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ABSTRACT Most existing sewer pipeline condition assessment methods determine the presence and
types of faults via examination of videos, which is a time-consuming and labor-intensive process. A few
automatic methods based on image processing techniques can be used to detect specific faults. However,
these methods have limitations due to the presence of unpredictable sewer pipeline fault patterns. Deep
learning methods have also been applied to sewer pipeline fault detection. However, these methods require a
large amount of annotated data to obtain reliable results. In this paper, we propose a fault detection method
that applies unsupervised machine learning based anomaly detection algorithms with feature extraction to
videos recorded by new sewer pipeline visual inspection equipment. The recorded videos are regarded as
sequence signals, which are converted into feature vectors, followed by application of an anomaly detection
algorithm. Unlike existing methods, the proposed method is computationally efficient as it does not require an
annotated fault sample database for training fault detection models. We evaluate various anomaly detection
algorithms and feature combinations on real sewer pipeline data collected in Shenzhen, with an overall
accuracy result of above 90%. The proposed method provides a new and fast technique for surveying urban
sewer pipelines, and to facilitate further research in this area, we have made the code and data used in this

paper publicly available.

INDEX TERMS Anomaly detection, sewer pipeline, feature extraction, fault detection.

I. INTRODUCTION

An urban underground sewer pipeline system is an impor-
tant component of public infrastructure, as it plays a major
role in maintaining healthy environments. A sewer system
can encounter several problems during its operation, such
as cracking, misaligned connections, channeling, or silting,
which may be caused by the natural environment, engineering
construction, or self-aging. The absence of regular sewer
pipeline inspection and maintenance can easily cause block-
age or serious damage [1]. As a result, this will not only affect
the daily rainwater and sewage discharge in a city, but there
can also be secondary problems such as water logging and
environmental pollution in extreme cases. Therefore, regular

The associate editor coordinating the review of this manuscript and

approving it for publication was Gulistan Raja

39574

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

inspection of underground sewer pipelines is essential to
avoid sewer pipeline deterioration [2].

Sewer pipelines are placed in underground environments
and can develop complex faults. These pipelines are usu-
ally monitored using a closed circuit television (CCTV)
inspection technique, which records videos and then uses
them to assess the structural conditions of sewer pipelines.
However, this technique suffers from high costs and low
efficiency [3], [4]. Automated defect classification systems
based on video surveillance are an important tool that are
economical and efficient. However, when applied to com-
plex underground sewer pipeline systems, automated defect
detection techniques based on traditional image processing
methods have several limitations [5]-[7].

In this paper, a new type of visual inspection equipment
is used to record video data of underground sewer pipelines.
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This equipment is low-cost, lightweight and easy to operate.
To the best of our knowledge, this is the first time this equip-
ment has been used for large-scale sewer pipeline inspection
applications. The sewer pipeline video data is also unique and
has been presented in this paper for the first time.

This paper proposes a sewer pipeline fault detection
method based on anomaly detection algorithms applied to the
video data recorded by this new equipment. The main idea in
this paper is inspired by the human visual recognition mecha-
nism. When an artificial visual interpretation method is used
to identify faults from a video, any frame containing faults
will be obviously different from the previous and following
frames in the video sequence. In addition, the image of the
fault constitutes only a small portion of the video sequence
and consequently, and it can be regarded as an abnormal or
outlier signal.

The proposed method for detecting faults in the videos can
greatly improve the efficiency compared to manual inspection
and traditional image processing, because it does not require
any prior information about the faults. It can also significantly
reduce the amount of manually labeled data that is required
by supervised learning methods in the training stage.

The novel contributions of this paper are as follows:

1. We extract image features from the image sequence and
generate new features by further combining the extracted
features. These combinations can help improve the fault
detection accuracy.

2. We evaluate several unsupervised anomaly detection
methods using combinations of different features as input,
which allows identification of the combined set giving the
best fault detection accuracy.

3. We carry out evaluations over both large and small
image sequences, which shows that our proposed method can
be applied in practical scenarios with limited availability of
training data.

4. The data used in our paper and the implementation of
the proposed method are publicly available on https://github.
com/fangxu622/Sewer-Pipeline-Defect-Identification, which
can facilitate further research and development in this area.

This paper is organized as follows: Section II presents an
overview of related work. Section III explains the proposed
method and the data used in this paper, while the performance
evaluation of the method is presented in Section I'V. Section V
concludes the paper.

Il. RELATED WORK

Research on automatic detection of underground pipeline
faults based on image processing technology has practical
significance. Initially, conventional computer vision tech-
niques were explored for automated interpretation of under-
ground pipeline video data. However, the application of these
techniques required complex feature extractors to be used.
For example, Myrans et al. [8] used GIST method to extract
features from CCTV image sequences and fed these fea-
tures to a classifier to detect faults. Yang and Su [5] pro-
posed using morphological operation and segmentation to

VOLUME 8, 2020

detect four types of pipeline faults: open joints, cracks, frac-
tures and broken pipes. Halfawy and Hengmeechai [9] pro-
posed an algorithm for automated crack identification using
sewer pipeline inspection images obtained from CCTV. First,
Sobel operator and Hough transform were used for image
preprocessing. Subsequently, morphological operations were
applied to enhance candidate crack segments, and customized
filters were employed to remove noise edges and extract crack
segments.

To take advantage of video sequences available from
CCTYV data, Guo et al. [10] proposed a change detection
based approach for automated fault detection from videos
using frame differencing. Hawari et al. [4] developed an
automated tool that integrated various image processing and
shape analysis techniques to detect and identify different
types of faults. The authors showed that cracks, joints and
sediments were identified with accuracies of 74%, 65% and
53%, respectively. Yang and Su [2] applied machine learning
in a pipeline fault diagnosis system. First, the authors com-
bined the wavelet transform and a co-occurrence matrix to
calculate the image texture transformation. Then, using real
sewer inspection data, a radial basis network, support vector
machine (SVM) and back-propagation ANNs were compared
for sewer pipeline fault classification.

The superior performance of deep learning methods in the
field of computer vision has led several researchers to apply
these methods to sewer fault detection. Kumar et al. [11]
proposed multiple binary CNNs for automated defect
classification based on CCTV inspection of sewers.
Wang and Cheng [12] proposed DilaSeg-CRF integrated
dilated convolution and multiscale techniques with RNN
layers for automatic severity assessment of sewer pipeline
faults. Hassan et al. [13] proposed a sewer fault classification
system using CCTV imagery and convolutional neural net-
works (CNNs). The proposed system showed an accuracy of
over 90%. Meijer et al. [14] use CNNs to automatically detect
the twelve most common fault types in a dataset of over two
million CCTV images.

In recent research literature, different state-of-the-art com-
puter vision based CNN models, such as YOLO, SSD and
Faster-RCNN were evaluated in terms of speed and preci-
sion for sewer pipeline fault detection using CCTV video
data [15]. However, deep learning methods that utilize super-
vised learning algorithms require many labeled fault samples
to train a fault detection model. These methods have two main
limitations: 1) The acquisition of manually labeled samples
in the training stage incurs a high cost. 2) If the trained
model encounters new types of faults or sewer pipeline
environments, it may not be able to effectively detect the
faults. To improve the speed and accuracy of sewer surveys,
assistance from technicians present in the field is neces-
sary. In [16], the authors used a one-class SVM (OC-SVM)
algorithm to achieve fault detection on CCTV image data.
Unlike the method proposed in [16], we do not use CCTV
data and there is no need to train a model using fault and
fault-free samples, which makes our method more versatile
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and practically realizable. Furthermore, our evaluation results
show that other anomaly detection algorithms can outperform
OC-SVM.

Ill. METHODOLOGY AND DATA

A. METHODOLOGY

In this paper, we combine image processing and anomaly
detection algorithms for fault detection using raw video
data of sewer pipelines. The video data was taken directly
from industrial surveys. First, the video is converted into a
sequence of images. These images capture the sewer pipeline
states, which can either contain faults or be fault-free, depend-
ing on the pipeline being examined. Most of the images do
not contain any faults and only a small number of the images
correspond to any faults. Due to the characteristics of the data
collected by our equipment, which consist of a video stream
with a fixed perspective between two manhole covers, the
faults indicated on the video can be considered as an abnormal
signal within a section of the pipeline. Therefore, we use an
anomaly detection method to detect faults based on the video
data. We evaluate various anomaly detection algorithms for
sewer pipeline fault detection. The flowchart of the proposed
method is shown in Fig. 1. The main steps of our proposed
method are as follows:

1) The video data is first converted into a sequence of
images.

2) Various features are extracted from sequence images,
such as local binary patterns (LBP), histograms of
oriented gradient (HOG), grey level co-occurrence
matrices (GLCM), Gabor filter processing, and image
feature vectors (IMG-FV). The IMG-FV is a feature
of the image itself. The different features are then
combined to obtain the feature descriptor of images.

3) Unsupervised anomaly detection methods are used to
classify the combined feature data.

The above steps are described in further detail as follows:

All images are resized to 224 x 224 pixels, followed by

feature extraction. All images are then reshaped to obtain
the image data. The size of the image data is 56 x 896.
Principal component analysis (PCA) is then used to reduce
the dimensions of the image data and HOG features due to

Image Data ~ Image Feature
s6x896) [T "A

HOG

Sewer Pipeline Sequence Image Feature
Video (224x224)

Extraction

PCA

Anomaly . Feature
Combination

i Il 1

One-Class SVM‘ Local Outlier
Factor

Isolated Forest

Gaussian Distribution based
Anomaly Detection

FIGURE 1. Flowchart of the proposed method.
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large dimensionality. The final dimensions of Gabor, LBP,
HOG, GLCM and IMG-FV are 32,26, 48,72 and 112, respec-
tively. The dimensions of the different features are empirical
without requiring additional treatment. For different feature
groups, we concatenate and standardize the feature vector and
feed it to the anomaly detection algorithms.

1) FEATURE EXTRACTION

As aforementioned, four types of texture features are
extracted in our proposed method. These features are widely
used in face recognition, medical image processing, remote
sensing classification and industrial fault detection [17]-[20].
A description of each type of feature is as follows.

A local binary pattern is a type of visual descriptor used to
describe local textural features of images. The improved LBP
operator [21] has the advantages of rotation invariance and
gray invariance, and can adapt to textural features of different
scales.

The grey level co-occurrence matrix is calculated from a
gray-scale image. It is used to describe texture by studying the
spatial correlation characteristics with respect to interpixel

2200
/ " Fisheye Camera

Electronic unit

Stable uni

(a) Schematic diagram of the equipment.

(b) Photo of the equipment.

FIGURE 2. Pipeline inspection equipment.

TABLE 1. Confusion matrix.

Predict (1) Predict (0) Total

Ground Truth (1) TP FN TP+EFN

Ground Truth (0) FP TN FP+TN
Total Total FN+TN TP+FN+FP+TN
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FIGURE 3. The inspection procedure using the equipment inside the sewer pipeline. First, the equipment is thrown into
a manhole from upstream after activating the equipment on a phone or tablet. The equipment is then collected from

the downstream manhole.

TABLE 2. ALL results for dataset-1.

NPV Precision Acc TNR Recall
Gaussian-D+All-Feature 0.621 0.944 0.880 0.735 0.909
Gaussian-D+GLCM 0.611 0.941 0.875 0.723 0.906
Gaussian-D+Four-Feature 0.591 0.936 0.867 0.699 0.902
Gaussian-D+LBP 0.507 0.915 0.834 0.600 0.881
iForest+Gabor 0.469 0.906 0.818 0.554 0.872
OC-SVM+Gabor 0.452 0.901 0.812 0.533 0.868
OC-SVM+IMG-FV 0.434 0.899 0.804 0.524 0.861
OC-SVM+GLCM 0.430 0.896 0.803 0.511 0.862
iForest+All-Feature 0.419 0.894 0.799 0.496 0.860
Gaussian-D+IMG-FV 0.409 0.891 0.794 0.484 0.858
LOF+HIMG-FV 0.394 0.887 0.789 0.466 0.854
iForest+tIMG-FV 0.392 0.887 0.788 0.464 0.854
Gaussian-D+Gabor 0.386 0.885 0.785 0.456 0.852
iForest+GLCM 0.374 0.882 0.781 0.443 0.849
iForest+Four-Feature 0.365 0.880 0.777 0.432 0.847
LOF+LBP 0.359 0.878 0.774 0.424 0.846
OC-SVM+LBP 0.357 0.878 0.773 0.424 0.844
iForest+tHOG 0.342 0.874 0.768 0.405 0.842
LOF+GLCM 0.322 0.869 0.760 0.380 0.837
OC-SVM+HOG 0.293 0.862 0.747 0.352 0.827
LOF+All-Feature 0.288 0.861 0.746 0.340 0.828
Gaussian-D+HOG 0.285 0.860 0.745 0.338 0.828
LOF+Four-Feature 0.261 0.854 0.735 0.309 0.822
LOF+Gabor 0.249 0.851 0.730 0.294 0.819
LOF+HOG 0.243 0.849 0.728 0.287 0.818
iForest+LBP 0.215 0.842 0.717 0.254 0.811
OC-SVM+Four-Feature 0.198 0.844 0.639 0.372 0.693
OC-SVM+All-Feature 0.195 0.846 0.605 0.426 0.641

distance (§) and orientation () [22]. A total of six statistics
including contrast, dissimilarity, homogeneity, correlation,
entropy and angular second moment (ASM) are applied to
co-occurrence probabilities to generate the textural features.
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A Gabor filter is a linear filter used for textural analysis. Its
frequency and direction expressions are similar to those of a
human visual system. It is not sensitive to light changes and
provides scale and orientation parameters [23].
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Normal image

Abnormal image

(@)

Abnormal image

FIGURE 4. Sample images from Dataset-1.

(a) Normal image (b) Abnormal image

(c) Abnormal image (d) Abnormal image

FIGURE 5. Sample images from Video-1.

A histogram of oriented gradient is a feature descriptor
used in computer vision and image processing for the purpose
of object detection [24]. It convolves a filter kernel with an
input image to get two-dimensional gradients of the image.

2) ANOMALY DETECTION

Four types of anomaly detection algorithms are used for
fault detection: Isolation forest (iForest), Gaussian distribu-
tion (Gaussian-D) based anomaly detection, one-class SVM
(OC-SVM) and local outlier factor (LOF). The iForest is a fast
anomaly detection method based on ensembles. It has a linear
time complexity and high precision [25]. It uses a random
hyperplane to cut the feature data space until there is only
one data point in each subspace, which is then used to build
a decision tree. The average value of the feature data in each
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a) Normal image b) Abnormal image

(c) Abnormal image (d) Normal image

FIGURE 6. Sample images from Video-2.

tree is used to define a threshold or a boundary value. The
data points below this threshold are considered as abnormal.

The Gaussian-D based anomaly detection algorithm is
widely used in many scenarios [26]-[28]. The algorithm is
based on the core assumption that the inlier, i.e., the normal
data, is Gaussian distributed. We estimate the inlier loca-
tion and covariance in a robust way using the Fast-MCD
algorithm without additional processing [29]. The dataset
is transformed into an n-dimensional Gaussian distribution
dataset. Its probability density function is determined, and a
threshold is calculated. Based on Gaussian probability (p) of
a data point and threshold ¢, a point with p < ¢ is considered
an outlier, while p > ¢ identifies an inlier.

The SVM is one of the most successful machine learn-
ing techniques typically associated with supervised learning.
There are extensions of SVM such as the OC-SVM method
that can be used to identify anomalies as an unsupervised
problem. The method basically separates all the feature data
points from the origin by a hyperplane and maximizes the
distance of this hyperplane to the origin [30], [31], thus
minimizing the influence of the outliers.

The LOF is based on the concept of local density. A typical
distance at which a point can be “‘reached” from its neighbors
is applied to estimate the local density [32]. The local devia-
tion of a given data point with respect to its neighbors is used
to find outliers.

B. DATA ACQUISITION AND PRE-PROCESSING

1) INSPECTION EQUIPMENT

We use a new non-powered pipeline inspection equipment
designed by us specifically for this application [33], [34]. Its
schematic diagram and photo are shown in Fig. 2. It consists
of a robot equipped with a high-resolution fisheye camera
that can provide 360-degree panoramic and 220-degree wide-
angle video surveillance data. It can move continuously, and
record video data of the sewer pipeline walls, which make
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FIGURE 7. Original video.

it appropriate for precise inspection of sewer pipeline faults.
The equipment floats at speeds of between 0.3 m/s and
0.8 m/s, approximately, depending on the water stream speed.

The equipment is connected to a mobile phone or tablet
application and controlled through WiFi. The unpowered
design is used to move inside the pipeline along the flow of
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FIGURE 8. The ROC curves of different anomaly detection algorithms applied to different feature groups for Dataset-1.

water. Due to its weight and design, the equipment is stable
and can acquire data continuously in the vertical direction.
The inspection procedure using the equipment inside the
sewer pipeline is shown in Fig. 3.

2) DATASET AND EVALUATION

Underground sewer pipeline video data were collected in the
city of Shenzhen. We converted the video data into a sequence
of images and extracted different features from the sequence
to generate sequence signal features. The anomaly detection
algorithm was then used for fault detection.

To study the influence of different features on fault detec-
tion accuracy, we tested different combinations of features
and the image feature vector to generate a total of seven
different feature groups. A description of the seven groups
is as follows:

1) The HOG, GLCM, Gabor and LBP features and the

image feature vector are combined to generate an
“All-Feature” group.
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2) The HOG, GLCM, Gabor and LBP features are com-
bined to give a “Four-Feature™ group.

3) The remaining five groups consist of separately using
each feature and the image feature vector, giving
“HOG”, “GLCM”, “Gabor” “LBP” and “IMG-FV”
groups respectively.

In order to verify and analyze the efficacy of each feature
group, we built two types of datasets: large-scale datasets and
single-segment small datasets.

The first type (Dataset-1) has 8952 images in total
extracted from multiple sewer pipeline videos. It contains
1514 images with faults. The images were acquired in a
variety of underground network environments, such as PVC
and concrete material sewer pipelines. A few samples of the
dataset are shown in Fig. 4.

The second type of dataset (Dataset-2) includes two videos,
Video-1 and 2, which were recorded between two manholes.
Video-1 consists of 899 images. Out of these images, there
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TABLE 3. ALL results for video-1.

NPV Precision Acc TPR Recall
iForest+GLCM 0.794 0.929 0.902 0.737 0.948
Gaussian-D+Gabor 0.767 0.922 0.891 0.711 0.940
Gausian-D+GLCM 0.761 0.9 0.889 0.706 0.939
iForest+Four-Feature 0.744 0.917 0.882 0.691 0.935
Gaussian-D+Four-Feature 0.744 0.917 0.882 0.691 0.935
iForest+All-Feature 0.733 0914 0.878 0.680 0.932
Gaussian-D+All-Feature 0.683 0.901 0.858 0.634 0919
Gaussian-D+HOG 0.656 0.894 0.847 0.608 0.912
iForest+tHOG 0.639 0.890 0.840 0.593 0.908
iForest+Gabor 0.633 0.889 0.838 0.588 0.906
Gaussian-D+LBP 0.633 0.889 0.838 0.588 0.906
OC-SVM+GLCM 0.601 0.897 0.830 0.629 0.885
OC-SVM+Gabor 0.600 0.880 0.824 0.557 0.898
iForest+LBP 0.594 0.879 0.822 0.552 0.897
iForesttIMG-FV 0.594 0.879 0.822 0.552 0.897
Gaussian-D+IMG-FV 0.533 0.864 0.798 0.495 0.881
LOF+Four-Feature 0.517 0.860 0.791 0.479 0.877
LOF+All-Feature 0.506 0.857 0.786 0.469 0.874
LOF+GLCM 0.494 0.854 0.782 0.459 0.871
LOF+IMG-FV 0.483 0.851 0.778 0.449 0.868
LOF+Gabor 0.478 0.850 0.775 0.443 0.867
OC-SVM+LBP 0.428 0.843 0.753 0.428 0.843
LOF+LBP 0.406 0.832 0.746 0.376 0.848
LOF+HOG 0.406 0.832 0.746 0.376 0.848
OC-SVM+IMG-FV 0.380 0.850 0.715 0.505 0.773
OC-SVM+HOG 0.296 0.815 0.671 0.381 0.750
OC-SVM+Four-Feature 0.242 0.813 0.513 0.588 0.492
OC-SVM+All-Feature 0.164 0.739 0.471 0.356 0.502

are 194 images that include faults. A few samples of this
dataset are shown in Fig. 5. The dataset of Video-2 consists
of 1260 images, out of which, 128 images include faults.
A few samples of the dataset are shown in Fig. 6.

The resolution of the original video is 1920 x 1080. Due to
the original video characteristics, which are shown in Fig. 7,
the frame needs to be cropped to obtain valid image data.
Currently, the size of valid region of video has slight differ-
ences due to recording by different equipment. The resolution
of our dataset includes frames of size 1100 x 1080 and
950 x 700 after cropping the frame. The aspect ratio of the
valid region of the frame is approximately one, and we found
that a resolution of 224 x 224 is better than 512 x 512
or 112 x 112 or any smaller or larger resolution for our
experiment. Therefore, all cropped frames were resized to
224 x 224 before feature extraction and the reshaping step.
These two types of datasets cover a variety of sewer pipeline
environments with different types of faults including breaks,
cracks and deformation. In order to evaluate different feature
combinations and find the best solution, we apply four differ-
ent anomaly detection algorithms to these datasets.
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The overall accuracy, precision and recall are well-known
measurements that can be used to assess the performance of
a classifier. Five different parameter indicators are used to
evaluate the fault detection algorithms, and their definitions
are given in Egs. (1-5). Suppose we have P positive samples,
i.e., fault-free samples, and N negative samples, i.e., fault
samples. Our confusion matrix is shown in Table 1 where
TP, TN, FP and FN indicate true positive, true negative, false
positive and false negative, respectively, and N = TN + FP,
P = TP + FN. The precision and recall given by the
true negative rate and negative predictive values reflect the
accuracy of the fault detection.

IV. RESULTS AND DISCUSSION

The four classification algorithms described in Section III-A
are applied to each of the feature groups. All the evalua-
tion results for Dataset-1 are shown in Table 2. Four of the
five top-performing combinations consist of the Gaussian-D
algorithm combined with other feature groups. These com-
binations achieve the best results with an overall accu-
racy of 88.0%. The fifth combination shown in Table 2
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FIGURE 9. The ROC curves of different anomaly detection algorithms applied to different feature groups for Video-1.

corresponds to the iForest algorithm used with Gabor fea-
tures. In order to better evaluate the classification perfor-
mance, the ROC curve of each anomaly detection algorithm
applied to each feature group is shown in Fig. 8. It can be seen
that the Gaussian-D based anomaly detection algorithm has
the best performance, followed by the iForest algorithm.

For Video-1, all the evaluation results are shown in Table 3.
The iForest algorithm combined with GLCM features has
the highest overall accuracy of 90.2%. In order to better
evaluate the classification performance, the ROC curve of
each anomaly detection algorithm applied to each feature
group is shown in Fig. 9. The classification performance of
OC-SVM and LOF algorithms is poor with all of the feature
groups. The Gaussian-D and iForest algorithms show better
performance.

For Video-2, all the evaluation results are shown in Table 4.
The best result is obtained with the combination of the
Gaussian-D algorithm and the Gabor features. The ROC
curve of each anomaly detection algorithm applied to each
feature group is shown in Fig. 10. The iForest algorithm
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combined with the Gabor and GLCM features also shows
good performance, achieving an overall accuracy of approxi-
mately 90%. The OC-SVM and LOF show poor performance.

Figs. 8-10 can be compared to review the results with
different datasets and ROC curves for different algorithms.
It can be observed that the performance of OC-SVM and
LOF algorithms is inferior to that of the Gaussian-D and
iForest algorithms. Although no single combination performs
the best across all of the different datasets, the Gaussian-
D and iForest algorithms show good performance in most
cases. We observe that the Gaussian-D algorithm has the best
performance, irrespective of the type of feature combination
used. The iForest algorithm is the second best in terms of
performance. It can also be observed from Tables 2-4 that
either the GLCM or the Gabor features result in the best
performance, and there is no single feature group that always
outperforms the other feature groups. The variation in perfor-
mance with different features is related to the environment of
each pipeline section. Different pipeline materials and states
of the pipeline discharge can lead to varying fault types.
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TABLE 4. ALL results for video-2.

NPV Precision Acc TNR Recall
Gaussian-D+Gabor 0.587 0.952 0.916 0.578 0.954
Gaussian-D+LBP 0.571 0.951 0.913 0.563 0.952
iForest+Gabor 0.556 0.949 0.910 0.547 0.951
iForest+GLCM 0.524 0.945 0.903 0.516 0.947
iForest+Four-Feature 0.508 0.944 0.900 0.500 0.945
iForesttHOG 0.476 0.940 0.894 0.469 0.942
iForest+All-Feature 0.468 0.939 0.892 0.461 0.941
Gaussian-D+Four-Feature 0.468 0.939 0.892 0.461 0.941
Gaussian-D+GLCM 0.429 0.935 0.884 0.422 0.936
Gaussian-D+All-Feature 0.381 0.930 0.875 0.375 0.931
LOF+LBP 0.381 0.930 0.875 0.375 0.931
LOF+HOG 0.381 0.930 0.875 0.375 0.931
Gaussian-D+IMG-FV 0.373 0.929 0.873 0.367 0.930
OC-SVM+Gabor 0.352 0.931 0.864 0.398 0.917
LOF+IMG-FV 0.318 0.922 0.862 0313 0.924
LOF+Gabor 0.270 0917 0.852 0.266 0.919
LOF+Four-Feature 0.262 0916 0.851 0.258 0918
OC-SVM+IMG-FV 0.228 0.928 0.796 0.422 0.838
OC-SVM+GLCM 0.220 0.925 0.798 0.391 0.844
iForest+LBP 0.214 0911 0.841 0.211 0.913
OC-SVM+LBP 0.208 0915 0.818 0.281 0.879
LOF+GLCM 0.191 0.908 0.837 0.188 0.910
OC-SVM+HOG 0.164 0910 0.791 0.258 0.852
Gaussian-D+HOG 0.159 0.905 0.830 0.156 0.906
iForest+IMG-FV 0.127 0.901 0.824 0.125 0.903
LOF+All-Feature 0.127 0.901 0.824 0.125 0.903
OC-SVM+All-Feature 0.101 0.898 0.560 0.422 0.575
OC-SVM+Four-Feature 0.099 0.896 0.518 0.461 0.525

For different datasets, the top five algorithm and fea-
ture combinations consist of the Gaussian-D or iForest
algorithm combined with other feature groups. The feature
groups including GLCMs, GABOR, and IMG-FV show bet-
ter results, which emphasizes their effectiveness in extracting
features in the sewer pipeline environment. In real pipeline
scenarios, anomaly detection algorithms combined with tex-
ture feature extraction can be used for fault detection from
sewer pipeline videos. This method can also be extended to
other video fault detection scenarios.

Based on these experimental results, we can rank the
algorithm and feature performance for sewer pipeline fault
detection. In terms of the algorithms, the Gaussian-D and
iForest algorithms perform almost the same as each other, and
the OC-SVM and LOF algorithms perform almost the same
as each other. The former group is ranked higher than the
latter group. In terms of the features, the Gabor and GLCM
features provide almost identical performance. These features
are ranked higher than the original Image data features, which
are ranked better than the HOG and LBP features.

As the results show, both GLCM and Gabor features are
always included in the five best-performing feature groups,
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which means that these two features can provide reasonably
good results for all datasets. As GLCM and Gabor features
can better reflect the textural changes between the fault and
fault-free images, the abnormality detection algorithms can
capture this change effectively.

Each anomaly detection algorithm and feature has its own
advantages in different scenarios. However, our processing
results show that the proposed fault detection method is effec-
tive in sewer pipeline environments. The method can detect
outliers (faults) from unknown data without using a trained
classifier. As it is difficult to know the shapes of different
types of sewer faults in advance, our proposed method is more
in line with real scenarios. The OC-SVM algorithm is known
to be sensitive to outliers and thus does not perform very
well for outlier detection. The Gaussian-D algorithm assumes
the data to have a Gaussian distribution, and shows more
robust performance in the experimental results. The iForest
algorithm detects anomalies (faults) based on the concept of
isolation without employing any distance or density measure.
It shows better performance than the LOF algorithm. LOF
has a more local focus but produces more errors when the
data is noisy. Out of all these algorithms, the Gaussian-D and
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FIGURE 10. The ROC curves of different anomaly detection algorithms applied to different feature groups for Video-2.

iForest algorithms outperform the other algorithms. In sum-
mary, the Gaussian-D or iForest algorithms can be used as
effective auxiliary methods, and avoid the problem faced
by deep learning methods that require training on annotated
data sets.

V. CONCLUSION

This paper applied anomaly detection methods for under-
ground sewer pipeline fault detection using video data. The
data was collected by a new type of sewer pipeline inspec-
tion equipment. We carried out a comprehensive evalua-
tion of various anomaly detection algorithms and feature
groups. The evaluation showed that the Gaussian-D and
iForest algorithms with feature groups including GLCM or
Gabor can achieve good results. Anomaly detection algo-
rithms can reduce the workload required for data annota-
tion or manual identification. In the absence of any labeled
data, these algorithms are more practical, and can improve
the efficiency of sewer pipeline fault detection and reduce
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costs associated with establishing a database of faults. As the
proposed method is based on unsupervised machine learning,
it can reduce the cost of manual detection or data annotation,
which is required for deep learning-based methods. Deep
learning-based methods have been used to detect faults in
sewer pipelines based on CCTV videos or images in several
recent research studies, such as Faster-RCNN, YOLO and
SSD [15] and have shown effective performance. However,
since these methods are supervised learning, they require a
large annotated dataset for training. In contrast, the anomaly
detection algorithm is an unsupervised learning method so
it is difficult to perform quantitative comparison. In future
work, we shall consider semi-supervised learning methods to
achieve more detailed classification of fault types.
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