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ABSTRACT The local intensity fitting active contour models can handle inhomogeneous images, but they
suffer from the shortcomings of poor performance in segmenting images with severe intensity inhomogeneity
and being sensitive to initializations. To overcome these problems, we put forward a robust active contour
model by introducing two adjustment coefficient functions. The energy functional of the proposed model is
presented by integrating the local fitting term and two adjustment coefficient functions. The local fitting term
is defined by introducing two local fitting functions that approximate the image intensities inside and outside
of the contour. These two adjustment coefficient functions, which improve the segmentation performance
and enhance the robustness to initialization, are constructed by utilizing the Sigmoid function as well as the
difference between local intensity averages and image actual intensities. The results of the experiments on
synthetic and real images demonstrate that the presented model not only is capable of handling intensity
inhomogeneity better under more flexible initializations but also takes less time in comparison with other
region-based models. Furthermore, these two adjustment coefficients can be employed to other local intensity
fitting models to enhance the robustness to initialization and to decrease the segmentation time.

INDEX TERMS Image segmentation, active contour model, adjustment coefficient functions, intensity
inhomogeneity.

I. INTRODUCTION
Active contour models, originally put forward by
Kass er al. [1], have attracted considerable attention and

on level set perform image segmentation by evolving the
zero-level contour curve, and thus are able to deal with
topological changes adaptively.

found an increasingly wide utilization in image segmenta-
tion [2]-[7]. An active contour model is generally represented
by an energy functional and formulated in a principled way
by applying the level set methods [8], [9], which implicitly
represents contour curve as the zero-level set of a higher
dimensional level set function. Active contour models based
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Active contour models are able to obtain sub-pixel accu-
racy of object boundaries as well as smooth and closed
contour as segmentation result. In the past decades, vari-
ous active contour models have been presented for image
segmentation. In general, active contour models fall into
two categories: edge-based models [1], [6], [8], [10]-[13]
and region-based models [14]-[23]. The first kind of mod-
els commonly uses the gradient information to urge the
active contour curve evolve towards the boundaries of the
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target object. These models can effectively extract an object
with strong boundaries, but they cannot detect the weak edge
of an object and thus undergo weak edge leakage. Meanwhile,
they are sensitive to noise and the initial contour should be
located near the object, otherwise the segmentation result
is dissatisfactory. Distinct from the first kind of models,
region-based models make use of statistical information in
global or local regions to drive contour curve to obtain desir-
able target boundaries. Consequently, region-based models
can achieve superior results than edge-based models in seg-
menting images with noise and weak object boundaries.

The well-known Chan-Vese (CV) model [19] is one of
the typical region-based models. This model approximates
the image intensities with piecewise constant. It is for this
reason that it is able to segment bimodal images but is not
successful in segmenting images with intensity inhomogene-
ity [24], [25]. To cope with intensity inhomogeneity, a lot of
local region-based models have been proposed. Li et al. [20]
defined a region-scalable fitting (RSF) energy functional by
using two fitting functions to approximate image intensities
in local region. The optimum fitting functions turn out to be
the local intensity averages on the two sides of the contour.
Afterwards some other local intensity fitting models were
proposed, such as the local image fitting (LIF) model [21], the
local region-based Chan—Vese (LRCV) model [22], weighted
region-scalable fitting (WRSF) model [26], and so on. The
LIF model uses the weighted average of the local intensity
averages to approximate image intensities. The LRCV model
can be seen as an improvement of the CV model by replacing
the global intensity means with local intensity averages. The
WRSF model presents an improvement scheme on the LBF
model. In the improvement scheme, local entropy at each
pixel, which enhance the robustness of the RSF model to ini-
tialization but increases the computational cost, is exploited
to measure quantitatively the variation of intensity and to
redefine the energy of RSF model as a weighted energy
integral with the local entropy as a weight of local energy at
each point. Wang et al. [34] put forward an entropy weighted
fitting (EWF) model by taking advantage of the Kullback—
Leibler divergence [27] to measure the difference between
the input image and three local fitting images, and intro-
ducing an inhomogeneity entropy descriptor as weight. The
above-mentioned models based on local intensity averages
can segment heterogeneous images by making use of local
image intensity information. However, they still tend to fall
into local minimum and thus suffer from sensitivity to initial-
ization, even though some of them allow more flexible initial
contour. In addition, they are time consuming and cannot deal
with severe intensity inhomogeneity effectively.

Another strategy to deal with inhomogeneity is to perform
jointly segmentation and bias field estimation. The strategy
is implemented by modeling an inhomogeneous image as a
piecewise constant image multiplied by a bias field, which
accounts for intensity inhomogeneity and varies spatially and
smoothly. Many models have been put forward based on the
bias field correction [28]-[32], [36]. Li et al. put forward
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a local intensity clustering (LIC) energy functional [28] to
segment images with intensity inhomogeneity and to eval-
uate the bias field. Huang et al. [31] proposed a model by
designing an adaptive scale parameter and constructing a
region-based pressure force function. By considering local
difference matrix in a modified image model, Shan et al. [32]
advanced a local region-based fitting [LRBF] energy func-
tional for segmentation and bias correction of images. These
models are capable of segmenting inhomogeneous images
with a desirable result, but they still suffer from some draw-
backs such as complicated implementation and sensitivity to
the location of initial contour and are often not applicable to
images with severe intensity inhomogeneity.

In this work, we put forward a robust active contour model,
which can achieve a good performance in segmenting inho-
mogeneous images with low computational complexity and
is robust to initialization. First, we define the local fitting
term by using the local intensity averages inside and outside
of the contour. Second, two adjustment coefficient functions,
which improve the segmentation performance and enhance
the robustness to initialization, are constructed by utilizing
the Sigmoid function and the difference between local inten-
sity averages and image actual intensities. Next, an energy
is proposed by integrating the local fitting term and two
adjustment coefficient functions. This energy is then incor-
porated into a variational level set formulation with a level
set regularization term. Furthermore, these two adjustment
coefficient functions can be employed to other local intensity
fitting models to enhance the robustness to the location of
initial contour and achieve a decrease in the segmentation
time.

The rest of this work is structured as below. Section 2 gives
a brief introduction to three active contour models and dis-
cusses the reason why the RSF model is unable to seg-
ment the image correctly when initialization is inappropriate.
Section 3 details our proposed model by introducing two
adjustment coefficient functions. In Section 4, experimental
results are presented. Section 5 provides some discussions,
followed by a brief summary of the work in Section 6.

Il. RELATED WORKS AND PROBLEM ANALYSIS

A. THE CV MODEL

Chan and Vese [19] proposed an active contour model by des-
ignating two constants to approximate the image intensities of
the object and background. Let Im : D C R?> — R be an input
image defined in the image domain D. The energy functional
of the CV model can be written as

FV($.c1.e) = u IT] + /
inside(T)

IIm(x) — ¢1)|* dx

+i / () — 2P de (1)
outside(T)

where A1, Ap, and p are positive constants; inside(T) and
outside(T) are the area inside and outside of the curve T
c1 and ¢; are the global intensity averages inside and outside
of the curve. Let ¢(x) : D — R be a level set function.
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Using the level set methods, the curve can be represented

as T = {x € D|p(x) =0}. Image segmentation can be

accomplished by obtaining a closed curve T to divide the
image domain D into two non-overlapping areas:
D = inside(T) = {x € D| ¢(x) > 0}

Dy = outside(T) = {x € D |¢p(x) < 0}. 2)

The functional (24) can be rewritten in terms of the level set
function ¢(x) as follows:

FV( 1, e0) = /D VH.($(0)| dx
Fa /D Im(x) — en)2 My ($())d

i /D () — 2P Ma@()dx  (3)

where M (¢(x)) = He(¢p(x)) and Mz (¢(x)) = 1 — He(p(x))
are the membership functions of D and Dj, and H.(x) is a
regularized Heaviside function defined by

H, (x) = % |:1 + %arctan (g):| @

Since ¢ and c; are the global intensity averages inside
and outside the curve, CV model can segment the image
with weak edge effectively, and it is insensitive to initializa-
tion. However, it often leads to poor segmentation results for
images with intensity inhomogeneity.

B. THE RSF MODEL

Li et al. [20] developed a region-scalable fitting model to
address the problem caused by intensity inhomogeneity. The
energy functional is given by:

FOF (@, ur, u)
2
- [ (Zx,- [ ko= |Im<x>—u,-<y>|2M,~(¢><x))dx>dy
D\i= D

1
+VI 5 (VeI — 1)2dX+M/ IVH(¢(x))dx  (5)
D D

The gradient descent method is implemented to optimize
the functional (5). Based on variation theory, the evolution
equation of ¢ is given by

9
9 s (@)mer — Ared)

ot
2 . [ Vo . ( Vo
v (V d’_d”(w)) +”‘SS‘Z’V<|V¢|> ©

where A1, A2, and p are positive constants; e; and e, are the
following functions

e = f kx — ) [Im@) — wPdy. i=12. (7
D

3¢ 1s the derivative of H,, given by
1 e
be=—5—"3 ®)

7 &2 + x2
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The optimal u (x) and u»(x) for minimizing the functional (5)
are given by

Ui(r)= J kG = y)Mi(¢()Im(y)dy
J k(e = »Mi(p(n)dy

Owing to the Gaussian kernel function k(x — y) in (9),
the local intensity information is obtained to direct the con-
tour evolution, thus the RSF model is able to cope with
intensity inhomogeneity. However, it is incapable of dealing
with severe intensity inhomogeneity effectively and sensitive
to initialization [35].

i=land2. (9)

C. THE LRCV MODEL

Liu et al. [22] presented a local region-based Chan—Vese
(LRCV) model. This model is capable of segmenting inho-
mogeneous image by minimizing the difference between
image intensity and local intensity averages. The energy func-
tional is written as

FIRCY ey, e, ) =y /D (Im(x) —c1 () H(x))dx

+k2/D(Im(X)—Cz(X))2(1—H(¢(X)))dx
(10)

where A; and A, are positive constants; c1(x) and cz(x)
are the weighted intensity averages of outer-contour and
inner-contour portions in a Gaussian window centered at the
point x, respectively. Therefore, c1(x) and c2(x) in LRCV
model are identical with u;(x) and u>(x) in the RSF model.
With the information of local intensity, LRCV model is capa-
ble of segmenting inhomogeneous images. But it still suffers
from the sensitivity to initialization even though it allows
more flexible initial contour when compared with the RSF
model.

D. PROBLEM ANALYSIS

In the subsection, we take the RSF model as an example to
discuss the reason why these local intensity fitting models,
which only employ the local intensity fitting functions to
direct the evolution of the contour, are unable to segment the
image correctly when initialization is inappropriate.

FIGURE 1. Segmentation results of LBF model. Row 1: desired result, Row
2: undesired result, Column 1: the input image with green initial contours
and red final contours; Column 2-5: the images of u;, abs (Im-u;), u,,
and abs (Im-u,) with red final contours, respectively.

In Fig. 1, each image contains the red final contour. Col-
umn 1 shows the segmentation results with initial contour
in green. The column 2 and 4 are the image of uj(x) and
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FIGURE 2. The image (a) is the leftmost image in row 2 of Fig. 1 with two
points x ; and x , annotated in yellow. The image (b) and (c) are

the second and forth images on the left in row2 of Fig. 1 with the same
two points x ; and x , as image (a).

u(x), respectively. The column 3 is the image of the absolute
value of the difference between u(x) and image intensity
Im(x). The column 5 is the image of the absolute value of the
difference between uy(x) and Im(x). Row 1 shows that LBF
model can successfully segment the inhomogeneous image
with dark object and bright background. In this situation,
the value of u;(x) is larger than Im(x) along the interior edge,
and is close to Im(x) along the exterior edge when the final
contour lies exactly at the edge of object. Meanwhile, the
value of u>(x) is smaller than Im(x) along the exterior edge
and close to Im(x) along the interior edge. However, if the
location of the initial curve is inappropriate, as shown in
row 2, the RSF model is prone to get stuck in local optimum
and thus cannot capture the target. In this situation, #;(x) and
uz(x), as shown in row 2, are not the same case with row 1.

To analyze the unsatisfactory segmentation results further,
we consider two points x; and x marked in yellow in Fig. 2.
The image in Fig. 2 is the leftmost image in row 2 of Fig. 1
with two points x| and x, annotated in yellow. The image
(b) and (c) are obtained by marking the same points x; and x»
in the second and forth images on the left in row2 of Fig. 1.
Next, we analyze the unsatisfactory result in term of the value
of level set function ¢(x).

When the unsatisfactory results as shown in row 2 of
Fig. 2 is obtained, we can see that ey (xy) is larger than e>(x1).
This is because the difference between u;(y) and the image
intensity Im(xp) is bigger than the difference between ux(y)
and Im(x;) when the point y is in a local region centered at xj.
To achieve the minimum of the energy functional, M{(¢(x1))
must be smaller than M>(¢(x1)). Due to Ma(¢p(x1)) = 1 —
Mi(¢p(x1)), M (¢(x1)) is smaller than 0.5 and ¢(x1) is smaller
than 0. Therefore, the point x; is misclassified into the interior
of the contour curve. Similarly, we can discuss the reason for
the misclassification of x;. Because the difference between
u1(y) and Im(x,) is small and the difference between us(y)
and Im(x,) is relatively large when the point y is located in
a local region centered at x», the value of ej(xp) is smaller
than e>(x;). To reach the minimum of the energy functional,
Mi(¢(xz)) must be larger than M>(¢(x2)). This means that
Mi(¢(xp)) is larger than 0.5 and ¢(xp) is bigger than O.
Therefore, the point x; is misclassified into the exterior of
the contour curve.

1) For x € object, ej(x) should be bigger than ey(x) to

make it sorted into the interior of the contour.

2) Forx € background, e1(x) should be smaller than e;(x)

to make it sorted into the exterior of the contour.
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As mentioned above, the existing active contour models
based on local intensity fitting functions have their limita-
tions. To solve this problem, we construct two adjustment
coefficient functions to prevent the energy functional from
falling into local minimum and meanwhile deal with severe
intensity inhomogeneity effectively.

Ill. OUR MODEL

A. LOCAL FITTING TERM

Consider a grey image Im : D — R, where D C R? is the
image domain. For a given pointx € D, Dy is a neighborhood
centered at x. The local fitting term (LFT) at x is defined as:

LFT(x) = f IIm(x) — u(y)|* dy, (11)
D\’

where u(y) represents the local intensity average and it is
defined within a local region as explained in following
paragraph. In the proposed energy functional, a truncated
Gaussian function k(x — y), such that k(x — y) = 0 for
v ¢ Dy, is introduced as a nonnegative window function. The
truncated Gaussian function k(x — y) is defined by

1 25 2
— ,—lul*/20

k=132 , Jor lul <p (12)
0, otherwise

where p is the radius of the neighborhood, o is the standard
deviation of the Gaussian function, and a is a normalization
constant such that f k(u) = 1. With the function k(x — y),
LFT(x)in (11) can be rewritten as

LFT(x) = / k(x — y) [Tm(x) — u(y)|* dy (13)
D

Considering the Gaussian function k(x — y), the local
intensity averages inside and outside of the contour 7, u;(y)
and u»(y) are defined as

[ k(x — )M (p(x)Im(x)dx
[ k(x — y)M(¢(x))dx

[ k(x — y)Ma(p(x)Im(x)dx
[ k(x — y)Ma(¢p(x))dx

B. THE ADJUSTMENT COEFFICIENT FUNCTIONS

The Sigmoid function and the difference between local inten-
sity averages and actual image intensities are utilized to con-
struct two adjustment coefficient functions S(u;(x) — Im(x))
and S(Im(x) — up(x)) where uq(x) and u»(x) can be calculated
by (14) and S is Sigmoid function defined by

ui(y) =

ur(y) = (14)

S(z) = . 15
© =170 (15)
Obviously, the value range of S(z) is (0, 1) and
I, z>»0
S@~10, z<k0 (16)
0.5, z=0.
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C. THE ENERGY FUNCTIONAL BASED ON TWO
ADJUSTMENT COEFFICIENT FUNCTIONS

Using the adjustment coefficient functions, we now present a
robust local region-based model for image segmentation. The
proposed model incorporates local intensity statistical infor-
mation and the difference between local intensity means and
actual image intensities into its energy functional, defined as:

EGuy, 0, T) = 7] +/ Jimy ()

inside(T)
+ / Aomy(x)dx  (17)
outside(T)
where A1, A2, and p are positive constants; |T'| represents the
length of the contour 7 and thus makes sure the length can

reach the optimal value in segmentation result, m; and m, are
given by:

my(x) = S(M1(X)—Im(X))ka(x—y) [Im(x) —u1 (v)*dy

ma(x) = S(Im(x)—uz(X))/;)k(x—y) [Im(x) —uz(y)*dy
(18)

Using level set methods, we rewrite the energy functional (17)
as

E(ur, w2, ) = u /D VH($(r)| dr
+ /D Jm COM; ($())dx

+ /D JomyMa(@)dx (19

To maintain the level set function ¢ close to a signed
distance function during the contour evolution, R(¢p) =
f D % (Vo) — 1)2 dx called the distance regularization
term is incorporated into the energy functional (19). Thus,
total energy functional of the proposed model is expressed as

1
E(ul,uz,qs):v/ §<|V¢|—1>2dx+u/ \VH(()| dr
D D
+ /D A COM; ($())dx
+ fD Aama(OMa(@(x))dx (20)

D. ENERGY FUNCTIONAL MINIMIZATION

We minimize the energy functional (20) by using the gra-
dient descent method. For a fixed level set function ¢(x),
the functional E(u1, us, ¢) is optimized with respect to u;(x)
and up(x), which can be calculated by (14). Keeping u;(x)
and u(x) fixed, we minimize the functional (20) with respect
to ¢(x) by solving the following gradient flow equation

¢
i =8 (P)(Aymy — Aomp)

2 (Ve (Vo
+v (V ¢ —div <m>> + e (@)div <m>
2D
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The initial level set function ¢(x) is initialized as

Sx) = —co X %s insi(?e Do, 22)
co x is outside Dy,

It is noteworthy that when the input images have bright back-
ground and dark objects of interest, co equals 2. However,
if the input images have dark background and bright objects
of interest, we set cg to be —2. In order to measure computing
time, we apply |(Airs — A;)/A;] < 107> as the stopping
criterion of curve evolution. A; stands for the region inside
the contour curve at the iteration i. Algorithm 1 summarizes
the procedure for the proposed model.

Algorithm 1

1: Set parameters including cy.

2. Input the image Im(x) and initialize the level set
function ¢y.

3: For t < 1 to iteration do.

4: Compute u;(x) and u;(x) according to (14).

5: Calculate m; and m; according to (18).

6: Update the level set function according to (21).

7:if [(Aiys — A;)/A;| < 1072 or the fixed iterative times
is reached, then end.

8: Output the segmentation result ¢ = ¢; .

IV. EXPERIMENTAL RESULTS

In this section, a lot of experiments are conducted to test
our proposed model with synthetic and real images. All the
experiments have been performed with MATLAB 2011b on
a laptop with Intel Core 17-8565U CPU 1.80 GHz and RAM
16.0GB. Unless indicated otherwise, we utilize the following
parameters in all the experiments: A1 = Ay = 1, Ar = 0.1,
v = 1, u = 0.004 x 2552, and parameter of Gaussian
kernel ¢ = 3.0. We compare our model with CV [19],
RSF [20], WRSF [26], LRCV [22], LIC [28], LRBF [32],
and EWF [34].

A. SEGMENTATION RESULTS OF OUR MODEL

Fig. 3 shows the segmentation processes of our model in seg-
menting four images. The first two images exhibit intensity
inhomogeneity, the second and third images are contaminated
by noise and the last one has irregular texture. For the image
in row 4 of Fig. 1, u is set to be 0.04*255%255 and o is 5 in
our model. The column 1 are images with initial contours.
Column 2 to 4 are the contour evolution processes of our
model. Column 5 are the images with the final contours. It is
noteworthy that column 2 shows the contour after one itera-
tion. From column 2, we can see that the new contours emerge
at the boundaries of the object soon just after one iteration
in our model due to these adjustment coefficient functions
S(ui(x) — Im(x)) and S(Im(x) — uz(x)). These experiments
verify that our model is capable of achieving satisfactory
segmentation results for image with intensity inhomogeneity
and noise.
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FIGURE 3. Segmentation processes of our model. Column 1: images with
initial contours. Column 2 to 4: evolution process. Column 5: the final

W
YW

contours.

FIGURE 4. Comparison results of our model with CV and LBF in
segmenting a hand image which is a bimodal image. Column 1: images
with red initial contours, column 2 - 4: the results with final contours
from CV, LBF and our model, respectively.

B. BIMODAL IMAGE SEGMENTATION

Fig. 4 and 5 show the comparison of our model with CV
and LBF in segmenting bimodal images. Two test images in
these experiments are a hand image and a synthetic image.
Column 1 shows images with initial contours and the results
from CV, LBF and the proposed model are displayed in
column 2 to 4. It is well known that the CV model can seg-
ment bimodal image successfully and it is more robust to
initialization than local region-based model such as LBF.
Therefore, our model is compared with CV model in seg-
menting bimodal images. As shown in Fig. 4to 5, CV and our
model have obtained similar results for the synthetic image by
visual comparison. However, for the hand image in which the
middle finger and ring finger stick together, CV model fails to
get desired segmentation accuracy of the finger boundaries,
but the eventual contour of our model can reflect the authentic
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FIGURE 5. Comparison results of our model with CV and LBF in
segmenting a synthetic bimodal image. Column 1: images with red initial
contours, column 2 - 4: the results with final contours from CV, LBF and
our model, respectively.

hand shape precisely. Evidently, LBF model fails to segment
them with the given initial contours due to its sensitivity to
initialization. It can be observed that our model can efficiently
segment bimodal images and is robust to the initial contour.

C. INHOMOGENEOUS IMAGE SEGMENTATION

Fig. 6 to 9 show comparison results of our proposed model
with CV, LBF, WRSF, LRCV, LIC, LRBF, and EWF in
segmenting images with intensity inhomogeneity. u is set
to be 0.0035 x 255% and 0.0055 x 255% in our model for
the images in Fig. 8 and 9, respectively. o in our model
is 5 for images in Fig. 9. In Fig. 6 to 9, the images with
initial contours are displayed in the first column, the results
from CV, LBF, WRSF, LRCV, LIC, LRBF, EWF and our
model in column 2 to 9. Four test images and four different
initializations for each image are used in these experiments.
As shown in Fig. 6 to 9, CV model cannot handle intensity
inhomogeneity and the LBF, WRSF, LRCV, LIC, LRBF, and
EWF models can obtain satisfactory results only under some
initial contours. However, our model is capable of achieving
the desired segmentation for each initialization. The exper-
iments establish that our model is robust to the location of
initial contour.

We also quantitatively evaluated the performance of these
models in term of Dice Similarity Coefficient (DSC) [6], [33]
defined by:

psc — N@GND_ 23)

N(G)+ N(T)

where N (e ) presents the number of pixels; N is the inter-
section operator; T is the result of a test model; G is the
ground truth obtained by the manual segmentation. The value
of DSC varies between 0 and 1, and the larger the value, the
more accurate is the result of the model. For convenience,
we label the image in Fig. 6 to 9 as image A to D in sequence.
The segmentation accuracies are listed in Table 1 based on
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FIGURE 6. Comparison results of our model with CV, LBF, WRSF, LRCV, LIC, LRBF, and EWF on a real inhomogeneous image of a T-shape object.
Column 1: images with initial contours, column 2 - 9: the results from CV, LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model.

FIGURE 7. Comparison results of our model with CV, LBF, WRSF, LRCV, LIC, LRBF, and EWF on a synthetic image with intensity inhomogeneity.
Column 1: images with initial contours, column 2 - 9: the results from CV, LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model.

image A to D. It should be noted that we only list the segmen-
tation accuracy under the first initialization for each image.
This is because only under these initial contours, all of the
test models can obtain satisfactory segmentation results.
Additionally, the CPU time and the iteration times of these
models in the experiments are recorded in Table 2. As shown
in Table 1 and 2, the CV model is very fast, but it does not per-
form well in dealing with intensity inhomogeneity because
of utilization of global intensity means for classification. The
EWF model can get desirable segmentation results but it is the
most time consuming. Three different local fitted images are
utilized in the EWF model to achieve reasonable segmenta-
tion accuracy, but they make the model time-consuming in the
process. The LIC model is not successful in segmenting inho-
mogeneous images except the first image. Even LBF, WLBE,
LRCYV, LRBF, and EWF can extract objects of the interest,

43206

they consume more time than our model. The comparison of
these models shows that our model not only can achieve better
results in segmenting images with intensity inhomogeneity,
but also can perform segmentation in less CPU time and
iterations.

In order to test further the robustness of our model to
contour initializations, we apply our model to these four
images (Fig. 6 to 9) with 20 different initializations for
each image to test quantitatively the capability of our model.
Four of 20 different initializations are shown in Fig. 6 to 9.
The segmentation accuracies for 20 different initializations
are shown in Fig.10. As shown in Fig. 10, the segmenta-
tion accuracy from our model is very stable. For image D,
although the segmentation accuracy from our model varies
slightly with the initialization, the segmentation accuracy
almost ranges between 0.975 and 0.985. These experiments
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FIGURE 8. Comparison results of our model with CV, LBF, WRSF, LRCV, LIC, LRBF, and EWF on a X-ray image of vessels. Column 1: images with initial
contours, column 2 - 9: the results from CV, LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model.

FIGURE 9. Comparison results of our model with CV, LBF, WRSF, LRCV, LIC, LRBF, and EWF on a X-ray image of vessels. Column 1: images with initial
contours, column 2 - 9: the results from CV, LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model.

verify the robustness of our model to initial contour as well as
a desirable accuracy. We have demonstrated that our proposed
model is better than all these models, including LBRF model
and EWF model.

In this experiment, we use five images in Fig.11 to verify
further the superiority of our model. The value of u is set to

VOLUME 8, 2020

0.001 x 2552, 0.04 x 2552, 0.007 x 2552, 0.015 x 255 and
0.1 %2552 in our model for the images in Fig. 11. The value of
o in our model is 8 and 12 for images in row 3 and 4, respec-
tively. We compare our model with LBF, WRSF, LRCYV, LIC,
LRBF, and EWF on these images including a synthetic image,
areal flower image, a magnetic resonance (MR) brain image,
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FIGURE 10. Curves of the segmentation accuracy of our model under
20 different initial contours for each image shown in Fig. 6 to 9.

a CT image of heart and an ultrasound image of left ventricle.
All of the images in Fig. 11 exhibit intensity inhomogeneity.
The ultrasound image of left ventricle is corrupted by noisy
as well as intensity inhomogeneity. Desirable parameters and
initializations are set for LBF, WRSF, LRCV LIC, LRBF, and
EWF. For the synthetic image, LBF, WRSEF, and LIC cannot
achieve satisfactory results. Even though the WRSF model
uses local entropy to measure quantitatively the variation of
image intensity, it still fails to segment the images in row 1.
The LIC model is built up based on modeling an inhomo-
geneous image as a piecewise constant image multiplied by
a bias field, however it is incapable of segmenting images
with serve intensity inhomogeneity such as the images in row
1, 2 and 5. The LRBF model can get desirable results for
the images in row 1, 4 and 5, but is not competent for the
images in row 2 and 3. Even though EWF takes into account
of inhomogeneity entropy, it is not able to locate target objects
from inhomogeneity regions for the image in row 4. As shown
in Fig. 11, it is obvious that our model is able to extract

the object boundaries more precisely than the other models
in segmenting images contaminated by noises and intensity
inhomogeneity.

We compared quantitatively our model with LBF, WRSF,
LRCYV, LIC, LRBF, and EWF based on 19 natural images ran-
domly chosen from the BSDS500 dataset [37]. Fig. 12 shows
some segmentation results of the experiments. The ground
truth of these images obtained from BSD500 dataset are
shown in row 1. The value of u in our model is set to
0.15%255*255 for the images in column 2 to 4 while the value
of o is set to 7 for image in column 3. Desirable parameters
and initializations are set for LBF, WRSF, LRCV, LIC, LRBF,
and EWF. We can see all the model can handle the image in
row 1 and get similar results. Our model and EWF can get
similar desirable segmentation results for the image in col-
umn 4. For the plane image, only our model, LRCV and EWF
can achieve satisfactory results and apparently our model
achieves better result. As for the images in column 3, our
model also outperforms the other models. The DSC values
of these seven models based on the 19 natural images are
displayed in Fig.13. Mean values of DSC of LBF, WRSF,
LRCYV, LIC, LRBF, EWF, and our model are 0.881, 0.882,
0.884, 0.784, 0.875, 0.895, and 0.918 with the standard devi-
ations of 0.057, 0.062, 0.058, 0.153, 0.084, 0.059, and 0.050.
These experiments demonstrate that the proposed model has
better segmentation performance compared with the other
models, and is able to separate the objects of interest from
the heterogeneous and complex background.

V. DISCUSSION

A. INITIALIZATION OF LEVEL SET FUNCTION

When the input images have bright background and dark
objects of interest, ¢ is set to be 2 in our model. If the input
images have dark background and bright objects of interest,

EFEFEEEF

FIGURE 11. Comparison results of our model with LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model for
inhomogeneous images. Column 1 - 7: the results from LBF, WRSF, LRCV, LIC, LRBF, EWF, and our model.
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FIGURE 12. Comparison results of our model with LBF, WRSF, LRCV, LIC, LRBF, and EWF for natural images
from BSD500 dataset. Row1: the ground truth, row 2- 8: the results from LBF, WRSF, LRCV, LIC, LRBF, EWF, and
our model.

co is set to be —2. Next, we take two images shown in Fig. 14
as examples to illustrate the need for such initialization.

Fig. 14 shows the comparison of the results which are
gained by applying our model to two images and by setting
co to be 2 and —2 for each image. One of these images is

VOLUME 8, 2020

an image with bright background and dark object of inter-
est, the other one with bright object of interest and dark
background. No matter which image, we can see that the
images of u; and u, obtained by two different initializations
are similar; however, the final contour curves are distinct

43209



IEEE Access

X. Shan et al.: Image Segmentation Using an Active Contour Model

TABLE 1. Comparison of segmentation accuracy in term of DSC. The largest value of DSC for each image is in green (best), the second biggest in blue

(second best), and smallest in red (worst).

Mode Our
Ccv LBF | WRSF | LRCV | LIC | LRBF | EWF

Images model
Image A 0.523 | 0.970 0.969 0.972 0.968 0.967 0.971 0.970
Image B 0.816 | 0.983 0.983 0.981 0.835 0.982 0.981 0.983
Image C 0.720 | 0.962 | 0.959 0.961 | 0.937 | 0.961 | 0.960 | 0.963
Image D 0.819 | 0.976 0.977 0.966 0.908 0.974 0.983 0.984
mean 0.720 | 0.973 0.972 0.970 0.912 0.971 0.974 0.975

TABLE 2. CPU time and number of iterations of eight methods for the images shown in Fig. 6 to 9. The smallest value of CPU time for each image is in

green (best), the second smallest in blue (second best), and largest in red (worst).

Models cv LBF | WRSF | LRCV LIC LRBF EWF | Our model
Images K
(size) Iterations| Iterations/| Iterations/| Iterations/| Iterations/| Iterations/ | Iterations/ | fierations/
Time(s) | Time(s) | Time(s) | Time(s) | Time(s) Time (s) Time (s) Time(s)
Image A(96*127) 75/0.22 85/0.95 65/0.78 160/1.46 | 515/5.41 65/1.72 360/4.68 50/0.31
Image B(75*79) 45/0.07 165/0.95 135/0.97 | 225/1.13 | 140/0.77 95/0.86 160/ 2.14 40/0.27
Image C(131*103) | 165/0.41 | 225/2.42 | 240/2.73 | 420/3.95 70/1.11 106 /3.30 80/1.41 45/0.58
Image D(110*111) | 80/0.20 145/1.67 | 130/1.13 | 220/1.83 | 180/2.13 110/2.19 120/2.16 35/0.89
Mean of time (s) 0.23 1.50 1.40 2.09 2.36 2.02 2.60 0.51
1.000
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FIGURE 13. Comparison results of our model with LBF, WRSF, LRCV, LIC, LRBF, and EWF in terms of DSC for 19

randomly chosen images from BSDS500 dataset.

from one another. As shown in the column 2 of Fig. 14,
new zero-level contours emerge near the inner boundaries of
the object, when cq is set to be —2 for the first image and
2 for the second image. The term L(¢) is able to make the
length of the zero-level contour inside the object smaller and
smaller, and disappear eventually. Thus, our model can get
desirable final contour. But if ¢g is set to be 2 for the first
image and —2 for the second image., the new zero-level con-
tours emerge near the outer boundaries of the object. In this
situation, the length regularization term £(¢) cannot make the

43210

zero-level contours outside the object disappear. Therefore,
co is set to be 2 for the images with bright background and
dark objects of interest, and —2 for the images with dark
background and bright objects of interest.

B. FUNCTION OF TWO ADJUSTMENT
COEFFICIENT FUNCTIONS

In this subsection, we explain how these two adjustment
functions guarantee the robustness of the proposed model.
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FIGURE 14. The segmentation results from our model by setting c( to be 2 and —2. The results in row1 and
row3 are obtained by setting c, to be 2. The results in row2 and row4 are obtained by setting c, to be —2.
Column1: the input image with the initial contour. Column2 to 3: the input images and images of

¢ (X) ¢(x)¢ (x) with zero- level contour after 1 iteration. Column4 to 5: the input images and images of

¢ (X) ¢(x)¢ (x) with final zero- level contour. Columné to7 are the ul and u2 images of final segmentation

results.

For convenience, we list the functions mi(x) and my(x)
in (21):

mi(x) = S(ui(x) — Im(x))f k(x — ) [Im(x) — ur ()| dy
= Su(x) — Im(x))ef()x)

my(x) = S(Im(x) — ua(x)) /D k(x — y) Tm(x) — uz(y)*dy
= S(Im(x) — ua(x))ea(x) (24)

where ej(x) and ey(x) are the functions in (7). To illustrate
the function of these two adjustment coefficient functions, the
initial level set function of our model is set in a special way
in the experiment.

We take an undesirable result from LBF model as the
initialization of our model. The images in row 1 of Fig. 15 are
the same images in Fig. 2. The red contour is the final contour
from LBF model when it has the green contour as the initial-
ization. In this case, LBF model is stuck in local minimum.
We set the final level set function from LBF model, which
corresponds to the red final contour, to be the initial level set
function in our model. Therefore, at the beginning of image
segmentation in our model, ej(x1) is larger than e>(x;) and
S(up(x1)—Im(x1)) is smaller than S (Im(x;)—u(x1)). The seg-
mentation process of our model is shown in row 2 of Fig. 15.
To achieve minimum, M|(¢(x1)) tends to be larger and
larger, and M (¢(x1))=1 — M1(¢(x1)) tends to be smaller and
smaller. This leads to the evolution of the level set function
¢(x). Along with the evolution, u1(x1) is getting larger and
up(x1) smaller. Consequently, ej(x1) is getting smaller and
smaller, and e;(x1) larger and larger. Meanwhile, S(u(x1) —
Im(xy)) is getting larger and S(Im(x;) — ua(x1)) smaller
until the contour is located at the boundary of the object.
At this point, S(u1(x1) — Im(x1)) < SAm(x1) — up(x1)) and
e1(x1) < ez(x1), so the value of ¢(x1) tend to be stable. For the

VOLUME 8, 2020

L E £
EEEEE
E-R

FIGURE 15. The images in row 1, which are the same images in Fig. 2, are
the segmentation results from LBF model. They are the input image with
green initial contours and red final contours, the images of u1 and u2,
respectively. Row 2 is the segmentation process of our model with the red
final contour in row 1 as the initialization. Row 3 shows the segmentation
results from our model, which are the images of u,, abs (Im - u,), u,, and
abs (Im-u,) with red final contours, respectively.

point x3, e1(x2) is smaller than e2(x7), and S(uq(x2) — Im(x2))
is larger than S(Im(x;) — uz(x7)) in the beginning. To achieve
minimum, M{(¢(xp)) tend to be smaller and smaller, and
M7(¢(xp)) larger and larger. This results in the evolution
of the level set function ¢(x). Along with the evolution of
@(x), e1(xp) is getting larger and larger, and e)(x;) smaller
and smaller. Meanwhile, S(u1 (xz) —Im(x7)) is getting smaller
and S(Im(xp) —u(x)) larger until the contour is located at the
boundary of the object. At this moment, S(u1(x3) —Im(x;)) >
S(Im(xy) — up(x2)) and e1 (x2) > e3(x2), so the value of ¢(x2)
tend to be stable.

From the above experiments and analysis, we can see
that these two adjustment coefficient functions can stop the
energy functional of our model from being stuck in local
minimum, and drive the contour curve towards the boundary
of the object.
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FIGURE 16. Comparison results of LRCV and improved LRCV model. Row 1: images with initial contours, row

2-3: the results of LRCV and improved LRCV, respectively.

C. APPLICATION EXTENSION OF THESE TWO
ADJUSTMENT COEFFICIENT FUNCTIONS

In the proposed model, we use the difference between local
average intensities and actual image intensities to define two
adjustment coefficient functions to drive the evolution of the
level set function in right direction. In other word, the dif-
ference between the RSF energy and the improved energy
is that the improved energy has two adjustment coefficient
functions. In fact, these two adjustment coefficient functions
can be employed in other local intensity fitting models, such
as the LRCY, to enhance the robustness to initial contour and
improve the speed of segmentation.

By using these two adjustment coefficient functions to
redefine the energy of LRCV model to be a weighted integral
and integrating 91(¢) and the term | 7’| represents the length of
the contour 7, the entire energy functional of the meliorated
LRCV model is written as

E(ui, uz, ¢)
1
= ,L/ 7 IVl = 1)2dx+v/ IVH (¢(x))| dx
D D

+ M '/D (Im(x) —u1 ())*S (w1 (x) —Tm(x) H (p (x))dx

+ X2 fD (Im(x) —u2(x))* SAM(x) —ua(x))
x (1-H(¢(x))) dx (25)

Fig. 16 shows comparison results of the improved LRCV
with LRCV. The LRCV model can segment the image of
vessel correctly when the initial contour is appropriate. How-
ever, it suffers from the sensitivity to initialization. By using
these two adjustment coefficient functions to evolve the
contour in right direction, the improved LRCV model can
achieve desired segmentation results under each initial con-
tour. In addition, the iteration number of LRCV model is
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420 and the CPU time is 3.95 seconds. The iteration number
of the improved LRCV model is only 85 and the CPU time
is 0.95 seconds. These experiments establish that these two
adjustment coefficient functions can be employed in other
local intensity fitting models to improve computational effi-
ciency and to enhance the robustness to initialization.

D. APPLICATION SCOPE OF THE PROPOSED MODEL

The proposed model is applicable for two-phase segmenta-
tion of images in which the object is brighter than background
or the object is darker than background. However, it cannot
segment successfully when parts of the object are brighter and
other parts of the object are lighter than the background, as the
image shown in Fig. 17.

FIGURE 17. Undesirable segmentation result for a nature image in the
proposed model.

VI. CONCLUSION

In this work, we have put forward a local intensity fitting
active contour model by introducing two adjustment coeffi-
cient functions. These two adjustment coefficient functions,
which improve the segmentation performance and enhance
the robustness to initialization, are constructed by utilizing
the Sigmoid function and the difference between local aver-
age intensities and image actual intensities. Results from
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systematic experiments demonstrate that the proposed model
is not only robust to initializations but also achieves bet-
ter performance in terms of accuracy and efficiency when
compared with other region-based models. In addition, these
two adjustment coefficient functions can be employed in
other local intensity fitting models to accelerate the evolution
of curve towards the boundaries of object and enhance the
robustness to initialization.
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