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ABSTRACT Acoustic signal contains information on the state of mechanical motion, but the disadvantage
of low signal-to-noise ratio (SNR) is that acoustic signal without noise reduction is difficult to apply to
fault diagnosis directly. This study proposes an adaptive noise reduction method based on the dislocation
superposition method (DSM), which can realize automatic noise reduction for acoustic signals of low SNR
synchronous hydraulic motors. First, the theoretical rotation period of the synchronous hydraulic motor is
obtained according to the flowmeter. Then, the actual signal is subjected to DSM processing according to the
measurement accuracy of the flow meter and the theoretical rotation period to adjust the exact superposition
length and the initial position of the actual signal. Finally, when the stop condition is not satisfied, the number
of superposition is increased and the above process is repeated. The superimposed signal satisfying the stop
condition is taken as the noise reduction signal. According to experimental results, the proposed method has
good noise reduction effect on the acoustic signals of the synchronous hydraulic motor health state, wear
out state of gear and end cover, and rust state of the gear. The noise reduction signal has been verified to
have higher accuracy than the actual signal. Therefore, the proposed automatic noise reduction method can
be applied to the noise reduction processing of other kinds of rotating mechanical acoustic signals.

INDEX TERMS Dislocation superposition method (DSM), acoustic signal, adaptive method, automatic
noise reduction, synchronous hydraulic motor.

I. INTRODUCTION
Synchronous hydraulic motors are commonmechanical com-
ponents in high-load hydraulic synchronous operations. Fail-
ure of motor operations can cause severe economic losses or
even personal accidents. At present, synchronous hydraulic
motor fault detection mainly determines a fault by observ-
ing the system pressure and the motion state of the actua-
tor. Existing methods for evaluating the state of mechanical
equipment often use non-destructive testing methods such
as acoustic, vibration, and acoustic emission signals. During
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the acquisition process of the vibration signal, the sensor
needs to be in close contact with the surface of the workpiece
to be tested, and the installation process is cumbersome.
The acoustic emission sensor needs to be kept close to the
device to be tested. The advantage of using an acoustic signal
is that the acoustic signal is easy to acquire, the detection
process is simple, and the cost of the ordinary acoustic sensor
is low [1], [2]. The mechanical equipment acoustic signal
has three categories of components, namely, the acoustic
signal of the component to be analyzed, other components,
and background noise. The acoustic signal of the compo-
nent to be analyzed is usually referred to as a valid signal,
and the other two are collectively referred to as noise [3].
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Owing to the combined effects of acoustic signals and back-
ground noise from other components, valid signals are often
severely obscured by various noises. Therefore, if noise is
not adequately reduced, then reliable condition monitoring
cannot be performed [4].

The traditional signal denoising method uses a Fourier
transform-based filter to filter the frequency components of
noise but has apparent defects in the case of non-stationary
signals and short-term transient signals. Currently, pop-
ular methods of noise reduction include wavelet trans-
form (WT) [5], empirical mode decomposition (EMD) [6],
Savitzky-Golay (S-G) filter [7], dislocation superposition
method (DSM) [8] et al.

WT is a widely used signal processing tool. The tool can
provide signal information in time and frequency domains,
as well as indicate but also has multi-scale characteristics.
Thus, WT can decompose signal into multiple components
with different components and then reconstruct denoised
signal with a single component [9]. Parey and Singh [10]
used continuous WT to denoise the angle domain signal of
gearbox acoustic signal. Wang and He [11] used wavelet
packet manifold to suppress effectively the noise of rolling
bearing. Chegini et al. [12] used empirical WT to reduce the
noise of bearing vibration signal. Chen et al. [13] used the
wavelet soft threshold method to denoise the low-frequency
oscillating signal of the power system, and the effect is
good. On the basis of wavelet noise reduction, many scholars
have proposed better performance noise reduction methods.
Wang and Lee [14] combined spectral subtractionmethod and
empirical wavelet transform to denoising signals and extract
the gear faults’ side-band feature, the proposed method has
better processing effect than traditional wavelet noise reduc-
tion. Qin et al. [15], [16] proposed dense framelets with two
generators and M-band flexible WT. The dense framelets
with two generators have better denoising performance and
shift-invariance than orthogonal wavelets and had higher den-
sity framelets. The M-band flexible wavelet transform has
better denoising performance than flexible, orthogonal, and
biorthogonal wavelets. Although many studies focused on
wavelet noise reduction, different wavelet bases have dif-
ferent effects on signal analysis, and there is still no clear
standard has been established on how to choose a suitable
wavelet base for different signals [17].

EMD can decompose the AM–FM signal into the sum
of intrinsic mode function (IMF), which has distinct advan-
tages in processing non-stationary and non-linear data. There-
fore, EMD is used in signal noise reduction. Li et al. [18]
used the simplified EMD algorithm to extract features from
the hydrophone signals of a centrifugal pump with strong
background noise, which can effectively suppress noise and
obtain precise pulses. To improve the noise reduction effect
of EMD, many scholars have proposed improved methods
based on EMD. Zhang et al. [19] proposed a signal denoising
method named EMD-AdaptiveP, it combined similar strategy
of wavelet filtering and EMD and had better noise reduction
performance than traditional EMDmethod. Li et al. [20], [21]

proposed complete ensemble empirical mode decomposition
with adaptive noise on the basis of EMD and uniform phase
empirical mode decomposition to implement noise reduction
processing on underwater acoustic signals and achieved good
results. Although studies have been done on noise reduction
using many EMD-based methods, it has problems such as
modal mixing and poor processing effect on low signal-to-
noise ratio signals [22], [23]. Therefore, compared to signal
noise reduction, EMD is used more often to extract signal
features, and its actual effect on signal noise reduction is not
as good as WT.

Scholars have proposed some other methods for signal
noise reduction processing. Chen et al. [7] proposed a signal
denoising method based on S-G filter in low-frequency oscil-
lation signals. But when the SNR is low, the noise reduction
effect of the S-G method is not good enough. Ning et al. [8]
proposed the DSM in 2015. Compared with other methods,
DSM only has time-domain calculation. By periodic super-
position of the actual signal, the signal-to-noise ratio of the
practical component can be improved without destroying the
practical component. This method avoids the modal mixing
problem of many noise reduction methods, it can retain spe-
cific frequency details, and abnormal mutation information
related to the fault frequency can also be retained. How-
ever, under the condition of non-stationary and quasi-periodic
signals, determining the starting point of each signal cycle
manually is necessary. Ning et al. [3] used the improved DSM
to extract automatically the fault components of engine quasi-
periodic acoustic signals with excellent results. However, this
method needs to use the pulse data of the encoder to find
the starting position of each signal cycle accurately. Thus,
the synchronous hydraulic motor cannot install the encoder.
Consequently, this method cannot be applied.

This study proposes an adaptive noise reduction method
for acoustic signals of synchronous hydraulic motors based
on improved DSM. The essence of the method is to super-
impose the actual signal in the time domain, avoiding the
shortcoming of modal confusion, and processing the low
signal ratio acoustic signal well. The proposed method can
adaptively select the starting point, length, and number of
superpositions. The degree of noise reduction can be changed
by adjusting the parameters within the algorithm, and the pro-
cess of noise reduction processing of synchronous hydraulic
motor acoustic signals can be automated.

II. DSM REVIEW
To make the proposed method easier to understand, first
review the traditional DSM. According to [8], the mathemat-
ical expression of DSM is as follows:

x̃(n) =
1

K + 1

K∑
k=0

x(n+ kL), (1)

where x(n) is the actual signal, x̃(n) is the signal processed by
DSM (named superimposed signal),K represents the number
of superpositions (K = 0, 1, 2 . . .), and L is the superimposed
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FIGURE 1. Schematic of dislocation superposition method (DSM). A is the
effective component of the signal; B is the interference signal; C is the
mixed signal of A and B; D is the superimposed signal obtained when the
number of superpositions is 5. After DSM processing, the signal-to-noise
ratio of the superimposed signal D becomes higher than signal C.

length (period of the signal to be processed). FIGURE 1 is a
graphical illustration of DSM processing results.

A is the target signal, B is the interference signal, C is the
mixed signal of A and B, and signal D is the superposition
signal obtained from signal C by using equation (1). The
number of superimpositions is K = 5, and the superposition
length L is the period of signal A. Compared with signal C,
the component proportion of the target signal in signal D
is larger, and the proportion of the interference signal is
smaller. To facilitate understanding, the kth superimposed
signal in the superimposed signal x̃(n) is referred to as the
superposition component, and is denoted as SCk .

SCk = x(n+ kL) (2)

Pearson’s correlation coefficient is used to compare the
similarity between the target and the superimposed signals
to test the DSM processing effect [24]. The expressions of
Pearson’s correlation coefficient for A and D are as follows:

ρA(n),D(n) =
〈A(n),D(n)〉

√
〈A(n),A(n)〉

√
〈D(n),D(n)〉

=

∑N
i=1 [A(i)× D(i)]√∑N

i=1 [A(i)× A(i)]
√∑N

i=1 [D(i)× D(i)]
(3)

where N is the sampling points of A and D, and <. > is the
inner product. According to the Cauchy–Schwarz inequality,
the scope of ρA(n),E(n) is:

−1 ≤ ρA(n),E(n) ≤ 1. (4)

The closer the Pearson’s correlation coefficient is to 0, the
weaker the linear correlation between the two signals. When
the correlation coefficient is equal to 1, the two signals are
identical. The judgment of the correlation coefficient size
depends on the specific use of background and purpose [25].

In theory, the DSM algorithm can extract the periodic target
signal from the mixed signal with low SNR. The accuracy of
the extraction result increases with the increase in the number
of superpositions.

In actual signal processing, superimposed length is con-
stant, and therefore causes multiple superimposed end effec-
tor. To extract features accurately, a window function can be
used to extract the middle part of the superimposed signal for
subsequent processing. Examples of end effects and window
functions are shown in FIGURE 2.

FIGURE 2. Example of superimposed signal end effect and pre-processing
before signal feature extraction. The inside of the dotted rectangular
frame is the end effect signal with abnormal frequency components. The
solid rectangular frame is an artificially defined window function, which
is used to retain the accurate signal frequency components.

III. INTRODUCTION OF ADAPTIVE NOISE REDUCTION
METHOD BASED ON IMPROVED DSM
To realize the automatic noise reduction of the acoustic sig-
nal of the synchronous hydraulic motor, an automatic noise
reduction method based on DSM is proposed, and the pro-
posed method will be described below.

A. FACTORS AFFECTING DSM TREATMENT EFFECT
Owing to various errors in the system, the existence of the
gear-type synchronous hydraulic motor changes, such that
the synchronous hydraulic motor acoustic signal belongs to
the quasi-periodic signal. FIGURE 3 shows a quasi-periodic
signal sample.

FIGURE 3. Quasi-periodic signal diagram. l is the average length of the
quasi-periodic signal, and 1l1, 1l2, and 1l3 represent the deviation
values of the length of each period, respectively.

When the superimposed length is different from the aver-
age period of the quasi-periodic signal, a phase difference
is observed in the effective information in the SCs when the
number of superpositions is different, and the effective infor-
mation will be destroyed after the superposition processing,
as shown in FIGURE 4.
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FIGURE 4. Schematic diagram of the DSM processing effect when the
superposition length is different from the actual signal average period
length. xtarget (n) represents the target signal. SC1, SC2, SC3 are three
consecutive superimposed components in xtarget (n) containing noise.
x̃(n) is the superimposed signal, where x̃(n) = (SC1 + SC2 + SC3)/3. The
effective signal component of the signal in x̃(n) is remarkably different
from xtarget (n), and the noise reduction effect is not ideal.

The superimposed length of the traditional DSM algorithm
cannot be automatically adjusted. When the signal is quasi-
periodic, the starting point and the superimposed length of
each SC needs to bemanually selected. Ning et al. [3] used the
improved DSM to extract automatically the fault components
of an engine’s quasi-periodic acoustic signal. However, this
method utilizes the encoder to position accurately the relative
position of the acoustic signal with the rotation period, and
the synchronous hydraulic motor cannot install the encoder.
Therefore, the method cannot be used.

The proposed method calculates the theoretical period
of the acoustic signal of the synchronous hydraulic motor
through the flow meter and fixed parameters. The optimal
stack length based on the theoretical period length is deter-
mined, and the impact of the metering accuracy of the flow
meter itself on the actual cycle is reduced. When the position
of the starting point of the actual signal changes, the rela-
tive position of the effective information of each SC in the
signal period changes. The DSM processing effect in the
quasi-periodic signal is related to the actual signal start posi-
tion [3], and the optimal starting position of the actual signal
needs to be determined. In theory, the larger the number of
superpositionsK in theDSMalgorithm, themore accurate the
waveform is [8], but this condition will increase computation
time. Therefore, when the superimposed signal reaches the
target requirement, selecting a larger K is not needed. Owing
to the uncertainty of background noise, an upper limit to the
noise reduction effect of the DSM method is determined,
as the number of superpositions is gradually increased. When
the noise reduction effect is stable, the target requirement is
still not met, and the signal to be processed is considered to
have failed to reduce noise.

Therefore, the adaptive noise reduction process of the syn-
chronous hydraulic motor sound signal is the process of auto-
matically finding the optimal superimposed length, optimal
starting position, and number of times of superposition.

B. SIGNAL DENOISING METHOD BASED ON IMPROVED
DSM
Based on the improved DSM, this paper proposes an adaptive
noise reduction method for synchronous hydraulic motor
acoustic signals. FIGURE 5 shows the flow chart of the
method. The details are as follows:

FIGURE 5. Flow chart of the acoustic signal denoising method of adaptive
synchronous hydraulic motor based on improved DSM.

Step 1: Load the actual acoustic signal x(n) and initialize
the algorithm parameters to let K = 0.
Step 2: Calculate the theoretical superposition length l0

according to the sampling frequency fs (Hz), real-time flow
velocity q (L/min), and synchronous hydraulic motor dis-
placement V (ml/r):

l0 = fsV
60

1000 · q
=

3Vfs
50q

(5)

37164 VOLUME 8, 2020



N. Dayong et al.: Adaptive Noise Reduction Method of Synchronous Hydraulic Motor Acoustic Signal

Owing to the measurement error of the flow meter,
the accurate value of the measurement result is within the
range of the measurement accuracy index of the flow meter;
thus, l0 may not be the optimal superimposed length. To find
the optimal superimposed length, set subset of l to F. Set F to
{(1–w) l0:1:(1+w)l0}, where w is the measurement accuracy
of the flow meter. Finding the best starting position of the
actual signal is looking for the best starting point offset τ optK .
Set τ to the actual signal start position offset, and the actual
signal after the offset is recorded as x(n+ τ ). The subset of τ
is denoted as H, set H to {0: l0/a: l0}.
Step 3:When K = 0, two superimposed signals x̃1(n, l, τ )

and x̃2(n, l, τ ) are obtained under the conditions of l and τ
through the DSM algorithm. When K 6= 0, obtain two latest
superposition components and update the superimposed sig-
nals. Compared with using equation (1) to derive the super-
imposed signals at the different number of superpositions,
this method can improve the calculation efficiency of the
algorithm. The equation of the proposedmethod is as follows:

x̃1(n, l, τ )

=

x(n+ τ ), K = 0
1

K + 1
[Kx̃1(n, l, τ )+ x(n+ 2kl + τ )], K > 0

x̃2(n, l, τ )

=

x(n+ l + τ ), K = 0
1

K+1
{Kx̃2(n, l, τ )+x[n+(2k + 1)l+τ )]}, K > 0

(6)

Traverse all the values of l and τ in F, H, and find the
optimal superposition length loptK and the optimal initial offset
τ
opt
K when maximizing ρx̃1(n,l,τ ),x̃2(n,l,τ ), and calculate the
maximum correlation coefficient ρopt (K ) for parameters loptK
and τ optK .(loptK , τ

opt
K ) = argmax

l∈F,τ∈Z
[ρx̃1(n,l,τ ),x̃2(n,l,τ )]

ρopt (K ) = ρx̃1(n,loptK ,τ
opt
K ),x̃2(n,l

opt
K ,τ

opt
K )

(7)

Step 4: Set two stopping conditions for the proposed algo-
rithm. If one of the conditions is satisfied, then the procedure
will not continue to search for a better noise reduction signal.
When the number of superpositions is too large, and the target
effect of the signal processing is still not achieved, the signal
to be processed cannot be automatically reduced by the DSM
method. Hence, the stop condition 1:

K > b (8)

When the Pearson’s correlation coefficients of the two
superimposed signals meet the set requirements, the sig-
nal noise reduction is considered auspicious. Thus, stop
condition 2:

ρopt (K ) > c (9)

If stop condition 2 is satisfied, the superimposed signals
are the signals after successful noise reduction.

Step 5: When the stop conditions are not triggered, let
K = K + 1 and recalculate from Step 2.

C. DESCRIPTION OF THE INTERNAL PARAMETERS
OF THE PROPOSED METHOD
To facilitate the understanding of the proposed method,
parameters a, b, and c are described below.
When the value interval of τ is too small, the calcula-

tion time is long, but when the value interval is too large,
the accuracy of noise reduction waveform may be reduced.
In this study, the parameter a is used to adjust the value
interval of τ . When the quasi-periodic signal is relatively
stable, parameter a can be taken as the larger value. When the
length of each period of quasi-periodic signal changes greatly,
the parameter a needs to be set as the smaller value. In this
study, the operation of the synchronous hydraulic motor is
stable under the test conditions. Considering the effect of the
value interval, the parameter is taken as 70. When the noise
reduction effect is not ideal due to the instability of the signal,
we can try to increase the value of a.

Parameters b and c determine the stop condition of the
algorithm, and the algorithm stops when one of the stop
conditions is met.

With the increase of the number of superpositions,
the improvement of noise reduction effect becomes less obvi-
ous. Therefore, parameter b is used to set the maximum
the number of superpositions of the algorithm, that is, stop
condition 1. According to [25], when K = 10, the change
rate of the accuracy of the superimposed signal withK is very
small, and this study sets b = 20 to ensure that the algorithm
has enough upper limit of the number of superpositions.

In actual application, the noise reduction degree can meet
the actual use requirements. Hence, parameter c is used to
set the noise reduction degree of the target noise reduction
signal. The larger the value of c, the more noise reduction
can be expected. However, if the value of c is too large, then
the specified noise reduction effect may not be achieved. This
situation will increase the actual number of superpositions
and then increase the noise reduction time. When ρopt (K )
reaches 0.6, the superposition signal x̃1(n, l, τ ) and x̃2(n, l, τ )
belong to the same signal [24]. Hence, the value range of c is
set from 0.7 to 0.9 in this study.

Here are three different uses of the proposed method:
1) Let c = 1 and only parameter b affects the actual number

of superpositions of the algorithm.
2) Let b take the larger value, and only parameter c can

affect the noise reduction effect.
3) Let parameters b and c meet the actual needs, and stop

the noise reduction process if any condition is met.

IV. EXPERIMENTAL CONDITIONS
FIGURE 6 is a physical diagram of a synchronous hydraulic
motor test bench. The data acquisition system includes a
sound sensor, data acquisition card, and a computer. The
model of the sound sensor is MAX9814, which is placed
beside the synchronous hydraulic motor to receive the
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FIGURE 6. Experimental stand of the synchronous hydraulic motor.
1 Pressure gauge; 2 reversing valve and relief valve assembly; 3 fuel tank;
4 flow meter; 5 synchronous hydraulic motor; 6 acoustic sensor; 7 data
acquisition card; 8 computer.

acoustic signal generated by it. The model can collect acous-
tic signal frequency from 20 Hz to 20 kHz. The measurement
range of the flowmeter is 5 to 50 L/min, and the measurement
accuracy is 1%. The model of the data acquisition card is
USB-6341, which was produced by National Instruments.
Sampling frequency fs is set to 20000 Hz. Data were collected
and processed usingMATLAB software. TABLE 1 shows the
synchronous hydraulic motor models and flow parameters.

TABLE 1. Parameters of synchronous hydraulic motor.

V. EXPERIMENTAL DATA PROCESSING
FIGURE 7 is the actual acoustic signal when the synchronous
hydraulic motor in the health state. At this time, the outlet
pressure of the synchronous hydraulic motor is 6 MPa, and
the theoretical superposition length l0 = 1388 is calculated
according to the flow rate q = 7.5 L/min. The parameters
in the algorithm are set as a = 70, b = 20, and c = 0.8.
According to the measurement accuracy of the flow meter,
subset F is {1374:1:1402} and subset H is {0:20:1388}.

FIGURE 7. Actual acoustic signal of synchronous hydraulic motor in
health state when the outlet pressure is 6 MPa.

FIGURE 8 shows the fast Fourier transform (FFT) ampli-
tude spectrum of the actual acoustic signal of the health state
of the synchronous hydraulic motor.

FIGURE 8. FFT amplitude spectrum of actual acoustic signal of
synchronous hydraulic motor in health state.

FIGURE 9. Variation curve of ρopt (K ) with superposition time K .

According to the calculation of real-time velocity of flow
and displacement of synchronous hydraulic motor, the speed
of synchronous hydraulic motor is approximately 14.4 r/s,
and the tooth number of the gear is 12. Therefore, the acoustic
signal with frequency of 172.8 Hz will be generated every
time the gear mesh produces impact. According to the spec-
trum results in FIGURE 8, the frequency of the effective
component of the sound signal of the health state of the
synchronous hydraulic motor is approximately 510 Hz. The
preliminary analysis is that each gear mesh produces three
impacts. FIGURE 9 shows the change curve of ρopt (K ) with
the superposition number K .

When K = 6, ρopt (6) = 0.8145, which satisfies stop
condition 2, and the actual superposition time of adaptive
noise reduction signals is 6. The actual signal is superimposed
six times to obtain two noise reduction signals x̃1(n, l

opt
K , τ

opt
K )

and x̃2(n, l
opt
K , τ

opt
K ), and each noise reduction signal contains

seven SCs, as shown in FIGURE 10. FIGURE 11 shows two
noise reduction signals. Although the noise reduction signal
still contains noise, the noise reduction effect is noticeable.

FIGURE 12 shows the FFT amplitude spectrum of the
noise reduction signal of the health state of the synchronous
hydraulic motor.
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FIGURE 10. Superimposed component of the acoustic signal of the
synchronous hydraulic motor is divided into two groups. (a) First group:
SC1, SC3, SC5, SC7, SC9, SC11, SC13. (b) Second group: SC2, SC4, SC6, SC8,
SC10, SC12, SC14.

According to spectrum results, compared with the actual
sound signal, the effective component frequency of the nor-
mal noise reduction signal of the synchronous hydraulic
motor has no significant change, and is still approximately
510 Hz. The spectrum amplitude of the noise component is
reduced.

The results showed that the adaptive acoustic signal noise
reduction method based on the improved DSM for the
synchronous hydraulic motor can adaptively determine the
optimal superimposed length and starting point position. Sub-
sequently, the superimposed process runs efficiently. The
entire process is simple and easy to operate without human
intervention, and the processed signal has good noise reduc-
tion effect.

FIGURE 11. Acoustic signal of the health status of the synchronous
hydraulic motor after noise reduction. (a) x̃1(n, lopt

K , τ
opt
K ) = (SC1 + SC3 +

SC5 + SC7 + SC9 + SC11 + SC13)/7. (b) x̃2(n, lopt
K , τ

opt
K ) = (SC2 + SC4 +

SC6 + SC8 + SC10 + SC12 + SC14)/7.

FIGURE 12. FFT amplitude spectrum of noise reduction signal of
synchronous hydraulic motor in health state.

VI. OTHER APPLICATIONS OF THE PROPOSED METHOD
The acoustic signals of the synchronous hydraulic motor for
the wear out state of the gear, rust state of the gear, and
wear-out of the end cover of the outlet pressure of 6MPawere
collected to compare and verify the effect of the proposed
method. FIGURE 13 shows the three states’ physical failure
parts. FIGURE 14 shows the three acoustic signal waveforms.

FIGURE 15 shows the FFT amplitude spectrum of three
kinds of synchronous hydraulic motor fault signals.

According to spectrum results, three effective component
frequencies of the acoustic signal of gear wears out the state
of synchronous hydraulic motor, which are approximately
350 Hz, 510 Hz, and 690 Hz. The preliminary analysis
indicates three different times of impact in each meshing of
worn gear, which are two, three, and four times. The three
are effective components in the acoustic signal of the rusty
state of the gear of the synchronous hydraulic motor. The
frequency is like that of the wear out state of the gear, but the
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FIGURE 13. Physical failure parts. (a) Wear-out state of the gear. (b) Rust
state of the gear. (c) Wear-out of the end cover.

FIGURE 14. Synchronous hydraulic motor outlet pressure 6 MPa, actual
acoustic signals in different states. (a) Synchronous hydraulic motor
wear-out state of the gear. (b) Synchronous hydraulic motor rust state of
the gear. (c) Synchronous hydraulic motor wear-out state of the end cover.

amplitude proportion is different. The preliminary analysis
shows that the contact of the rusted gear surfaces produces
the acoustic signal with the same frequency as the gear wear
state. The noise near the effective component frequency of
the acoustic signal of the wear state of the end cover of the
synchronous hydraulic motor is large, and other frequency

FIGURE 15. FFT amplitude spectrum of three kinds of fault acoustic
signals of synchronous hydraulic motor. (a) Synchronous hydraulic motor
wear-out state of the gear. (b) Synchronous hydraulic motor rust state of
the gear. (c) Synchronous hydraulic motor wear-out state of the end cover.

components are mixed based on 350 Hz, 510 Hz, and 690 Hz.
The preliminary analysis indicates that the wear-out part of
the end cover contacts with the side of the gear to produce a
variety of frequency components of the acoustic signal.

The theoretical superimposed length l0 = 1388 is cal-
culated according to the flow velocity q = 7.5 L/min.
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FIGURE 16. Change curve of ρopt (K ) in three states of the gear wear out,
gear rust, and end cover wear out with the number of superpositions K .
The actual superimposed times of the adaptive noise reduction signal
are 8, 9, and 7.

According to the measurement accuracy of the flow meter,
set subset F is {1318: 1: 1458} and subsetH is {0: 20: 1388}.
FIGURE 16 shows the variation curve of ρopt (K ) with the
superposition number K .

According to FIGURE 16, ρopt (8)< ρopt (7) in the result of
the rust state of the gear. Preliminary analysis shows that the
background noise component was superimposed and ampli-
fied to cause this phenomenon [25]. Given that superposition
and amplification of background noise are accidental phe-
nomena, the noise component can be weakened by increasing
the number of superpositions. Hence, the effect on the pro-
cessing effect of this method can be ignored. After the pro-
posed adaptive noise reduction method, the noise reduction
signals of three different states of the synchronous hydraulic
motor are obtained, as shown in FIGURE 17.

FIGURE 18 shows FFT amplitude spectrum of noise
reduction signals of three kinds of fault synchronous
hydraulic motors.

According to FIGURE 18, after the noise reduction of the
fault acoustic signal of the synchronous hydraulic motor by
the proposed method, the amplitude of the noise frequency
components in the frequency spectrum of the three states is
reduced.

On the basis of the test results, the proposed method pro-
posed has good effect on the acoustic signal processing of
synchronous hydraulic motors to the wear-out state of gear,
rust state of gear, and wear-out state of end cover. How-
ever, the proposed method can only deal with the situation
where no drastic change happens in the mechanical speed.
The reason is that the superposed length of each SC in the
proposed method is the same. When the actual cycle length
changes drastically, the optimal superimposed length cannot
be found, and the superimposed process will destroy effective
information in the signal. When the noise signal has the same
frequency as the effective component, the superimposing
process will retain both the noise and the effective component
at the same time, which cannot be removed using the pro-
posed method, the separation of signals containing multiple
components requires further research.

FIGURE 17. Acoustic signal of the synchronous hydraulic motor after
noise reduction in different states. (a) Noise reduction signal for gear
wear status. (b) Noise reduction signal for gear rust state. (c) Noise
reduction signal for end cover wear-out state.

VII. COMPARATIVE ANALYSIS
To further verify the effectiveness of the proposed method,
the accuracy analysis of the proposed method is performed
and compared with other noise reduction methods.

A. PRECISION ANALYSIS OF THE PROPOSED METHOD
To analyze the precision of the proposed method, first,
in a quiet environment, the rotating shaft of a synchronous
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FIGURE 18. FFT amplitude spectrum of noise reduction signals of three
kinds of fault synchronous hydraulic motors. (a) Noise reduction signal
for gear wear status. (b) Noise reduction signal for gear rust state.
(c) Noise reduction signal for end cover wear out state.

hydraulic motor is artificially rotated at the same speed as
the above test. The acoustic signals in the four states are
collected as high signal-to-noise ratio acoustic signals, which
are recorded as xHSNR(n). The precision of the proposed
method is verified by comparing the Pearson’s correlation
coefficients between xHSNR(n) with the actual signal and

FIGURE 19. Partial waveforms of high SNR signals and actual signals and
noise reduction signals of synchronous hydraulic motors in health state.
xHSNR (n) is the high SNR ratio signal, x(n) is the actual signal,
x̃1(n, lopt

K , τ
opt
K ) and x̃2(n, lopt

K , τ
opt
K ) are two noise reduction signals,

respective.

FIGURE 20. Partial waveforms of high SNR signals and actual signals and
noise reduction signals of synchronous hydraulic motors in the wear out
state of the gear. xHSNR (n) is the high SNR ratio signal, x(n) is the actual
signal, x̃1(n, lopt

K , τ
opt
K ) and x̃2(n, lopt

K , τ
opt
K ) are two noise reduction

signals, respectively.

noise-reduced signal. The parameters in the algorithm are set
to a = 70, b = 20, and c = 0.88. FIGURE 19 shows the local
waveforms of xHSNR(n), x(n), and the noise reduction signal
of the health state’s synchronous hydraulic motor. Among
them, the Pearson’s correlation coefficients of x(n) and
xHSNR(n) is 0.6184, and the Pearson’s correlation coefficients
of the noise reduction signal and xHSNR(n) are 0.8902 and
0.8976, respectively.

FIGURE 20 shows the local waveforms of xHSNR(n), x(n)
and the noise reduction signal of the wear out state of the
synchronous hydraulic gear. Among them, the Pearson’s cor-
relation coefficient of x(n) and xHSNR(n) is 0.6027, and the
Pearson’s correlation coefficients of the noise reduction sig-
nal and xHSNR(n) are 0.8965 and 0.9035, respectively.

FIGURE 21 shows the local waveforms of xHSNR(n),
x(n), and the noise reduction signal of the rust state of
the synchronous hydraulic gear. Among them, the Pearson’s
correlation coefficient of x(n) and xHSNR(n) is 0.6351, and
the Pearson’s correlation coefficients of the noise reduction
signal and xHSNR(n) are 0.9033 and 0.8936, respectively.

FIGURE 22 shows the local waveforms of xHSNR(n), x(n),
and the noise reduction signal of the wear out state of the
synchronous hydraulic end cover. Among them, the Pearson’s
correlation coefficients of x(n) and xHSNR(n) is 0.6065, and
the Pearson’s correlation coefficients of the noise reduction
signal and xHSNR(n) are 0.8988 and 0.9048, respectively.
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FIGURE 21. Partial waveforms of high SNR signals and actual signals and
noise reduction signals of synchronous hydraulic motors in the rust state
of the gear. xHSNR (n) is the high SNR ratio signal, x(n) is the actual signal,
x̃1(n, lopt

K , τ
opt
K ) and x̃2(n, lopt

K , τ
opt
K ) are two noise reduction signals,

respectively.

FIGURE 22. Partial waveforms of high SNR signals and actual signals and
noise reduction signals of synchronous hydraulic motors in the wear out
state of the end cover. xHSNR (n) is the high SNR ratio signal, x(n) is the
actual signal, x̃1(n, lopt

K , τ
opt
K ) and x̃2(n, lopt

K , τ
opt
K ) are two noise

reduction signals, respectively.

According to the analysis results, compared with the
actual signal, the noise reduction signal of the synchronous
hydraulic motor obtained by the proposed method is closer to
the high SNR waveform. When the received noise reduction
signal is not ideal, the noise reduction effect can be enhanced
by adjusting the values of parameters a, b, and c.

B. COMPARISON WITH OTHER NOISE REDUCTION
METHODS
To analyze fully the noise reduction effect and time efficiency
of the proposed algorithm, the time-domain synchronous
averaging method, soft threshold wavelet denoising, and S-G
filter were used to reduce the noise of the synchronous
hydraulic motor acoustic signal and compared with the pro-
posed method. The number of superimpositions of the pro-
posed method and the time-domain synchronous averaging
method are set to 10. The wavelet base in soft threshold
wavelet denoising is set to db4, the number of decomposition
layers to 5, and the remaining parameters to default values.
The S-G filter’s polynomial order is set to 3 and the frame
length is set to 11. The Pearson’s correlation coefficients of
their noise reduction and high signal-to-noise ratio signals are
calculated. TABLE 2 shows the noise reduction processing
accuracy effects of the four methods on the four states of
the synchronous hydraulic motor. The proposed method is
expressed as ‘‘improved DSM.’’

TABLE 2. Noise reduction precision results of acoustic signal of
synchronous hydraulic motor.

TABLE 3. Time-averaged calculation results of the noise reduction
process of the synchronous hydraulic motor acoustic signals from three
methods.

According to the results, the proposed method has higher
noise reduction accuracy for the acoustic signals of syn-
chronous hydraulic motors than soft threshold wavelet
denoising, time-domain synchronous averaging, and S-G fil-
ter. To compare further the noise reduction process of the
three methods, the average calculation time of the acoustic
signal of the synchronous hydraulic motor is calculated for
each method. The average calculation time of each method,
which is defined as the average value of the noise reduction
time of the four states of the synchronous hydraulic motor,
is calculated. Four kinds of noise reduction methods are
implemented in the MATLAB software on the PC side. The
CPU model of the PC is i5-7400, the RAM size is 8 G, and
the hard disk type is HHD. TABLE 3 shows the results of the
average calculation time of the noise reduction process of the
synchronous hydraulic motor acoustic signals by the three
methods.

According to the results, the calculation time of the
improved DSM is longer than that of the time-domain syn-
chronous averaging method, wavelet noise reduction method,
and S-G filter. This result was due to the large data require-
ment of the improvement of DSM to perform cyclic calcu-
lations to find the optimal starting position and the optimal
superimposed length. Such step results in longer time taken
by this method.
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Therefore, when comprehensively comparing noise reduc-
tion accuracy and reduction, the proposed method is more
suitable for occasions where the degree of real-time noise
reduction is not high.

VIII. CONCLUSION
Traditional DSM can only artificially find the superim-
posed length and start position of the quasi-periodic signal
but cannot automatically process the quasi-periodic acous-
tic signal of a synchronous hydraulic motor. On the basis
of the improved DSM, this study proposes an adaptive
noise reduction method for the acoustic signal of a syn-
chronous hydraulicmotor. Thismethod realizes the automatic
noise reduction of four acoustic signals of the synchronous
hydraulic motor health states, namely, gear wear-out state,
gear rust state, and end cover wear-out state. The proposed
method can automatically obtain the optimal superimposed
length of the quasi-periodic signal, signal starting position,
and superposition number. This method is simple and easy to
achieve, and the degree of noise reduction can be adjusted
through parameters, and the noise reduction effect is sig-
nificant. Moreover, the method improves the applicability
of the misalignment superposition algorithm and adds noise
reduction processing on the time domain signal. The pro-
posed method has higher noise reduction accuracy than the
time-domain synchronous averaging method and wavelet
noise reduction when processing the acoustic signals of syn-
chronous hydraulic motors, but the noise reduction process
takes too long. Hence, the calculation efficiency can be used
as a research method to continue in-depth research. The
proposed method can be used for automatic noise reduction
of quasi-periodic signals of other rotating machinery.
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