〉. (18)

Equation (18) provides conditions for the disappearance
(S < 1) or survival (S > 1) of emotional contagion in
our NP-ECC model. We regard the spread of emotion as a
random walk on a complex network. The emotion spreads
at the rate of (

∑
(i,j)∈E LI (i, j)/ | E |)〈KA〉. On the other

hand, emotion is cured at the rate of
∑

(i,j)∈E Lr(i, j)/ | E |.
Therefore, the effective rate of propagation is approximately∑

(i,j)∈E LI (i,j)/|E|∑
(i,j)∈E Lr(i,j)/|E|

〈KA〉, which is exactly equal to S. To have
any possibility of emotional contagion, S must be greater
than 1, which is the critical condition for the phase transition
occurring under the NP-ECC model.

Considering the preventive control strategies we proposed
in subsection IV. B, the emotion spreads at the rate of
(
∑

(i,j)∈E LI (i, j)/ | E |)〈KA〉. On the other hand, emotion is
cured at the rate of ((

∑
(i,j)∈E Lr(i, j)/ | E |)+φphy1Vphy1(t)+

φvir1Vvir1(t)). Therefore, we define S under preventive con-
trol strategies as

S = (
∑

(i,j)∈E

LI (i, j)/ | E |)/((
∑

(i,j)∈E

Lr(i, j)/ | E |)

+φphy1Vphy1(t)+ φvir1Vvir1(t))〈KA〉. (19)

Considering the treatment control strategies we proposed
in subsection IV. B, the emotion spreads at the rate of
(
∑

(i,j)∈E LI (i, j)/ | E |)〈KA〉. On the other hand, emotion is
cured at the rate of ((

∑
(i,j)∈E Lr(i, j)/ | E |)+φphy2Vphy2(t)+

φvir2Vvir2(t)). Therefore, we define S under treatment control
strategies as

S = (
∑

(i,j)∈E

LI (i, j)/ | E |)/((
∑

(i,j)∈E

Lr(i, j)/ | E |)

+φphy2Vphy2(t)+ φvir2Vvir2(t))〈KA〉. (20)

Considering the preventive and treatment control strategies
we proposed in subsection IV. B, the emotion spreads at the

rate of (
∑

(i,j)∈E LI (i, j)/ | E |)〈KA〉. On the other hand,
emotion is cured at the rate of ((

∑
(i,j)∈E Lr(i, j)/ | E |) +

φphy1Vphy1(t)+φvir1Vvir1(t)+φphy2Vphy2(t)+φvir2Vvir2(t)).
Therefore, we define S under preventive and treatment con-
trol strategies as

S = (
∑

(i,j)∈E

LI (i, j)/ | E |)/((
∑

(i,j)∈E

Lr(i, j)/ | E |)

+φphy1Vphy1(t)+ φvir1Vvir1(t)+ φphy2Vphy2(t)

+φvir2Vvir2(t))〈KA〉. (21)

We will verify the results of our theoretical analysis in the
experimental section.

VI. ALGORITHM
In this section, we propose the CS-BA algorithm and the
T-BA algorithm to describe the simulation process of the
NP-ECC model in the personalized BA scale-free network.
The CS-BA algorithm verifies the stability of the NP-ECC
model by calculating the changes of infected nodes in a
personalized BA scale-free network. By calculating the phase
transition threshold of the NP-ECC model under different
control strategies, the T-BA algorithm further obtains the
number of individuals changing from the susceptible state to
the infected state with the phase transition threshold so that
we can verify the conditions of survival and disappearance of
emotional contagion proposed in subsection V. B.

In the simulation process, each individual is regarded as a
node. We define Pn(CVI ) and Pn(CPI ) to represent that the
proportions of CVI and CPI , respectively, in the crowd at
the nth iteration. Pn(CVI ) and Pn(CPI ) can be represented,
respectively, as follows:

Pn(CVI ) = ‖ CVI ‖ /N , (22)

Pn(CPI ) = ‖ CPI ‖ /N . (23)

Here, ‖ · ‖ is the size of the set and N represents the number
of nodes. We define Mv and Mp to represent, respectively,
the mean values of Pn(CVI ) and Pn(CPI ) in each experiment
as follows:

Mv =

T∑
n=0

Pn(CVI )/T , (24)

Mp =

T∑
n=0

Pn(CPI )/T . (25)

Here, T represents the iteration times of each experiment and
we repeat the experimentW times.
CS-BA Algorithm: The CS-BA algorithm obtains the

change in the number of infected nodes in the physical and
virtual cyberspace in a personalized BA scale-free network
of the NP-ECC model. The stability of the NP-ECC model is
assessed based on whether the output of the CS-BA algorithm
tends to converge.
T-BA Algorithm: The T-BA algorithm provides the phase

transition threshold of the NP-ECC model under different
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Algorithm 1 CS-BA Algorithm
Input: N , T ,W , rvir , rphy, k , Ivir , Iphy, φphy1, φvir1, φphy2,

φvir2, Vphy1(t), Vphy2(t), Vvir1(t), Vvir2(t), 〈KA〉
Output:Mv, Mp
begin

Generate a personalized BA scale-free network
G(V ,E) with N nodes for simulation;
for Cycle = 0;Cycle < W ;Cycle++ do

Generate PIvir (t), P
I
phy(t), P

S
vir (t), P

S
phy(t), P

R
phy(t)

and PRvir (t) randomly;
for Tcycle = 0;Tcycle < T ;Tcycle++ do

for i = 0; i < N ; i++ do
Generate Svir (i), Sphy(i) or Pphy(i),
Pphy(i) randomly according to
personalized emotional state;

Calculate LI (i, j) or Lr(i, j) according to
Equation (14) or Equation (15);
Calculate PIvir (t), P

I
phy(t) according to

Equation (5), Equation (8);
Calculate Pn(CVI ) and Pn(CPI ) according to
Equation (22) and Equation (23);

CalculateMv andMp according to Equation (24)
and Equation (25);

control strategies and the number of individuals from sus-
ceptible state to infected state change with phase transition
threshold.

VII. EXPERIMENTS
The experimental results consist of two parts: the first
part performs the numerical simulation for the NP-ECC
model, and the second part performs the simulation of the
NP-ECC model in the personalized BA scale-free network.
All reported results were obtained on a machine with a
3.3 GHz Intel Core 2 Duo CPU with 2 GB of RAM.

A. NUMERICAL SIMULATION FOR THE NP-ECC
In this subsection, we perform numerical simulation of the
NP-ECC model to further explore the influence of control
strategies on crowd emotional contagion. In real life, the vir-
tual cyberspace exhibits greater variability of the process
of crowd emotional contagion, but individuals are more
susceptible to the influence in the physical cyberspace. Thus,
we set Iphy = 3 × 10−5, Ivir = 3 × 10−6, rvir = 0.007,
rphy = 0.07, CVS = 4080000, CPS = 90000, CVI = 1875,
CPI = 60, CPR = 0, CVR = 0, N = 4171935, and
k = 10−8 as the default values in our experiments unless
otherwise specified. Svir (i), Sphy(i), Pvir (i) and Pphy(i) are
randomly generated in different intervals according to the
personalized emotional state. The above parameter setting
refers to the data from the Framingham Heart Research
Center (FHS). This data is mainly used to prove that the
positive and negative emotional contagion process is similar

Algorithm 2 T-BA Algorithm
Input: N , W , rvir , rphy, k , Ivir , Iphy, φphy1, φvir1, φphy2,

φvir2, Vphy1(t), Vphy2(t), Vvir1(t), Vvir2(t), 〈KA〉
Output: S, PIvir (t), P

I
phy(t)

begin
Generate a personalized BA scale-free network
G(V ,E) with N nodes for simulation;
for Cycle = 0;Cycle < W ;Cycle++ do

Generate PIvir (t), P
I
phy(t), P

S
vir (t), P

S
phy(t), P

R
phy(t)

and PRvir (t) randomly;
for i = 0; i < N ; i++ do

Generate Svir (i), Sphy(i) or Pphy(i), Pphy(i)
randomly according to personalized
emotional state;

Calculate LI (i, j) or Lr(i, j) according to
Equation (14) or Equation (15);
Calculate PIvir (t), P

I
phy(t) according to

Equation (5), Equation (8);
switch control strategies do

case
no control strategies:

Calculate S according to Equation (18); case
preventive control strategies:

Calculate S according to Equation (19); case
treatment control strategies:

Calculate S according to Equation (20); case
preventive and treatment control
strategies:

Calculate S according to Equation (21);

to the dynamic infection of infectious diseases in crowd,
and thus it confirms the rationality of the application of the
epidemic model in the field of emotional contagion [56].

In this subsection, we first analyze the changes in the sizes
of the six groups in the NP-ECC model over time. Secondly,
we compare the NP-ECC model with models of control
strategies in the physical and virtual cyberspace. Thirdly,
we compare and analyze the influence of the NP-ECC model
under various control strategies. Finally, we verify our model
with the real datasets.

1) ANALYSIS OF THE SIZES OF THE SIX GROUPS
We perform experiments under different personalized emo-
tional states to analyze the changes in the sizes of the six
groups in the NP-ECCmodel over time, as shown in Figure 3.
In Figure 3(a) and Figure 3(b), individuals are influenced
by preventive control strategies and emotional interactions
between individuals, and the numbers of individuals in CVS
and CPS decline to zero at different speeds over time. The
numbers of individuals in CVS and CPS decline to zero more
readily in the hysterical state. As Figure 3(c) and Figure 3(d)
show, individuals are influenced by treatment control strate-
gies and emotional interactions between individuals, and the
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FIGURE 3. Changes in the sizes of the six groups over time under different personalized emotional states. (a) Changes in the size of CPS over time.
(b) Changes in the size of CVS over time. (c) Changes in the size of CPI over time. (d) Changes in the size of CVI over time. (e) Changes in the size of
CPR over time. (f) Changes in the size of CVR over time.

numbers of individuals in CVI and CPI reach their max-
ima at different times. The numbers of individuals in CVI
and CPI reach their maxima more rapidly in the hysterical
state. As Figure 3(e) and Figure 3(f) show, individuals are
influenced by preventive and treatment control strategies as
well as emotional interactions between individuals, and the
numbers of individuals in CVR and CPR increase significantly
over time. The number of individuals experiencing hysteria
increases faster than the numbers of individuals in the anxious
state or the state of panic. Figure 3 shows clearly that themore
neurotic the individuals are, the more susceptible they are to
emotional contagion. The experimental results prove that the
personalized emotional states of individuals affect the process
of crowd emotional contagion.

2) COMPARATIVE ANALYSIS OF MODELS OF CONTROL
STRATEGIES
To explore the influences of control strategies in contagion
cyberspace on the process of crowd emotional contagion,
the relationship between the number of infected individuals
and the time of contagion under different control strategies
was compared and analyzed by considering the ‘‘anxious’’
state as an example in this experiment. In Figure 4,
the SLIRS (Susceptible-Latent-Infectious-Recovered-
Susceptible) model [3] represents the control strategies where
only a single physical cyberspace exists, the SIR model [40]
represents the control strategies where only a single virtual
cyberspace exists, and the NP-ECC model represents the

FIGURE 4. Relationship between the number of infected individuals and
the time of emotional contagion under different control strategies.

control strategies where both contagion cyberspace exist
simultaneously. We use the SLIRS model, the SIR model
and the NP-ECC model to simulate the influence of control
strategies on emotional contagion. It is shown that the SIR
model results in the longest time of emotional contagion, as it
does not consider the influence of information and control
strategies in the physical cyberspace on emotional conta-
gion, whereas the SLIRS model obtains the shortest time
of emotional contagion, as it only considers the influence of
information and control strategies in the physical cyberspace
on emotional contagion. This result shows that these models
can improve or reduce the time of emotional contagion in

VOLUME 8, 2020 37721



X. Hong et al.: Control Strategies for Crowd Emotional Contagion Coupling the Virtual and Physical Cyberspace in Emergencies

FIGURE 5. Relationship between the number of infected individuals and the time of emotional contagion under different personalized emotional
states. (a) The NP-ECC model under the anxious state. (b) The NP-ECC model under the panic state. (c) The NP-ECC model under the hysterical state.

real life because they only consider information and control
strategies in single contagion cyberspace. However, in real
life, individual emotions are not only affected by information
and control strategies in a single cyberspace. In the NP-ECC
model, we jointly consider the influence of information and
control strategies in the virtual cyberspace and the physical
cyberspace on emotional contagion to present the simulation
results of emotional contagion more realistically.

3) COMPARATIVE ANALYSIS OF CONTROL STRATEGIES
To explore the influences of the control strategies on the pro-
cess of crowd emotional contagion, this experiment compares
the relationship between the number of infected individu-
als and the time of contagion under different personalized
emotional states. Figure 5 analyzes the influence of control
strategies on the process of emotional contagion in anxious,
panic, and hysterical states. As Figure 5(a) show, if no
control strategies are implemented, the process of emotional
contagion can easily reach a peak and the number of infected
individuals is the highest. If only preventive control strategies
or treatment control strategies are being used, emotional
contagion is controlled to a certain extent, but if both control
strategies are used at the same time, the number of infec-
tors is the lowest, and the time it takes to reach the peak
of emotional contagion is the longest. As Figure 5(b) and
Figure 5(c) show, if there are no control strategies being
used or only preventive and treatment strategies are being
used, the number of infectors is higher and the duration of
emotional contagion is shorter. The experimental results show
that control strategies have a certain impact on the process of
emotional contagion, and can control the speed and scale of
such contagion, enabling a better control of such contagion.

4) EXPERIMENTS ON REAL-WORLD DATA
We further verify our model with the real dataset obtained
from Twitter [57], [58]. The dataset called ‘‘NEWS’’
includes 49.7 million tweets. The dataset is available
at https://github.com/s-mishra/featuredriven-hawkes. In the
‘‘NEWS’’ dataset, the spread rate and forgetting rate of news
are equivalent to the infection rate and cure rate of the

NP-ECC model. In addition, according to the common sense
that individuals have immersive experiences in the physical
cyberspace, we believe that they are more susceptible to the
influence of emotional contagion in the physical cyberspace,
and their emotions are more easily recovered in the physical
cyberspace. Therefore, we set Iphy = 0.75, Ivir = 0.075,
rphy = 0.64, and rvir = 0.064. Svir (i), Sphy(i), Pvir (i) and
Pphy(i) are randomly generated in different intervals accord-
ing to the personalized emotional state. The proportions of
the individuals in anxious, panic and hysteria state are equal.
Vvir1(t), Vvir2(t), Vphy1(t), Vphy2(t) and φvir1, φvir2, φphy1,
φphy2 are randomly generated in the defined interval. In this
subsection, we perform the two experiment to further verify
that our model works well on real-world data. We assume
that the number of infected individuals in physical and virtual
cyberspace accounts for 10%, 20% and 30%. We assume that
there are small proportions of the infected individuals in phys-
ical cyberspace. This result is obtained because the virtual
cyberspace has a wider range in the process of crowd emo-
tional contagion. In Figure 6 (a), we show the experimental
results after 300 time steps. The larger the initial proportion
of infected individuals is, the wider the range of emotional
contagion. The proportion of infected individuals accounts
for 30% reach their maxima more rapidly. The experimental
results show the initial proportion of infected individuals have
a certain impact on the process of emotional contagion.

FIGURE 6. The real Twitter dataset is applied to the NP-ECC model
simulation. (a) Changes in the size of I over time steps. (b) Changes in the
size of I over time steps under different personalized emotional states.
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To explore the influence of the personalized emotional
state on the process of crowd emotional contagion, this
experiment takes the number of infected individuals accounts
for 10% as an example to perform a comparative analysis.
In Figure 6 (b), we show the experimental results after
300 time steps. The proportion of infected individuals reach
their maxima more rapidly in the hysterical state, and the
range of emotional contagion is wider. The experimental
results prove that the personalized emotional states of indi-
viduals affect the process of crowd emotional contagion. The
above two simulation results show that our model is well in
the application of crowd emotional contagion.

B. PHASE TRANSITION IN A PERSONALIZED BA
SCALE-FREE NETWORK
In this subsection, we perform the CS-BA algorithm and the
T-BA algorithm to carry out simulation experiments of the
NP-ECC model in the personalized BA scale-free network.
In this subsection, we use a personalized BA scale-free net-
work with 300 nodes in the NP-ECC simulation to further
analyze the phase transition threshold of the NP-ECC model.
We first explore the change in the number of infected nodes
over time under different personalized emotional states in the
NP-ECC model, so as to analyze the stability of this model.
Secondly, we explore the influence of S on the speed and scale
of emotional contagion when the phase transition occurs.
Finally, we verify the theoretical analysis results of the phase
transition threshold of the NP-ECC model is whether more
accurate.

In this subsection, we set W = 50, T = 500, rvir =
0.007, rphy = 0.07 and k = 10−8, and 〈KA〉 = 5 and
increase Iphy from 0 to 1. We assume that there are small
proportions of individuals in CPI and CPS , and Ivir is always
0.1 times Iphy. This result is obtained because the virtual
cyberspace exhibits a greater variability of the process of
crowd emotional contagion, but individuals are more suscep-
tible to influence in the physical cyberspace. Vvir1(t), Vvir2(t),
Vphy1(t), Vphy2(t) and φvir1, φvir2, φphy1, φphy2 are randomly
generated in the defined interval. The above experimental
settings are the default values for our experiments, unless
otherwise specified.

1) CHANGE IN THE NUMBER OF INFECTED NODES
In this part of the paper, we use the CS-BA algorithm to study
the change in the number of infected nodes in a personalized
BA scale-free networks to verify the stability of the NP-ECC
model. After 50 experiments and 500 iterations of each exper-
iment, the values ofMp andMv of CPI and CVI , respectively,
can be obtained, as shown in Figure 7.

Figure 7 shows that CPI and CVI under different per-
sonalized emotional states have different Mp and Mv. The
more neurotic the individuals in CVI and CPI are, the more
susceptible they are to emotional contagion, and CVI and CPI
have greater Mv and Mp, respectively. Figure 7(a) shows
that although Ivir is increasing from 0 to 0.1, the Mv of CVI
first increases and then tends to stabilize. At the same time,

FIGURE 7. Changes in the Mv and Mp of the CVI and CPI over time under
different personalized emotional states. (a) Mv of the CVI . (b) Mp of
the CPI .

we can obtain theMp ofCPI . Although Iphy is increasing from
0 to 1, the experimental results show that the Mp of CPI first
increases and then tends to stabilize, as shown in Figure 7(b).
The experimental results prove that the NP-ECC model has
good stability.

2) COMPARATIVE ANALYSIS OF S
In this subsection, we use the T-BA algorithm to study the
phase transition value of the NP-ECC model when the phase
transition occurs under different control strategies and fur-
ther verify the conditions of survival and disappearance of
emotional contagion proposed in subsection V. B. In the
initial stage of emotional contagion, we set the initial number
of infected nodes to 50. After 50 rounds of experiments,
the number of infected nodes changes with time as shown
in Figure 8. In Figure 8(a)-(d), the case of S = 1 is shown
using black solid lines. There is a significant difference
between the number of infected nodes if S>1 and if S<1.
If S<1, emotional contagion dies out rapidly, while if S>1,
emotional contagion survive. The experimental results show
that the phase transition occurrence threshold of the NP-ECC
model is more accurate, which is our proposed condition for
persistence or disappearance of emotional contagion.

FIGURE 8. Relationship between the number of infected individuals and
the time of emotional contagion under different S. (a) Both preventive
and treatment control strategies are used. (b) Only preventive control
strategies are used. (c) Only treatment control strategies are used.
(d) Neither prevention nor treatment control strategies are used.
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Comparing Figure 8 (a) - (d), we observe that if both
treatment and preventive control strategies are used simulta-
neously, emotional contagion disappears most quickly, and
the number of infected nodes is the lowest. If neither treat-
ment nor preventive control strategies are used, emotional
contagion takes the longest amount of time to disappear, and
the number of infected nodes is the highest. The experimental
results show that control strategies can control the speed and
scale of crowd emotional contagion.

3) COMPARATIVE ANALYSIS OF MODEL
To further verify that the phase transition threshold of the
NP-ECC model is more accurate, we carry out comparative
experiments in a constructed personalized BA scale-free net-
work since it approximate the process of emotional contagion
in real-world networks. We explore the relationship between
the number of infected nodes and the S. The Equation (21)
determines S by performing the T-BA algorithm. In this
subsection, we use the personalized BA scale-free network
with 1000 nodes for simulation.

In Figure 9, the NLDS (Non-Linear Dynamical System)
model [40] represents the phase transition threshold when
both infection and recovery rates are homogeneous, the SIS
model [35] represents the phase transition threshold when
infection rates are heterogeneous, and the NP-ECC model
represents the phase transition threshold when both infec-
tion and recovery rates are heterogeneous. For each model,
we show the experimental results after 500 time steps,
1000 time steps and 2000 time steps. The phase transition
thresholds of NLDS model, SIS model and NP-ECC model
are 0.51, 0.78 and 1, respectively. Through the analysis of
theoretical results in subsection V. B, we know that the closer
the threshold value is to 1, the more accurate it is. In Figure 9,
we see a sharp increase in the size of the infected nodes at our
model threshold of S = 1, while the NLDS model and the
SIS model do not have a sharp increase at the phase transition
threshold. The experimental results show the NP-ECC model
is much more accurate than the SIS model and the NLDS
model since it considers the control strategies and construct

FIGURE 9. Comparison with the NLDS model and SIS model.

the heterogeneous network coupling the physical and virtual
cyberspace.

VIII. CONCLUSION AND FUTURE WORK
To better control the speed and scale of emotional contagion
in crowd evacuation, the influence of control strategies on
such contagion must be considered in both virtual and phys-
ical cyberspace. First, we establish the NP-ECC model to
study control strategies of crowd emotional contagion cou-
pling the physical and virtual cyberspace. Second, we con-
struct a personalized BA scale-free network to calculate the
phase transition threshold of the proposed NP-ECC model
more accurately. Finally, we propose two algorithms CS-BA
and T-BA to verify the stability of the NP-ECCmodel and the
accuracy of the phase transition threshold, respectively.

Our framework provides flexible and controllable mod-
eling tools for studying the control strategies of crowd
emotional contagion and the phase transition thresholds in
the scenario of jointly considering the physical and virtual
cyberspace. The proposed method can better control the
speed and scale of crowd emotional contagion, and thus can
provide guidance for prevention and control of large-scale
crowd emotional contagion.

In the future, we plan to study how to use devices of Inter-
net of Things to collect the real data in crowd movement, and
combine deep learning methods to improve the accuracy of
our model. In addition, we will further explore the differences
in details about the emotional contagion between the physical
and virtual cyberspace to make our model more applicable.
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