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ABSTRACT Road traffic sign detection and recognition play an important role in advanced driver assistance
systems (ADAS) by providing real-time road sign perception information. In this paper, we propose an
improved (Single Shot Detector) SSD algorithm via multi-feature fusion and enhancement, namedMF-SSD,
for traffic sign recognition. First, low-level features are fused into high-level features to improve the detection
performance of small targets in the SSD. We then enhance the features in different channels to detect the
target by enhancing effective channel features and suppressing invalid channel features. Our algorithm gets
good results in domestic real-time traffic signs. The proposed MF-SSD algorithm is evaluated with the
German Traffic Sign Recognition Benchmark (GTSRB) dataset. The experimental results show that the
MF-SSD algorithm has advantages in detecting small traffic signs. Compared with existing methods,
it achieves higher detection accuracy, better efficiency, and better robustness in complex traffic environment.

INDEX TERMS Traffic sign detection, small target detection, single shot detector, feature fusion, feature
enhancement.

I. INTRODUCTION
The detection and recognition of road traffic signs are mean-
ingful in advanced driver assistance systems [1] (ADAS) for
enhanced driving safety. As traffic signs usually consist of
specific shapes (circles, squares, and triangles) and colors
(red, blue, and yellow), which have significant visual effects
in road environments, traffic sign detection methods can
be divided into color-based, shape-based, and color-based
methods [2]–[5]. In color-based methods, RGB images are
usually converted into other color spaces, such as HSI [6],
CIELab [7], and HSL [8]. Then, the traffic signs are extracted
via color threshold segmentation through intelligent data
processing [9]. Color-based detection methods are usually
vulnerable to complex lighting conditions in the traffic
scene. In shape-based traffic sign detection, the geometric
contour shape of traffic sign is detected by geometric sym-
metry [7], [8], [10], [12]. Compared with the template match-
ing in complex lighting environment, geometric moment
invariant detection has better adaptability, but requires higher
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computational complexity. Nevertheless, the recognition rate
of these methods should be further improved.

In recent years, the deep convolution neural net-
work (CNN) for feature extraction has received much atten-
tion [13]–[15]. Benchmark works include GTSRB [16]
and GTSDB [17]. The faster region-based CNN (Faster
R-CNN) [18] is a representative two-stage target detection
framework that has become a popular object detection frame-
work, but it still has difficulty detecting small objects. In
recent years, some new methods have been proposed to
identify traffic signs [19]–[21].

Due to its small proportion in the image, the recognition
of small traffic signs plays an important role for ITS security,
but is difficult due to low resolution and noise effects. For
instance, although PASCALVOC andMSCOCO can achieve
satisfactory performance for large objects, small object detec-
tion is still a challenge [22]. In this paper, we propose a small
traffic sign recognition method that is different from previous
ones based on GTSRB and GTSDB datasets.

The reasons for the difficulty of small target detection are
summarized below.

A small target occupies fewer pixels with fewer features
and is difficult to detect.
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In CNN methods, low-level features may contain smaller
target information but less semantic information, whereas
high-level features contain abundant semantic information
but less small target information. Consequently, small targets
are not easy to detect.

Large computation complexity is required to detect small
objects.

To improve the detection accuracy and speed for small
objects, we propose an improved SSD algorithm by jointly
exploiting feature fusion and enhanced SSD algorithm
MF-SSD. The proposed traffic sign detection process is listed
in Fig. 2. To resolve the problem that the SSD algorithm
is not effective in detecting small objects, this paper pro-
poses an improved SSD algorithm through feature fusion and
enhancement, named MF-SSD. We fuse low-level features
into high-level features to enhance the detection performance
and detection efficiency of small targets in SSD.

II. RELATED WORK
In recent years, the deep convolution neural network has
been successfully applied to object recognition and target
detection, with AlexNet being the representative case [23].
In 2012, Krizhevsky et al. demonstrated the CNN’ s ability
to significantly improve image classification accuracy in the
ImageNet Large-scale Visual Recognition Challenge Com-
petition. Inspired by AlexNets work, Girshick et al. [24]
proposed a deep learning model named R-CNN, which also
has been applied to target detection. The model first uses a
selective search algorithm to calculate the candidate regions
of images and then inputs all candidate regions into R-CNN
model. The feature is extracted from type A and the clas-
sification is completed in SVM [25]. Moreover, the model
designs a bounding box regression algorithm to calculate the
coordinates of candidate regions and tests it on the target
detection set of PASCAL VOC. The average accuracy is
about 20% higher than the non-neural network algorithm.

Model preprocessing also is applied in the above method.
First, the weight of the network is initialized on the small
dataset of ImageNet and then the network is fine-tuned on
the PASCAL VOC dataset. In doing so, although the R-CNN
accuracy is greatly improved, a large computation complexity
is needed because there are about 2,000 candidate regions in
each image. In the application of SPPnet [26] to target detec-
tion, Microsoft Asia Research Institute first makes a mapping
and calculates the position of candidate regionsmapped to the
feature map of the highest convolution layer, then the pooling
layer based on SPP algorithm is used to reduce the dimension
and, finally, a feature layer of a specific size is obtained.
Although its accuracy is similar to R-CNN, the running time
is greatly reduced. In 2015, Ross Girshick further combined
the idea of SPPnet with R-CNN to propose a convolutional
neural network model, Faster R-CNN [18], and then replaced
the SVM classifier with soft Max [27] regression to reduce
the space and time overhead. The whole training process
does not need to be graded and the detection process is
more efficient and accurate. After training and testing on the

GPU, the experimental results show that the extraction time
of candidate regions is significantly shortened, the detection
time is shortened to one-tenth, and the classification accuracy
is increased.

In 2016, Liu Wei et al. combined the structure of the
YOLO network with Girshicks Faster RCNN and proposed
an SSD (Single Shot multibox Detector) target detection
algorithm [28], [29]. The SSD network is much faster than
Faster R-CNN, but its workingmode is significantly different.
Faster R-CNN [18] uses region inference to generate candi-
date regions and uses a classification algorithm to generate
target frames in each candidate region. In contrast, the SSD
algorithm generates target boundary frames of various sizes
directly on the whole image and uses non-maximum sup-
pression technology to integrate highly overlapping boundary
frames into one. The candidate regions are transformed into a
linear regression problem to find the prediction frame closest
to the target so as to improve the calculation speed and accu-
racy. In 2017, SENet and SE modules were proposed [30].
SENet enables the network to enhance effective channel
features and suppress invalid channel features according to
global information. The SEmodule is not a complete network
structure but a sub-structure, which can be embedded in other
classification or detection networks. The method of embed-
ding the SE module into the ResNet network in literature is
the first in the ILSVRC2017 classification project. The work-
ing mode of SE module is to learn feature weights according
to global letters, which makes the weight of effective chan-
nel features increase and the weight of ineffective or inef-
fective channel features decrease. Although embedding the
SE module in the original classification or detection model
will increase some parameters and computational complexity,
the additional parameters and computational complexity are
very small.

Recently, some small object detection methods based on
original Faster R-CNN have been proposed, e.g., multi-scale
input [31], multi-scale detector [32], [33], multi-task learn-
ing [34], [35], and multi-scale features [36]–[38]. However,
these methods easily lead to heavy computation time in the
training stage. To enhance the information representation
ability of small objects in the feature map, the multi-input
method [31] produces a high-resolution feature map. In refer-
ences [32] and [33], the multi-scale detector is used to extract
features from multiple consecutive layers to increase context
information. However, the multi-detector also increases the
computation cost in the training and testing stages. In liter-
ature [34], [35], the multi-task learning method is used to
improve detection performance. However, the feature map is
only the output of the last layer and the information contained
is not enough for small object detection. By combining the
features of different layers, the representation of small objects
in the feature map can be effectively enhanced. The multi-
scale feature method [36]–[38] has attracted more attention
than other methods in the field of small object detection.

Most of the existing SSD improvement algorithms are
based on feature fusion. In reference [39], the RSSD network
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FIGURE 1. SSD scheme.

FIGURE 2. The architecture of multi-feature fusion and enhancement single shot fetector (MF-SSD).

structure is proposed, where low-level features are fused
to high-level features while high-level features are fused to
low-level features. Literature [40] studies the FPN network.
By extracting features from the image moving from the bot-
tom to the top, a set of pyramid features are constructed and
then the feature fusion is realized by using the up–sampling;
finally, the target detection accuracy is improved. In refer-
ence [41], multiple low-level features are fused to enhance
SSD detection of small targets.

III. OUR PROPOSED APPROACH
Figure 1 shows the scheme of SSD, while the proposed
MF-SSD is illustrated in Fig. 2, which is significantly mod-
ified to improve the performance of small traffic sign recog-
nition. The overall framework of the algorithm is shown
in Fig. 2. On the basis of the SSD framework, a feature
fusion layer is added and the SE module is added to the
feature extraction layer after fusion. The detailed process will
be described next. Note that the feature fusion method is to
fuse low-level features into high-level features. In the MF-
SSD, the features at conv4_3 and fc7 are taken as low-level
features, and the features at fc7, conv6_2, conv7_2, conv8_2,
and conv9_2 are fused by pooling operation.

Figure 3 shows the process of feature fusion from
conv4_3 to the feature group to be detected. A set of fea-
ture fusion processes are described in detail, with examples
of feature fusion from conv4_3 to fc7, conv6_2, conv7_2,
conv8_2, and conv9_2. The features at conv4_3 with a
width of 38 × 38 are converted into the features of
conv4_3_pool_fc7 with a width of 19 × 19 by pooling
operation and the features of conv4_3_pool_fc7 are the left-
most features in the penultimate line. Then the features of
fc7 and conv4_3_pool_fc7 with width and height of 19× 19
form new features through series operation. After dyeing,
these features are enhanced and finally enter the detector.
The following feature fusion process can be performed in
a similar manner. The advantage lies in the shared pool-
ing features, which will increase the relationship between
layers. In the following, we provide an example of feature
fusion from conv4_3 to fc7 to illustrate the details of feature
fusion.

As shown in Fig. 4, X ∈ RW1×H1×C1 represents the feature
map at conv4_3, Y ∈ RW2×H2×C2 represents the feature map
at fc7, X is transformed into U through pooling operation,
U ∈ RW2×H2×C2 , and then U and Y are converted into Z
through series operation, Z ∈ RW2×H2×C2 .
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FIGURE 3. Structural block diagram of the proposed MF-SSD algorithm.

FIGURE 4. Process of feature fusion from conv4_3 to fc7.

The pooling operation can then be formulated as follows:

UC (x, y)

= Fpool(XC )

= max(XC (i, j)|i = x + l, · · · , x + k; j = y+ 1, · · · y+ k)

(1)

whereUc denotes the data of the C channel of U characteristic
graph, Uc(x, y) denotes the data at the height equal to y width
equal to X . Similarly, it can be inferred that Xc and Xc(i, j).
k × k is the pooling core with K being the step size and the
patch is 0.

x = 0, · · · ,
W1

k
− 1, y = 0, · · · ,

H1

k
− 1 (2)

The concatenation operations can then be expressed as

Fconv4_3_fc7 = Fconv4_3 ◦ Ffc7 (3)

where ◦ denotes the series operation, Fconv4_3 and Ffc7
are connected in series on the channel dimension, Z ∈
RW2×H2×C3 ,C3 = C1 + C2.
After feature fusion, the features at fc7, conv6_2, conv7_2,

conv8_2, and conv9_2 increase more at the lower level.
These features contain more semantic information. Adding
low-level features that contain additional small target infor-
mation is helpful for subsequent small target detection. In the
feature fusion, it should be noted that U and Y need Batch
Normalization (BN) before concatenation in order to con-
struct consistent scales for different feature maps. The batch
standardization algorithm is listed as Table 1:

TABLE 1. Standard algorithm for batch quantization.

The principle of the SE feature enhancement module is
as follows. Figure 5 illustrates the process of using the SE
module to enhance the features at conv4_3, which enhances
the feature U at conv4_3 to Y in the graph. The operation of
converting feature X into feature U is a convolution operation,
which belongs to SSD itself.

The operation of converting feature U to feature Y is the
Squeeze-and-Excitation (SE) model enhancement operation.
It is seen that after enhancement of the SE module, the size of
feature U is not changed while the feature weights of different
channels of feature U are. Finally, the enhanced feature Y of
the SE model is sent to the detector for subsequent classifica-
tion and detection.
Fconv_3 is the convolution operation of conv4_3 in which

the convolution core is 3 × 3, the patch is 1, and the step
is 1. X is a three-dimensional matrix of size W × H × C

38934 VOLUME 8, 2020



Y. Jin et al.: Multi-Feature Fusion and Enhancement SSD for Traffic Sign Recognition

FIGURE 5. Enhances features at conv4_3 by using the SE module.

and U is a three-dimensional matrix of size W × H × C .
After conv4_3 convolution operation, the size of X remained
unchanged.

The formula of Fconv_3 is as follows:

uc = vc ∗ X =
C ‘∑
s=1

vsc ∗ X
s (4)

where vc denotes the convolution core of c, X s denotes the
input of s, U denotes the three-dimensional matrix of C with
the size ofW ×H , uc denotes the two-dimensional matrix of
C in U , and C denotes the channel.

The operation after Fconv_3 is extrusion, where global aver-
age pooling is adopted. The formula is as follows:

zc = Fsq(uc) =
1
WH

W∑
i=1

H∑
j=1

uc(i, j) (5)

The number of channels of z is C and the number of
channels of input feature graph is C . z has global information
to some extent, representing the response intensity of each
channel in the feature graph.

The extrusion operation is followed by an excitation oper-
ation, which converts the second matrix in Fig. 5 to the third
matrix in Fig. 5. The activation formula is as follows:

s = Fex(z,W ) = δ(g(z,W )) = σ (W2δ(W1z)) (6)

where Z is the output of the front extrusion operation. W1z
denotes the full connection layer process and W2δ(W1z)
denotes a full connection operation after the previous full
connection. Finally, the sigmoid function is applied to the
previous results and the s of dimension 1×1×C is obtained.

The final operation is to multiply s as a weight and U . The
formula is as follows:

X̃c = Fscal(uc, sc) = sc · uc (7)

where sc denotes the number C in S.
Model evaluation index: the formulas of precision, recall

and mean Average Precision (mAP) are as follows:

Pr ecision =
TP

TP+ FP
(8)

Re call =
TP

TP+ FN
(9)

mAP =
1
|QR|

∑
q∈QR

AP(q) (10)

The formulas of F1−Measure are as follows:

F1−Measure =
2PR
P+ R

(11)

where

P =
TP

TP+ FP
, R =

TP
TP+ FN

(12)

as far as the location of the target is concerned, it is necessary
to introduce an Intersection Over Union (IoU ) to determine
the positive case as a normal or a negative case. The formula
is as follows:

IoU =
Gt ∩ Dr
Gt ∪ Dr

(13)

where Gt ∩ Dr is the intersection of Gt and Dr , Gt ∪ Dr is
the union of Gt and Dr .

The range of IoU is 0–1. Note that, in this paper IoU is
set to 0.5. Once the detection position and label location are
achieved, the target position is determined accordingly:

IoU =
Gt ∩ Dr
Gt ∪ Dr

≥ 0.5 (14)

IV. EXPERIMENT RESULTS
A. DATASETS
There are two kinds of datasets used in this paper. One is the
domestic (Chinese) traffic sign dataset, which contains 1,465
pictures. At present, seven kinds of image samples aremarked
as shown in Fig. 6. The image comes from a real picture of
the city.

Seven of them are shown in Fig. 6: right, straight, stop,
nohonk, crosswalk, left, and background. The other data com-
prise German Traffic Sign Detection Benchmark (GTSDB)
traffic signs (Fig. 7). There are 1,000 pictures and 43 kinds
of marks as shown in Fig. 8. To test the detection effect
of MF-SSD on each kind of traffic signs and evaluate
our method for both small and large traffic sign detection,
we divided the traffic signs into three size groups: small
(0–32 pixels), medium (32–96 pixels), and large (96–200 pix-
els). In addition, it is worth noting that all the traffic signs used
occupy less than 1% of the original image.
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FIGURE 6. China traffic sign detection data.

FIGURE 7. Example of pictures in GTSDB.

FIGURE 8. GTSDB signs (43 categories).

B. DETECTION PERFORMANCE
As is seen in Fig. 9, our model obtains better detection results
for Chinese traffic signs.

We use GTSDB datasets to compare experiments.

FIGURE 9. Examples of Chinese road signs detected by our model.

Table 2 provides detailed test indicators for each of the
five methods, demonstrating that MF-SSD achieves the best
performance inmost categories. The experiments were run on
a Linux PC with an Intel Core i5-8400K, 8 GB of memory,
and one GeForce GTX 1060 GPUs.

We evaluated the performance of traffic signs through
recall and accuracy.

First, we divided the traffic signs into 43 categories: Maxi-
mum speed limit (20), Maximum speed limit (30), Maximum
speed limit (50),Maximum speed limit (60),Maximum speed
limit (70), Maximum speed limit (80), End of speed limit
(80), Maximum speed limit (100), Maximum speed limit
(120), No passing, No passing for vehicles over 3.5 t, Priority,
Priority road, Yield, Stop, Road closed, Vehicles over 3.5 t
prohibited, Do not enter, General danger, Curve (left), Curve
(right), Double curve, Rough road, Slippery when wet or
dirty, Road narrows (right or side), Road work, Traffic sig-
nals ahead, Pedestrians, Watch for children, Bicycle crossing,
Beware of ice/snow, Wild animal crossing, Lane added (left),
Mandatory direction of travel (right), Mandatory direction of
travel (left), Mandatory direction of travel (straight), Manda-
tory direction of travel (straight or right),Mandatory direction
of travel (straight or left), Pass by on right, Pass by on left,
Yield to roundabout, End of no passing zone, End of no
passing zone for vehicles over 3.5 t. The worst precision
results were obtained by the category of compulsory traffic
signs in almost all models tested. The comparison of results
in Table 2 shows that our algorithm has higher precision.

Examples of detection using five different models in a road
scene are illustrated in Fig. 10. All detections are correct in
the examples. As can be seen from the figure, our method has
the highest detection rate.

Second, we divided traffic signs into three size cate-
gories: small (0–32 pixels), medium (32–96 pixels), and large
(96–200 pixels). For more intuitive comparisons,

we also use F1_measure as an additional metric. To verify
the effectiveness of the method, we compared MF-SSD with
SSD, faster_rcnn, and FSSD [40]. Faster_rcnn is a detection
method for multi-scale objects, which achieves better perfor-
mance on MS COCO and PASCAL VOC datasets. FSSD,
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TABLE 2. Comparison of the recognition performance of five models on
different categories.

TABLE 2. (Continued.) Comparison of the recognition performance of five
models on different categories.

as proposed by Zuoxin Li and Fuqiang Zhou, has higher
accuracy and speed than the conventional SSD by a large
margin.

Table 3 provides a comparison of the performance of these
three methods on different traffic sign size groups. The preci-
sion measurements of small and medium sizes obtained by
the proposed MF-SSD are 28.8 and 67.5 respectively. The
precision value of the large size is 82.6, which is superior to
the precision of other methods. This shows that MF-SSD can
accurately identify small traffic signs and medium or large
traffic signs.

Figure 11 shows the partial visualization results of the test
dataset under different weather conditions. It can be seen that
each traffic sign instance is very small, accounting for less
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FIGURE 10. Examples of road sign detection using five different models.

FIGURE 11. Example images from GTSDB data set.

than 1% of the whole scene; nevertheless, our method can
recognize them accurately.

The German Traffic Sign Detection Benchmark (GTSDB)
used in this paper is highly accepted and widely used
in traffic sign detection methods in comparative literature.
GTSDB includes natural traffic scenarios recorded in various
types of roads (roads, villages, cities) during daytime and
dusk, and numerous weather conditions. The dataset consists
of 900 complete images containing 1,206 traffic signs, which
are divided into 600 training sets (846 traffic signs) and

TABLE 3. Comparison of recognition performance for different size
groups.

300 test sets (360 traffic signs). Each image contains zero or
one or more traffic signs, which are usually affected by dif-
ferences in direction, light conditions, or occlusion. The signs
are classified into four categories: mandatory, prohibitive,
dangerous, and other. The training set contains 396 prohi-
bitions (59.5%), 114 (17.1%) mandatory, and 156 (23.4%)
dangerous traffic sign samples while the test set includes
161 prohibitions, 49 mandatory, and 63 dangerous traffic
sign images. Figure 6 shows some images of the dataset.
We divided the traffic signs into three size categories—
small (0–32 pixels), medium (32–96 pixels), and large
(96–200 pixels)—and tested the detection effect of each traf-
fic sign by MF-SSD.

V. CONCLUSION
To improve small target detection performance, this paper
proposed an improved algorithm named MF-SSD, which
combines low-level features with high-level features and adds
the SEmodule to improve the detection accuracy. The experi-
mental results verified that the proposed method outperforms
conventional methods detecting small objects with respect to
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detection accuracy and efficiency. Although our method has
a great improvement in detecting small target image, there
is still large room for improving the accuracy for a real-time
application. In future work, we will continue to improve the
algorithm and strive to apply the framework to the domestic
traffic sign dataset to achieve real-time application.
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