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ABSTRACT The detection and removal of malicious social bots in social networks has become an area
of interest in industry and academia. The widely used bot detection method based on machine learning
leads to an imbalance in the number of samples in different categories. Classifier bias leads to a low
detection rate of minority samples. Therefore, we propose an improved conditional generative adversarial
network (improved CGAN) to extend imbalanced data sets before applying training classifiers to improve
the detection accuracy of social bots. To generate an auxiliary condition, we propose a modified clustering
algorithm, namely, the Gaussian kernel density peak clustering algorithm (GKDPCA), which avoids the
generation of data-augmentation noise and eliminates imbalances between and within social bot class
distributions. Furthermore, we improve the CGAN convergence judgment condition by introducing the
Wasserstein distance with a gradient penalty, which addresses the model collapse and gradient disappearance
in the traditional CGAN. Three common oversampling algorithms are compared in experiments. The effects
of the imbalance degree and the expansion ratio of the original data on oversampling are studied, and
the improved CGAN performs better than the others. Experimental results comparing with three common
oversampling algorithms show that the improved CGAN achieves the higher evaluation scores in terms of
F1-score, G-mean and AUC.

INDEX TERMS Social bot detection, conditional generative adversarial networks, data augmentation,
supervised classification, imbalanced data.

I. INTRODUCTION
In recent years, online social networks (OSNs), in which peo-
ple can conveniently share and promote news, information,
opinions, links, and products, have grown widely. Notably,
the increase in the number of mobile devices has contributed
to an increase in the frequency of user interaction via online
social networks. In the first quarter of 2009, Facebook had
197 million monthly active users. By the first quarter of 2019,
the number of monthly active users had grown to 2.38 bil-
lion [1]. In the first quarter of 2010, Twitter had 30 million
monthly active users [2]. By 2019, the number of monthly
active Twitter users had grown to 330 million [3]. However,
the typical features of openness and sharing in online social
networks have also promoted malicious activity by attackers,
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spammers, and fraudsters. Social bots are one of the most
high-level security threats in OSNs, as they make OSNs vul-
nerable to adversaries. A social bot is computer software that
automatically produces content and interacts with humans
on social media to emulate and possibly alter their behav-
ior [4]. The primary objectives of these social bots are to
create the illusion that a social network actively influences
public opinion [5], to cause political penetration [6], and to
spread malicious content. On popular social networks, these
malicious social bots have had a negative impact on human
users. According to a survey from TheWashington Post from
May 2018, Twitter identifiedmore than 9.9million suspicious
accounts—triple the number in late 2017 [7]. Another study
found that social bots were responsible for generating 35% of
the content that is posted on Twitter [8].

As malicious social bots have increasingly used various
social engineering methods to distribute unsolicited spam,
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advertise events and products of dubious legality, promote
public figures, and steal sensitive personal information [4],
many studies have examined how to detect fake accounts gen-
erated by social bots. Social bot detection aims to distinguish
between bots and normal humans in social networks [9].
Machine learning has been used to detect social bots on social
networks through various approaches, including by detecting
fake content linked to the account, investigating the account
profile itself, and using nonverbal indicators [10].

Malicious social bots affect information security and net-
work environments by performing harmful operations and
disseminating false information with malicious intent. There-
fore, it is a crucial and urgent task to detect and remove
malicious social bots in online social networks. However,
in the real world the number of social bots is far less than
the number of normal humans, leading to a serious sample
imbalance problem in social network bot detection meth-
ods based on machine learning, and this conclusion has
been verified in experimental environments [11]. In social
bot classification detection using machine-learning methods,
imbalances in training data can cause a difference in the
proportion of positive and negative samples, and the final
result may be misjudged to some extent [10]. This data
imbalance can be addressed by both undersampling and
oversampling techniques. In a social-bot-detection scenario,
undersampling is not suitable because of the loss of data infor-
mation in most categories. The data augmentation algorithm
is an important method for solving the problem of data-set
imbalance faced by the oversampling technique, and it has
been applied to fields including computer vision, scene recon-
struction, voice data augmentation, and natural language
processing [12].

To overcome these difficulties, in this work, we pro-
pose a data-augmentation approach to address the imbal-
ance in Twitter bot detection by adopting conditional genera-
tive adversarial networks (CGANs). Specifically, we propose
using the power of the recently discovered density peak clus-
tering to fulfill the task of the condition set of the CGAN as
well as using theWasserstein distance with a gradient penalty,
which minimizes a different distribution divergence than the
original CGAN, to achieve better performance in terms of
convergence.

The main contributions of this paper are as follows:
1. We propose a data-augmentation approach by adopting

improved CGAN generative methods to extend social bot
samples.

2. We improve the CGAN model convergence judgment
condition by incorporating the Wasserstein distance with a
gradient penalty, which has achieved a better performance
that minimizes the different distribution divergence.

3. Based on the clustering algorithm, in conjunction with
using a CGAN to rebalance skewed data sets, we pro-
pose an effective imbalanced data oversampling method that
avoids the generation of data-augmentation noise and effec-
tively overcomes the imbalances between and within class
distribution.

4. We propose Gaussian kernel density peak cluster-
ing (GKDPCA) as a condition model to label the social
bot data in the CGAN model. The GKDPCA improves the
Euclidean distance calculation method of the density peak
clustering algorithm. We use the Gaussian kernel function to
project the original features into a high-dimensional kernel
space.

The rest of this paper is organized as follows: Section II
briefly reviews related research. Section III presents the
method for the detection algorithms for malicious social bots,
followed by the experiment and result analysis in section IV.
Section V concludes this paper.

II. RELATED WORK
A. SOCIAL BOT DETECTION BASED ON FEATURE
EXTRACTION
At present, popular technology involved in social bot detec-
tion is based on dynamic content sent by social bots and
the social relationship diagram around social bots. This
technology requires processing data sets that are acquired
beforehand and then selecting some representative and dis-
crimination features to achieve better classification results.
For example, Alothali et al. [13] reviewed the various detec-
tion schemes that were currently in use, examined their com-
mon aspects, such as the classifier and data sets used, selected
some of the features employed, and compared the evaluation
techniques employed to validate the classifiers. Similarly,
Chu et al. [14] used an entropy-based component, a machine-
learning-based component, and an account-properties com-
ponent to determine the likelihood that an unknown social
media network user was human through the combination of
features extracted from the user.

The entropy-based component detects periodicity for a
specific user. Themachine-learning-based component detects
spam according to the content of tweets, and the account-
properties component detects account information. The
decision-maker determines whether the input account is a
social bot. Varol et al. [15] extracted 1150 features from
public data and metadata regarding users, friends, tweet
content and sentiments, network patterns, and activity time
series and used the random forest, AdaBoost, logistic regres-
sion, and decision-tree classifiers to detect social bots. The
best classifier in terms of the area under the curve (AUC)
was the random forest, and the AUC for each type of feature
was calculated separately. The most effective features were
user metadata and content, but some content and emotional
features were redundant. Yang et al. [16] used the support
vector machine (SVM) classifier to make predictions from
the average invitations sent over N hours using the ratio of
accepted outgoing requests, the ratio of accepted incoming
friend requests, and a clustering coefficient. This was the first
time that Sybil graph topology was used on a major online
social network. Furthermore, Gilani et al. [17] divided the
collected accounts into four groups according to the num-
ber of account fans and then observed the specific relation-
ships between their characteristics and the real identity of
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the accounts. These features included account age, content
generation, content popularity, content consumption, account
reciprocity, and tweet-generation sources.

In work related to features, The Defense Advanced
Research Projects Agency (DARPA) held a competition [10]
in usingmachine learning to detect a social bot. Using the five
features of tweet syntax, tweet semantics, temporal behavior
features, user profile features, and network features, six teams
found the most effective combinations of these features and
machine-learning algorithms by judging the comprehensive
results of the detection. Zafarani and Liu [18] proposed a
method for identifying malicious users with minimal infor-
mation. This method classified the features of malicious
users into five categories, and the detection framework gen-
erated by machine learning demonstrated strong robustness
in different algorithms and imbalanced data sets. Similarly,
Clark et al. [19] maintained that excessive dependence on
user metadata could make bots with strong imitation abilities
difficult to detect. Therefore, the language attributes of tweets
were used as the basis for the classification. These researchers
calculated themean and standard deviation of each dimension
through the user data of humans and then calculated the
distance between an unknown user and the attribute average
to identify a social bot. This method can be used to dynami-
cally prevent a bot account from manipulating user attributes
and hiding its real identity. Moreover, Van Der Walt and
Eloff [20] linked engineered features such as the ‘‘friend-
to-followers ratio’’ to a set of fake human accounts in the
hope of advancing the successful detection of fake identities
created by humans on social media platforms. Loyola-
González et al. [21] used a pattern-based classification mech-
anism for social bot detection specifically for Twitter and
introduced a new feature model for social bot detection that
partially extended an existing model with features based
on Twitter account usage and a tweet content sentiment
analysis.

B. SOCIAL BOT DETECTION WITHOUT FEATURE
EXTRACTION
Social bot detection can also be achieved without feature
extraction. Wang et al. [22] made use of a clickstream model
to detect the real identity of social accounts on the server
side. These authors input the clickstream sequence and then
calculated the sequence distance to accurately classify social
accounts. Shi et al. [23] presented a novel method of detecting
malicious social bots, including both feature selection based
on the transition probability of clickstream sequences and
semi-supervised clustering. This method not only analyzed
the transition probability of user behavior clickstreams but
also considered the temporal features of behavior.

Cao et al. [24] developed a tool called the sybil rank,
which ranked the user’s probability of being impersonated
by using social graph attributes. Similarly, Cai et al. [25]
combined convolutional neural networks (CNNs) with a long
short-termmemory (LSTM)model to explore semantic infor-
mation and a potential time model. This method utilized

content information and behavior information and converted
user content into temporal text data to reduce the workload
for determining features. Chavoshi et al. [26] designed the
DeBot system using an unsupervised learning approach and
proposed a new hash-mapping technique that could quickly
group a large number of associated users. The accuracy of
this method reached 94% in social bot detection. In addition,
Kudugunta and Ferrara [27] judged whether a social media
account was a social bot by analyzing a single tweet. They
introduced the contextual LSTM deep neural network, which
used content and metadata as input. This model can accu-
rately be used to judge the category of a social media account.
Additionally, these investigators proposed a method based
on synthetic minority oversampling to enhance the existing
data set and generated a minority sample to improve the
classification performance. Furthermore, Beutel et al. [28]
detected lockstep page-like patterns on Facebook by analyz-
ing only the social graph between users and pages during
times at which the edges in the graph indicated malicious
social bots. Finally, Cresci et al. [29] showed that a new
wave of social spambots had emerged and efficient spambot
detection could be achieved via an in-depth analysis of their
collective behaviors by exploiting the digital DNA technique
for modeling the behaviors of social network users. All of
the detection methods based on machine learning inevitably
require a large number of original data sets.Moreover, they do
not explicitly address the imbalance in the ratio of the positive
and negative samples in the original data set. An imbalance
between positive and negative samples reduces the effective-
ness of detection.

C. APPROACHES FOR IMBALANCED DATA
CLASSIFICATION
Similar to the imbalanced data in social bot detection, data
imbalance problem imposes challenges in performing data
classification in realistic machine learning applications, such
as fraud detection, text classification, face and image recog-
nition, and medical diagnosis [30], [31]. The performance of
classifiers leans to be partial towardmajority classes in imbal-
anced data sets [32]. Various approaches have been proposed
to overcome the problem of imbalanced data classification in
the past decade [33], [34]. These approaches can be broadly
divided into two main categories: data-driven approaches and
algorithm-driven approaches [35], [36].

At the data level, data-driven approaches use various meth-
ods to adjust the number of samples in the original data set
to achieve balanced class distribution. The typical methods
include undersampling, oversampling or a combination of
both [37]. Random undersampling is known as the primary
under-sampling technique, although it reduces some use-
ful information in the data set. Condensed nearest neigh-
bor rule (CNN) [38], Tomek Links [39], one-sided selection
(OSS) [40] are effective under-sampling approaches pro-
posed earlier. Laurikkala [41] proposed the neighborhood
cleaning rule (NCL) method, which improves the recogni-
tion accuracy of small samples. Wilson [42] proposed edited
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nearest neighbor rule (ENN) method, which uses a modified
three-nearest-neighbor rule to edit the pre-classified samples
and using the single-nearest-neighbor rule to make decisions.

The undersampling removes some set of data samples from
the majority class, which has the possibility of losing infor-
mative samples. In contrast, the oversampling approach tends
to increase the size of the minority class to obtain balanced
classes, which results in overfitting and increases the time of
the training phase [31].

SMOTE [43] is the pioneering oversampling algorithm
proposed by Chawla et al. in which the synthetic samples
are created in the feature space by interpolating between
the considered minority sample and its random minority
nearest neighbors. To overcome the overgeneralization prob-
lem of SMOTE, many creative methods have been devel-
oped. Barua et al. [44] proposed MWMOTE, in which the
minority samples are partitioned into small clusters, and the
synthetic samples can only be generated inside the clus-
ters. Han et al. [45] proposed Borderline-SMOTE, in which
only the minority examples near the borderline are over-
sampled. Bunkhumpornpat et al. [46] proposed safe-level
SMOTE, which samples minority instances along the same
line with safe level computed by using nearest neighbor
minority instances. Douzas et al. [47] proposed k-means-
SMOTE by combining k-means clustering and SMOTE,
which avoids the generation of noise and effectively over-
came imbalances between and within classes. Tuanfei Zhu
et al. successively proposed synthetic minority oversam-
pling for multiclass imbalance (SMOM) [48] and synthetic
minority oversampling for imbalanced ordinal regression
(SMOR) [49]. SMOM is a k-NN based synthetic minority
oversampling algorithm which assigns a selection weight
to each neighbor direction. SMOR further generalizes the
idea of SMOM and calculates the selection weights to cre-
ate synthetic samples to solve imbalanced ordinal regression
problem. Zhang et al. [50] proposed the Abstention-SMOTE
method, which constructs abstaining classifiers using ROC
analysis and uses the abstaining classifiers to generate the
abstention positive samples. Jiang et al. [51] proposed a
genetic algorithm-based SMOTE algorithm (GASMOTE).
GASMOTE uses different sampling rates for different minor-
ity class instances and finds a combination of optimal sam-
pling rates. Prusty et al. [52] proposed weighted SMOTE
(WSMOTE), where oversampling of each minority data sam-
ple is carried out based on the weight assigned to it. These
weights are determined by using the Euclidean distance of
a particular minority data sample relative to all remain-
ing minority data samples. Mathew et al. [53] proposed
a weighted kernel-based SMOTE (WK-SMOTE) to handle
nonlinear separable imbalanced data. WK-SMOTE adopts
the kernel method of SVM to enable original data to be linear
separable in high-dimensional feature space. Cheng et al. [54]
proposed a grouped SMOTE algorithm with noise filtering
mechanism (GSMOTE-NFM) to deal with the propagation of
the noisy information in the procedure of oversampling and
the overlooking of the local distribution characteristics.

In addition to the series of SMOTE methods, researchers
have contributed to various approaches for imbalanced data
issues. He et al. [55] proposed the adaptive synthetic sam-
pling approach (ADASYN) for assigning different weights
to samples according to their level of complexity while
learning and synthetic data are generated. In recent years,
generative adversarial networks (GANs) [56] have achieved
considerable success in generating convincing samples. Some
researchers have focused on GANs as a new oversampling
approach. Fiore et al. [57] trained a GAN to output mimicked
minority class samples, whichwere thenmergedwith training
data into an augmented training set. Using the augmented
training set the classification effectiveness can be improved
in credit card fraud detection. Douzas and Bacao [58] used
a conditional generative adversarial network (CGAN) to
approximate the true data distribution and generate data for
the minority classes of various imbalanced data sets. The
experimental results show a significant improvement in the
quality of the generated data.

At the algorithm level, researchers strive to create mod-
ern algorithms to facilitate the learning task specifically
with respect to the minority class. These approaches include
algorithmic centered approaches, cost-sensitive learning, and
hybrid methods [35]. Chawla et al. [59] proposed the
SMOTEBoost based on a combination of SMOTE algo-
rithm and boosting procedure. SMOTEBoost creates syn-
thetic examples from the minority class, indirectly changing
the updating weights and compensating for skewed distri-
butions. Joshi et al. [60] evaluated three existing categories
of boosting algorithms for the task of mining rare classes
and enhanced two of them that could achieve a better bal-
ance between recall and accuracy in mining rare classes.
Tallo and Musdholifah [61] proposed a SMOTE-simple
genetic algorithm (SMOTE-SGA), which is applied to deter-
mine instances to be generated and the number of synthetic
instances to overcome the over-generalization problem in
SMOTE. Ma and Fan [62] proposed the CURE-SMOTE
algorithm, which clusters the samples of theminor class using
CURE (Clustering Using Representatives) and generates arti-
ficial samples randomly between representative points and
the center point.

Cost-sensitive learning is a cost-specific technique that
assigns different costs to the samples in different classes and
can be applied to many existing algorithms to turn them
into imbalance recovery methods. Doroshenko et al. [63]
proposed a cost-sensitive classification method for imbal-
anced data sets based on the neural structure of succes-
sive geometric transformation models using a piecewise-
linear approach for classification. Khan et al. [64] proposed
a cost-sensitive neural network to handle imbalanced data.
Dhar and Cherkassky [65] extended the universum-SVM
(U-SVM) formulation to problems with different misclassifi-
cation costs and presented practical conditions for the effec-
tiveness of the cost-sensitiveU-SVM.Qiu et al. [66] proposed
a new test-cost sensitive decision tree learning algorithm
and constructed the randomly selected decision tree (RSDT),
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FIGURE 1. Social bot detection framework.

which significantly reduces the total test cost and maintains
higher classification accuracy. Palacios et al. [67] proposed a
cost-sensitive FURIA (fuzzy unordered rule induction algo-
rithm) method, which verifies that cost-sensitive learning is a
competitive approach for learning fuzzy rules in imbalanced
classification problems.

Hybrid methods combine of multiple classifiers and pre-
processing approaches to efficiently handle the problem of
imbalanced data. Sun et al. [68] proposed a novel ensemble
method for classification imbalance problem, which firstly
converts an imbalanced data set into multiple balanced data
sets, and then builds a number of classifiers on these data sets,
finally combines the classifiers by a specific ensemble rule.
Benchaji et al. [69] proposed a sampling method based on the
k-means clustering and the genetic algorithm to improve clas-
sification of imbalanced data sets for credit card fraud detec-
tion. Awasare and Gupta [70] proposed a SVM with cluster
partitioning method, where multiple sub-datasets are built
from majority class samples by cluster partitioning method,
and then SVM classifiers are trained with the sub datasets
of majority class and the minority data sets. Barstuğan and
Ceylan [71] combined dictionary learning and the ensemble
classifier AdaBoost algorithm to create a hybrid structure,
which uses sparse coefficients in the weight update formula
of AdaBoost.

III. SOCIAL BOT DETECTION BASED ON IMPROVED CGAN
A. SOCIAL BOT DETECTION
The formal definition of the social bot detection problem
is as follows: A = {a1, a2, · · · , a|A|}, which represents the
collection of social accounts to be detected on the social net-
work. C = {CR,CN } is defined as the category of the social
accounts, where CR is a collection of social-bot accounts, CN
is a collection of normal human accounts, and |CR| � |CN |.
The aim of the social bot detection problem is to determine

whether account ai belongs to the social bot collection CN .
The decision function is as follows:

ϕ
(
ai, cj

)
: A× C→{0, 1} (1 ≤ i ≤ |A| , j ∈ {R,N}) . (1)

The result of ϕ
(
ai, cj

)
can only be 0 or 1, which can be

summarized as follows:

ϕ
(
ai, cj

)
=

{
0, ai ∈ CR
1, ai ∈ CN .

(2)

Since the number of bots is not of the same order as the
number of people, the classification accuracy is reduced.
We generate minority samples by oversampling methods,
append these new samples in CA, and mix CR into CA to
make |CA|≈ |CN |. As a result, the classifier facilitates more
effective detection of social bots through a balanced data set.

B. OVERALL PROCESS
Fig. 1 shows the social bot detection framework proposed in
this paper. By collecting tweet and user-profile information,
we generate the available data set from the original data set
through feature extraction and data normalization.

Then, we formulate a data-augmentation approach by
adopting generative adversarial network method. To over-
come the shortcomings of the original CGAN—it easily
causes mode collapse, and it is unable to effectively control
the category of generated samples—we create an improved
CGAN by introducing the Wasserstein distance with a gradi-
ent penalty. We also improve the conditional model of CGAN
to control the generated samples, and we use the modified
density peak clustering algorithm to generate conditions as a
part of the input.

We input the bot accounts from the training set and clus-
tering labels into the improved CGAN and then train the
improved CGAN until it is stable. Then, we incorporate
random noise and random labels into the stable improved
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CGAN to generate fake bot accounts that are difficult for
the discriminator to distinguish. Next, we mix them with the
normal human data sets to form an augmented training data
set. Finally, we adopt the augmented training data set to train
a classifier that will be used to classify an unlabeled account
in the test set.

C. FEATURE EXTRACTION
Six types of features are selected for the social-bot-detection
process [15]: user meta-data, sentiment, friends, content, net-
work, and timing.We select the following 11 types of features
with better classification abilities for social bot detection:

1) Average number of topic tags: The average of the topic
tags in the tweets. The ‘‘#’’ and other forms indicate
that the tweet is highly correlated with a specific topic,
and social bots want to expand influence quickly by
publishing tweets on popular topics.

2) Average number of user mentions: The average number
of users mentioned by the user in the tweet. Social
accounts can be notified via ‘‘@username’’ for some
tweets, and a social bot speeds up information diffusion
by mentioning users more frequently than normal users
do.

3) Number of links: The average number of URLs in the
tweet. The tweet content in social networks can include
URLs, images, and other files. The social bots are more
likely to add more links than normal users do, which
induces normal users to click and redirects them to
malware websites for social-engineering attacks.

4) Number of retweets: The ratio of the number of tweets
that belong to retweets (i.e., forwards of tweets) of
other users to the total number of tweets. Normal
users only retweet tweets in which they are interested,
whereas social bots always retweet other users’ tweets
to stay active in the social network.

5) Number of favorites: The total number of the users’
favorites. Normal users can express their concern by
favoriting some tweets about topics of interest, but
social bots also use this tactic to increase their influ-
ence. Generally the tweet content of social bots is favor-
ited less frequently than that of normal human users.

6) Ratio of followers to the number followed: Online rela-
tionships for normal humans are with people they know
in real life, whereas social bots have a small number of
fans and always follow a large number of strangers to
improve their influence in social networks.

7) Tweet source: The number of tweet sources that are
official. Normal human users send tweets through a
variety of platforms recommended by Twitter. The
source of tweets sent by social bots is unofficial
because social bots are controlled by automatic pro-
grams.

8) Similarity of content: The latent semantic text content
similarity of the original tweet. Latent semantic analy-
sis (LSA) [72] analyzes potential connections between

documents and words by extracting the words from
documents into a vector-semantic space. If different
words appear in the same document multiple times,
the words are semantically similar. LSA extracts the
text-collection matrix from the data set. The rows of
this matrix represent words, the columns represent doc-
uments, and the specific values of the matrix elements
represent the number of times that a word appears in
the document; then the matrix is subjected to singular
value decomposition (SVD).We convert a data text into
matrix A as follows:

A = U6V T , (3)

where 6 =

(
S 0
0 0

)
and S = diag(σ1, . . . ,σr ), and

σ1≥ . . . ≥σr> 0. The SVD reduces the dimension of
the matrix while maintaining as much column infor-
mation as possible. Then, the similarity of each pair of
words can be quantified by the cosine similarity of the
two row vectors a and b as follows:

ε =

∑n
j=1 (aj×bj)√∑n

j=1 (aj)
2
×

√∑n
j=1 (bj)

2,

(4)

where a = (a1· · ·an) , and b = (b1· · ·bn), and the closer
ε is to one, the more similar the two words are. Normal
human beings change their interests infrequently, so the
similarity of two words should be high, but social bots
often need to have considerable interests to expand
their influence. Furthermore, the semantic similarity of
original tweets from a normal user is higher than that
of original tweets from social bots.

9) Similarity of the tweet length: The variance in the
number of tweet words. The length of a tweet sent by
a social bot is consistently controlled by an automatic
program, whereas that of a normal human user varies
greatly.

10) Similarity of punctuation usage: The variance in the
number of punctuation marks in the original tweet.
Different normal human users have distinct punctu-
ation usage habits, but the diversity of social bot
tweet sources results in punctuation without a fixed
style.

11) Similarity of stop words: The variance in the number
of stop words in the original tweet. The usage of stop
words is part of an individual’s writing style, so a nor-
mal user always uses more stop words in tweet content
affected by the growth process. In contrast, social bots
send tweets by automatic programs, which makes their
writing style less predictable.

D. SOCIAL BOT AUGMENTATION WITH AN IMPROVED
CGAN
In the original GAN model, we cannot control the specific
types of samples being generated by generator G. Sometimes,
we are interested in the ‘‘conditional on’’ class of social
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FIGURE 2. Structure of the improved CGAN with the Gaussian kernel
density peak cluster algorithm.

bots. Conditional generation is performed by incorporating
more information into the training procedure of GANs so
that the generated samples conform to the same attributes
as certain training sample categories [73]. Considering the
inherent association of social bots, if the social bot samples
are clustered first, then the clustering results can be used
as the conditional model of the CGAN, and the augmented
social bot data set can achieve a more balanced class dis-
tribution and effectively avoid the generation of noisy sam-
ples. The use of clustering enables the CGAN model to
more accurately identify and target areas of the input social
bot space where the generation of social bot data is most
effective.

However, there are some problems with the traditional
CGAN. The better the discriminator is trained, the more
easily the vanishing gradient problem occurs in the generator
of the traditional CGAN. The lack of diversity in the data gen-
erated by the generator leads to the collapse of the traditional
CGAN. The Wasserstein distance with a gradient penalty can
solve these problems perfectly.

Therefore, in this study, we improve the CGAN by intro-
ducing the Wasserstein distance with a gradient penalty and
a condition-generation method through the modified density
peak clustering algorithm. The structure of the improved
CGAN is shown in Fig.2. The discriminator has to correctly
label real samples that come from the training data set as
‘‘real,’’ and it has to correctly label generated samples from
the generator as ‘‘fake.’’ The generator is fed with random
noise, z, and the labels from the GKDPCA. The discriminator
determines whether each input sample comes from the gen-
erator or the real environment.

We first describe how to incorporate clustering information
into the CGANmodel training process and then formulate the
loss function of the improved CGAN.

1) CONDITION MODEL IN THE IMPROVED CGAN
In an unconditioned generative model, there is no control of
the modes of the data being generated. However, by condi-
tioning themodel with additional information, it is possible to
direct the data-generation process. Such conditioning may be
based on class labels, on some part of the data for inpainting,
or even on data from different modalities [73]. Thus, the GAN
can be extended into a conditional model if both the generator
and discriminator are conditioned with some extra informa-
tion, y, which can be any kind of auxiliary information, such
as class labels or data from other modalities. We perform
conditioning by feeding y into both the discriminator and
generator as an additional input layer.

Tweets and features of social bots are objective and
immutable and are therefore not appropriate to modify and
supplement. However, there are many similar factors in a
social bot’s characteristics, such as occupations, hobbies,
and behaviors. In the existing research data on social bots,
there is no recognized typical classification standard with a
functional meaning division. Therefore, clustering social bots
by their features is a feasible method that can result in a more
reasonable classification label. The sample data of a bot may
be generated by different bots, and the spatial distribution
rules are different. Therefore, the category of the bot is used
as auxiliary information to help the CGAN generate more
realistic samples. We cluster the bot samples to obtain the
category information through algorithms.

Density peak clustering is a new clustering algorithm that is
different from the traditional clusteringmethod. First, it needs
to calculate the local density of each data point and the
shortest distance from the data points with a higher density
to each data point. Second, the cluster center is manually
determined through a sorting graph. Finally, the remaining
data points are assigned to the category in which the data
points are higher in density and shorter in distance.

The original DPCA adopts the default Euclidean distance
to compute the distance between two data points. How-
ever, when the data set is complex and linearly inseparable,
the Euclidean distance can cause severe misclassification.
We improve the DPCA with the GKDPCA, which mea-
sures the distance by implicitly mapping the raw data into
a high-dimensional feature space. Furthermore, to improve
the performance of the proposed method, we introduce the
Gaussian kernel instead of the cut-off kernel to calculate the
local density of the data points. The GKDPCA can detect
non-spherical clustering, which cannot be detected by tra-
ditional distance-clustering methods, such as K-means and
K-medoids clustering.

Given a data set S = {−→xi }
N
i=1, where

−→xi ∈ Rd , we use a
nonlinear kernel function to map the raw data from the input
space Rd to the high-dimensional feature space H, as follows:

ϕ : Rd
→ Z,−→xi → ϕ

(
−→xi
)
. (5)

where

−→xi = [xi,1, xi,2, . . . , xi,d ], (6)

and

ϕ
(
−→xi
)
= [ϕ1

(
−→xi
)
, ϕ2

(
−→xi
)
· · · , ϕz

(
−→xi
)
]. (7)

Hence, the kernel distance between two data points, −→xi and
−→xj , is calculated as follows:

‖ ϕ
(
−→xi
)
− ϕ

(
−→xj
)
‖
2

=
(
ϕ
(
−→xi
)
− ϕ

(
−→xj
))T (

ϕ
(
−→xi
)
− ϕ

(
−→xj
))

= ϕT
(
−→xi
)
· ϕ
(
−→xi
)
− 2ϕT

(
−→xi
)
· ϕ
(
−→xi
)
+ϕT

(
−→xj
)
· ϕ
(
−→xj
)

= K
(
−→xi ,
−→xi
)
− 2K

(
−→xi ,
−→xj
)
+ K

(
−→xj ,
−→xj
)

(8)
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The Gaussian kernel can be expressed as follows:

K
(
−→xi ,
−→xj
)
= exp

(
−
‖
−→xi −

−→xj ‖
2

2σ 2

)
, σ > 0 (9)

Clearly, K
(
−→xi ,
−→xi
)
= K

(
−→xj ,
−→xj
)
= 1, thus (8) reduces to:

‖ ϕ
(
−→xi
)
− ϕ

(
−→xj
)
‖
2
= 2

(
1− K

(
−→xi ,
−→xj
))
. (10)

We use this measurement to compute the distance between
two data points −→xi and

−→xj , as follows:

di,j =‖ ϕ
(
−→xi
)
− ϕ

(
−→xj
)
‖=

√
2
(
1− K

(
−→xi ,
−→xj
))

(11)

A data point used as a clustering center needs to have two
characteristics: 1) the point should be surrounded by other
points with a relatively low local density and 2) the distance
between this point and other data points with higher densities
should be great. Thus, the algorithm needs to calculate the
local density ρi of each data point i and the shortest distance
δi from that point i to a point with a higher local density. The
distance can be quantified by the cutoff distance [74] or the
Gaussian kernel distance [75].

The cut-off kernel distance is:

ρi =
∑

i 6=j
X (dij − dc), and X (x) =

{
1, x < 0
0, x ≥ 0

(12)

where dij is the distance between the data points i and j, and
dc is the cut-off distance set in advance.

The Gaussian kernel distance is:

ρi =
∑

i 6=j
e
−

( dij
dc

)2
(13)

δi is defined as the shortest distance between the data point i
and the other data point with a higher local density, and this
definition is as follows:

δi = min
j:ρj>ρi

(dij) (14)

but δi = max(dij) for the data point with the highest density.
The algorithm treats the points with higher δi and relatively

higher ρi at the same time as the clustering centers. We define
the γi to find suitable cluster centers, and γi is defined as
follows:

γi = ρiδi. (15)

According to the previous cluster center selection criterion,
the larger the γi value of a point, the more likely it is to be
a cluster center. After the cluster center is manually selected
according to the number of the clusters k , the category of the
remaining points is the same as that of the data point with
higher density and closer distance than those of points. The
GKDPCA algorithm is described below.

Algorithm 1 GKDPCA Algorithm

Input: Training data set S = {−→x1 ,
−→x2 , · · ·

−→xn }, the number
of clusters K , the Gaussian Kernel parameter σ .
Output: the K subsets DC1,DC2, · · · ,DCK .
Calculate the distance di,j between data points −→xi and −→xj
according to (9).
Assign the cut-off distance dc.
Calculate the local density ρi of each data point

−→xi accord-
ing to (13).
Calculate the distance δi of each data point −→xi according
to (14).
Calculate γi = ρiδi, i ∈ Is, select the data points corre-
sponding to the Kmaximum values of {γi}Ni=1 as the cluster
centers C = {Ci}Ki=1.
Finally, assign each remaining point to the same cluster as
its nearest neighbor of higher density;
the training data set S is divided into K subsets
DC1,DC2, · · · ,DCK
Return the K subsets DC1,DC2, · · · ,DCK .

2) CGAN WITH WASSERSTEIN DISTANCE AND A GRADIENT
PENALTY
The essential loss function of a CGAN aims to optimize the
maximum and minimum problems, consisting of discrimina-
tor losses and generator losses. The goal of the discriminator
D is to correctly distinguish whether the source of the sample
is fake or real based onwhether the expected outputD (x|y) of
real data x approaches 1 and the expected output D (G (z|y))
of fake data x̂ approaches 0. Thus, Ex∼pdata(x) log (D(x|y))
and Ez∼pz(z)

[
log (1− D (G (z|y)))

]
take the maximum value.

The goal of the generator G is that the generated sample
G (z|y) is judged by the discriminator D as real data, that
is, the output D (G (z|y)) of the discriminator approaches
1. Thus, Ez∼pz(z)

[
log (1− D (G (z|y)))

]
takes the minimum

value.
The objective of the discriminator D is to judge

whether some samples are from x or G(z|y), such that
Ex∼pdata(x) log (D(x|y)). Maximizing this part also enables
the discriminator D to output D (x|y) = 1 when x
conforms to pdata. Another part of the problem is that
generator G wants to deceive discriminator D, such that
Ez∼pz(z)

[
log (1− D (G (z|y)))

]
. Equation (16) shows the

objective function of a CGAN:

min
G

max
D V (D,G) = Ex∼pdata(x)

[
logD (x|y)

]
+Ez∼pz(z)

[
log (1− D (G (z|y)))

]
. (16)

There are two main problems with the traditional CGAN
algorithm. When the discriminator is too good, generator
training may fail as the gradient disappears. Moreover, if the
sample diversity generated by the generator during training is
insufficient, the generator fails to learn to represent the com-
plex real data distribution and becomes stuck in a small space
with extremely low variety, causing the model to collapse.
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The Wasserstein distance can perfectly solve the above two
problems.

The Wasserstein distance is also called the earth-mover
(EM) distance [76] and is defined as follows:

W
(
ρdata, ρg

)
= inf
γ∼

∏
(ρdata,ρg)

E(x,y)∼γ
[
||x-y||

]
(17)

where ρdata is the correct distribution of the social bots, ρg is
the distribution learned by the generator G, and

∏
(ρdata, ρg)

is a collection of all joint distributions of ρdata and ρg com-
bined. For every possible joint distribution γ , we can obtain
real social bot samples x and y generated by the generator G,
and calculate the distance | |x − y| | of the pair of samples so
that the expected value of the distance of the samples under
the joint distribution E(x,y)∼γ [| |x − y| |] can be calculated.
The lower bound of this expected value in all of the possible
joint distributions is defined as the Wasserstein distance.

In the actual training process, the GAN with Wasserstein
distance uses weight clipping to ensure Lipschitz continuity
in the whole sample space. After updating the discrimina-
tor parameters, it checks whether the absolute value of all
of the parameters of the discriminator exceeds a threshold.
To ensure that all parameters of the discriminator are bounded
during the training process, we ensure that the discriminator
can not distinguish two slightly different samples from each
other, thereby indirectly meeting the Lipschitz limit. The
optimal strategy in this case is to make all of the parameters
as extreme as possible. The specific approach we take is to
increase the gradient penalty term on the discriminator’s loss
function because there is no need to have Lipschitz continuity
in the whole sample space, only to focus on generated sam-
ples, real samples, and the middle area [76].

In the following equation, x̂ represents samples that are
linearly interpolated by the real data xr and the fake data xg
generated from the generator G(x):

x̂ = εxr + (1− ε) xg (18)

where the ε is a random number that obeys the uniform
distribution U (0, 1).

The discriminator D judges whether some samples are
from x orG(z), and generatorG tries to deceive discriminator
D so that the loss function of the generator and discriminator
is as follows:

L (G) = −Ex∼pg [D (x | y)] (19)

L (D) = Ex∼pg [D(x|y)]− Ex∼pdata [D (x | y)]

+ λEx∼px̂
[
(| |∇xD (x|y)| |ρ − 1)2

]
(20)

E. DETECTION PROCESS
When the generator G generates fake bot samples that are
not distinguished by discriminator D, the fake samples will
be mixed with the real samples as input for the network
classifier. The label for real bot samples is obtained through
Gaussian kernel density peak clustering, and this label is
used as the auxiliary information for the improved CGAN.

The training process for the improved CGAN is described in
Algorithm 2.

Algorithm 2 The Process of the Improved CGAN
Input: The gradient penalty coefficient λ, the number of
critic iterations per generation iteration ncritic, the batch
size m, Rmsprop hyperparameters α, ρ, ε, σ , initial critic
parameters ω0, initial generator parameters θ0.
Output: the stable improved CGAN.
While θ has not converged do
for t = 1, . . . . . . , ncritic do
for i = 1, . . . . . . , m do
Sample real data x ∼ Pr , z ∼ p(z), select a random

number ε ∼ U [0, 1] .
Obtain the bot category y
x̃ ←− Gθ (z|y)
x̂ ←− εx + (1− ε)x̃
L(i)←− Dw (x̃|y)−Dw (x|y)+λ(|

∣∣∇x̂Dw (x̂|y)∣∣ |2 − 1)2

end for
ω←− Rmsprop(α, ρ, ε, σ )
end for
Sample a batch of latent variables

{
z(i)
}m
i=1 ∼ p(z)

θ ←− Rmsprop(α, ρ, ε, σ )

The entire detection process is described in Algorithm 3.

Algorithm 3 Detection Process for Social Bots
Input: preprocessed data T = {x1, · · · , xn}, generator of
the improved CGAN Gg,
Output: the network classifier C
Divide T into training data set Tt and testing data set Ts;
Divide Tt into minority data set Fi and majority data set
Fm;
Classify Fi by density peak clustering into y;
Generate samples with Gg in Fn;
Mix Tt and Fn in Ca;
for epochsclassifier do
Train C with Fn;

end for
return C;

IV. EXPERIMENTS AND ANALYSES
A. EXPERIMENTAL PREPARATION
The experiment uses 1971 normal human accounts and
462 social bot accounts as original samples, of which 891 nor-
mal users are from the data set used in [15], and the other
1080 normal users and all the social bot users are from the
data set used in [29]. Social bots accounts for 18% of the
total original samples. All of the data that are original tweet
content crawled from Twitter are converted into a raw data set
that can be used directly through feature extraction. The first
part of the data is the normal user ID crawled in 2014, and
official Twitter API is used to crawl all the relevant content.
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TABLE 1. Data set composition.

TABLE 2. Confusion matrix for a two-class problem.

The second part of the data is the Twitter account crawled by
the Twitter API in 2015 and related content.

In order to evaluate the performance of oversamplingmeth-
ods, we used stratified sampling to randomly divide 80% of
the original data set into the training set and the remaining
20% into the testing set, so as to ensure that the training
and testing sets have approximately the same percentage of
samples of each target class as the original data set, as shown
in Table 1. All oversampling methods are used to synthesize
the training samples and balance the training set. The testing
set is used to test the performance of the classifier trained
by the oversampled training set. Each experiment was run
independently for 10 times to reduce the impact of randomly
partitioning the training and testing sets.

In a two-class problem, the confusion matrix (Table 2)
records the results of correctly and incorrectly recognized
examples of each class.

Traditional evaluation metrics for the two classification
problems are adopted, namely, accuracy rate, accuracy, and
recall, as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(21)

Precision =
TP

TP+ FP
(22)

Recall =
TP

TP+ FN
(23)

The F1-score is the harmonic mean of precision and recall.
In imbalanced data sets, the F1-score is much more effective
than accuracy in determining the performance of the model.
The F1-score is defined as follows:

F1− score =
2× Precision× Recall
Precision+ Recall

(24)

The true positive rate (TPR) is the ratio of the number of
positive predictions that are actually classified as positive to
the number of all positive samples, that is, the recall rate. The
TPR is defined as follows:

TPR =
TP

TP+ FN
(25)

The false positive rate (FPR) is the ratio of the number
of negative predictions that are classified as negative to the

number of all negative samples. The FPR is defined as
follows:

FPR =
TN

TN + FP
(26)

The G-mean (geometric mean) is the square root of the
product of the recall and precision and is used to evaluate
model performance for imbalanced data. The best value for
the G-mean is 1, and the worst value is 0. The G-mean is
defined as follows:

G− mean =
√
TPR · FPR (27)

When the distribution of the positive and negative samples
in the test set changes, the receiver operating characteris-
tic (ROC) curve can remain unchanged. Therefore, the ROC
curve is also an important classification index. The area
under the curve (AUC) is defined as the area under the ROC
curve. We use the AUC as the evaluation index because the
ROC curve often does not clearly indicate which classifier
performs better, and with the AUC as a value, the larger the
value, the better the classifier performance.

B. COMPARED ALGORITHMS
To analyse the effectiveness of the improved CGAN in
detecting social bots, we use three types of oversampling
methods for comparison: the synthetic minority oversam-
pling technique (SMOTE) algorithms, the adaptive syn-
thetic (ADASYN) algorithm, and the random oversampling
method. These three algorithms are common in the field of
data augmentation, and the improvement of the effect on the
classifier is obvious.

1) Random Oversampling [77]: Random oversampling is
a simple method of copying minority samples that
makes the rules learned by the classifier too specific
and causes overfitting problems.

2) SMOTE [43]: The SMOTE algorithm randomly selects
positions on the line of two minority class samples as a
new minority class sample. This method improves the
accuracy of classifiers for minority classes by increas-
ing the number of minority classes.

3) ADASYN [55]: The ADASYN algorithm can adap-
tively generate bias by reducing the data imbalance for
synthetic data samples of the minority classes. At the
same time, the ADASYN algorithm can be extended to
handle imbalances in different scenarios.

The implementation of these three algorithms is provided
by the scikit-learn library [78]. We executed these algorithms
by calling the appropriate modules in the library. All of the
above algorithms need to use the training data set as data
input, and the algorithms have parameters that achieve the
best performance. The use of these three oversampling algo-
rithms is similar to the improved CGAN in the experiment.
The three oversampling algorithms use the training set as
input data to generate more samples. We use the augmented
data set to train the neural network classifier and use the test
set to verify the performance of the classifier.
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C. EXPERIMENTAL PROCESS AND PARAMETER SETTING
1) PARAMETER SELECTION
The hyperparameters in a neural network affect the perfor-
mance of the entire network, making it necessary to con-
tinuously adjust the hyperparameters of the neural network
classifier until the classifier performance is optimal.

Having too few layers of the neural network can cause the
network to fail to satisfactorily learn the features of the data.
Too many layers, however, may result in the phenomenon of
overfitting. In many experiments, networks with two, three,
and four layers have been tested in generators. Both the
discriminator and classifier are used to find the best number
of layers. One of the hyperparameters is the type of activation
function in each layer. Common activation functions include
Sigmoid, ReLU, tanh, and LeakyReLU. The LeakyReLU
function is defined as follows:

yi =

xi if xi ≥ 0
xi
ai

if xi < 0,
(28)

where ai is a fixed parameter in the interval (1,+∞). In addi-
tion, the tanh function is defined as follows:

tanh (x) =
ex − e−x

ex + e−x
. (29)

The output of the generator is the input sample for the
discriminator. When the input enters the neuron, it is mul-
tiplied by the weight. We randomly initialize the weights and
update them duringmodel training. In addition to the weights,
another linear component applied to the input is the bias.
It is added to the result of the weight multiplied by the input.
For the initialization of the weights and biases, weight values
are drawn from the normal distribution N(0, 1), and biases
are drawn from the uniform distribution U(–1, 1). A neural
network generally consists of an input layer, hidden layer,
and output layer. Since the data dimension and the amount
of data used in the experiment are small, we choose three
network layers for the default implementation of the neural
network.

Different optimization algorithms have different principles
and are applicable to different scenarios. After many investi-
gations, we select the RMSprop algorithms as the optimizers
for testing the optimization algorithms. The learning rate,
one of the hyperparameters, is the speed at which the neural
network reaches the optimal status. If the learning rate is
too small, then the loss of the network declines very slowly.
If the learning rate is too large, then the range of the updated
parameter is too large, resulting in the network convergence
to a local optimum. We select values experimentally and
observe that the performance is less extreme with the change
in hyperparameters.

2) PARAMETER SETTING
The optimal performance of the improved CGAN should
have resulted in an accuracy of the discriminator D of
close to 50%. However, there are several hyperparameters

FIGURE 3. The generator loss, discriminator loss, and average loss
changes during the training epochs. (a) The CGAN, (b) the WCGAN, and
(c) the improved CGAN.

in the improved CGAN network that affect the performance
of the improved CGAN, including network parameters for
generator G and discriminator D and the parameters for
random noise. Thus, we find the optimal combination of
parameters through the grid search method. We performed
a 10-fold cross-validation on the social bot samples of the
training set to select the optimal network parameters of the
improved CGAN. 10-fold cross-validation split the data into
10 equal subsets with 9 subsets used in the training the
improved CGAN and the remaining subset employed in test-
ing. According to the experience with neural network param-
eter setting and CGAN training, the structure of discriminator
D and generator G is set to three layers. The dimensions
of the input data for the discriminator are determined by
our features, so the neuron numbers for the first layer of
discriminator D are fixed. For the same reason, the neuron
numbers for the third layer of generator G are fixed. The
learning rate of the generator and discriminator have to be
selected. The random noise z conforms to the random distri-
bution N (0, 10). The generator G in the CGAN has three
layers, which contains 3 LeakyReLU units, 7 LeakyReLU
units, and 11 tanh units. The discriminator also has three
layers composed of 11 LeakyReLU units, 6 LeakyReLU
units, and 1 linear unit. The learning rate of the generator
is 5 × 10−5, and that of the discriminator is selected as
5 × 10−5. In addition, the optimizer of the generator and
the discriminator is the RMSprop algorithm. To show the
superiority of the improved CGAN, we compare the training
performance with the original CGAN and WGAN. Because
of the addition of the gradient penalty, the improved CGAN
stabilizes more quickly, avoiding the vanishing gradient and
mode collapse problems and producing more stable samples.
The change in the loss of the improved CGAN is presented
in Fig. 3.

During the process of training the CGAN, problems such
as pattern collapse and overfitting may occur. Similarly,
the WCGAN fluctuates greatly during the training process.
The loss of the improved CGAN remains largely stable in
the later period. The change trend of the improved CGAN is
significantly different from that of the WCGAN. At the same
time, the improved CGAN also solves the possible problems
of the original GAN. The generated social bot samples are
more consistent with the spatial distribution of the existing
bots.
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FIGURE 4. Decision graph and γ sorting graph of the GKDPCA algorithm
on the original data set.

D. EXPERIMENTAL RESULTS AND ANALYSIS
The improved CGAN requires condition variables as
auxiliary information, so we choose the Gaussian kernel
density peak algorithm as the generator for the condition
variables. The coefficients are calculated for all the bots by
the Gaussian kernel density peak algorithm, and the number
of large elements is selected as the number of categories. The
decision graph of the Gaussian kernel density peak cluster is
presented in Fig. 4, which shows the decision graph and the
γ sorting graph on the original data set and augmented data
set, respectively. Fig. 4(a) shows the relationship between the
local density, ρ, and the distance, δ, of each training sample.
Fig. 4(b) shows that γi = log ρiδi.; the graph is sorted in
descending order.

The category of the bot is selected by using the density
peak algorithm as an input. We choose to classify bot users
into two categories through the decision diagram of γ .
We use T-distributed stochastic neighbor embedding

(t-SNE) to map the original data set and the augmented data
set from the high-dimensional space to 2D space. The t-SNE
is a machine-learning algorithm for nonlinear dimensionality
reduction. It is suitable for reducing high-dimensional data to
2D or 3D forms for visualization. Fig. 4 shows, the relation-
ship between the data generated by the improved CGAN and
the original data. The generated bot data and the existing bots
satisfy certain correlations and differ from the normal human
samples. The difference between normal humans and social
bots on a 2D plane is shown in Fig. 5(a). The yellow dots
represent normal human samples, the purple dots represent
social bot samples, and a small number of social bots over-
lap with normal human samples. Some interference samples
affect the accuracy of classification. As Fig. 5(b) shows,
the social bot samples generated by the improved CGAN
are somewhat different from the normal human samples and
original social bots. The spatial distribution of social bots
only includes the two purple areas in the Fig. 5(a). In con-
trast, the samples generated by the improved CGAN in the
Fig. 5(b) also conform to the spatial distribution of existing
social bots, which can improve the detection of the social
bots.

To analyze the effectiveness of the improved CGAN
method in detecting social bots, we performed three

FIGURE 5. Different data sets are projected into a low-dimensional space
by t-SNE. (a) Original data set. (b) Augmented data set.

FIGURE 6. Variation trend of the four evaluation indexes with the change
in the oversampling mode.

experiments with the original algorithm and three traditional
oversampling algorithms. We use the same dataset and dif-
ferent oversampling methods to generate a balanced data set.
The same hyperparameters and balanced data sets from dif-
ferent sources are used in the training process of the classifier,
and the performance of the classifier is detected through the
same test set.

The experiments are conducted with the aim of answering
the following questions:

1) Does the improved CGAN oversampling method
improve the accuracy of bot detection?

2) Is the improved CGAN oversampling method more
advantageous than other oversampling methods?

3) How many samples are generated for the most obvious
improvement in bot detection?

4) When the degree of data imbalance in the original
data set is different, what is the degree of difference in the
improvement of the detection effect by different oversam-
pling methods?
Experiment 1: To verify the effectiveness of the improved

CGAN method in generating minority samples, the orig-
inal algorithm and three popular oversampling algorithms
are compared. The random oversampling, ADASYN, and
SMOTE algorithms are considered in the experiment. Minor-
ity class samples are generated with the oversampling algo-
rithms until the quantity of minority and majority samples is
the same, and then the neural network is adopted to classify
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FIGURE 7. ROC curves of the five classifiers using different oversampling
methods.

the social bots. The detection results are shown in Fig. 6. The
ROC curves are shown in Fig. 7.

The oversampling method based on the improved CGAN
model works best among all of the oversampling methods
in Fig. 6. The F1-score of the improved CGAN reaches
97.56%, which is 7 percentage points higher than that of
the classifier trained by the original data set. The accuracy
of SMOTE and ADASYN are relatively similar, and the
accuracy of the classifier generated by the improved CGAN
is nine percentage points higher than that of the classifier
generated by the original data set. The accuracy of the
classifier generated by the improved CGAN is the highest
among all of the methods. The recall of the improved CGAN
methods is also the highest among all methods. The higher
recall indicates that the classifier generated by the improved
CGAN can detect more social bots than the others and that
the generator of the improved CGAN can generate more
samples fitting the law of the minority sample. The ran-
dom oversampling randomly selects existing samples as new
samples, which causes overfitting. The SMOTE algorithm
randomly selects a new minority sample from the connection
line between the nearest neighbor samples and a specific sam-
ple. Additionally, ADASYN automatically determines how
many minority samples are synthesized rather than synthe-
sizing the same number of samples for each minority sample
as the SMOTE algorithm does. When the original data set
is imbalanced, the G-mean value is relatively low. When
the original data set is oversampled to a balanced data set,
the G-mean value noticeably improves. The G-mean value
of the improved CGAN is noticeably larger than that of the
other three oversampling algorithms. In Fig. 7, the trends
of the five ROC curves are approximately the same. How-
ever, the AUC value of the improved CGAN is the highest.
The G-mean and the AUC value of the improved CGAN
indicate that the data generated by the oversampling method
fits the existing data well. The results also indicate that the
improved CGAN is superior to other oversampling methods
because the improved CGAN can learn the spatial distribu-
tion characteristics of social bots in the process of iterative
training.
Experiment 2:We also have to determine howmany gener-

ated examples are suitable for training the classifier. For this

purpose, the expansion multiple is used. It can be defined as
follows:

ϕ = a : b (30)

where b is the number of social bots in the training data and
a is the number of samples generated by the oversampling
method.

The main purpose of this experiment is to examine the
sensitivity of the four oversampling methods in relation to
the expansion multiple. In this experiment, the number of
minority samples accounts for 18% of the total number of
samples. Minority samples are generated with four different
ϕ ratios: 1:1, 2:1, 3:1, and 4:1. Thus, four different training
sets are generated, and then the classification of the data
is performed. The results are shown in Table 3. Observing
the accuracy trend graph of the classifier, as ϕ changes,
the accuracy of the classifier generated by SMOTE and
ADASYN fluctuate significantly. The accuracy of all of the
algorithms is higher than that of the original data set. The
accuracy of the improved CGAN methods is stable, and its
fluctuations are gentle, which indicates that the improved
CGAN method is less affected by changes in the sampling
proportion.

The precision rate of the classifiers generated by the
SMOTE algorithm is worse than that of other methods where
ϕ = 4 : 1, which indicates that the social bot sam-
ples generated by this method do not fully conform to the
inherent distribution of existing bot samples. The precision
of the classifier generated by the improved CGAN method
is stable; it remains at 96%. Among the other oversam-
pling methods, the recall rate of all the algorithms fluctu-
ates greatly when ϕ changes. The recall of the classifier
generated by the improved CGAN is always superior to the
classifier produced by the original data set. For the classifiers
generated by the other oversampling methods, the F1-score
and G-mean of all oversampling methods change with ϕ,
which indicates that ϕ is important for the effect of over-
sampling, and that the improved CGAN works best when ϕ
is 2:1.
Experiment 3: Considering the lack of proportion between

minority and majority samples in the original data, we make
the number ofminority samples equal to the number ofmajor-
ity samples to influence the performance of the oversampling
methods. Therefore, this experiment is designed to check
the sensitivity of the four methods relative to the imbalance
degree r , which is defined as:

r =
xr
x
, (31)

where x is the number of accounts in the original data set
and xr is the number of social bots in the original data
set.

We let r take the values of 10%, 15%, 20%, 25%, and
30%. In each case, specific numbers of minority samples are
sampled randomly and placed into data set P together with
all of the normal samples. Thus, we obtain four different
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TABLE 3. The trend diagram of the evaluation indexes pertaining to the classifiers generated by different oversampling methods with changes in ϕ.

FIGURE 8. Trend diagram of the evaluation indexes pertaining to the classifier generated by different oversampling methods with changes in r:
(a) accuracy, (b) precision, (c) recall, (d) F1-score, and (e) G-mean.

data sets with different r values. Then, P is oversampled
using the improved CGAN and the compared algorithms
previouslymentioned, and then classifications are performed.
The experimental results are shown in Fig. 8. As r increases,
the accuracy of SMOTE,ADASYN, and the improvedCGAN
methods gradually increase, and the accuracy of the random
algorithm fluctuates in all evaluation indexes. The improved
CGAN is found performing better than all the other over-
sampling methods. Moreover, the detection effect of the
classifiers produced by all of the oversampling methods
decreases slightly with an increase in the imbalance degree
when r equals 30%. This indicates that when the data set
tends toward balance, it is somewhat redundant to augment
the data set using oversampling methods. Only when the
number of the normal human and social bots in the data set
differs greatly the effect of the oversamplingmethod becomes
obvious.

V. CONCLUSION
In this paper, we propose an improved CGAN model to
increase the detection accuracy of malicious social bots.
Since the number of normal human beings and social
bots on Twitter is imbalanced, we improve the traditional
CGAN by incorporating the Wasserstein distance with a

gradient penalty and a clustering algorithm as a new data-
augmentation approach. Specifically, the Wasserstein dis-
tance with a gradient penalty is introduced to the CGAN
loss function to solve the problem of model collapse and
gradient disappearance in the traditional CGAN. In addi-
tion, we propose the GKDPCA as a conditional model
to label the social bot data in the CGAN model, which
improves the Euclidean distance calculation method of the
density peak clustering algorithm. Furthermore, we use
Gaussian kernel function to project the original features
into a high-dimensional kernel space. The findings indi-
cate that the data-augmentation approach-improved CGAN
based on the GKDPCA and Wasserstein distance with a
gradient penalty can rebalance skewed social bot data sets,
which avoids the generation of data-augmentation noise and
effectively overcomes imbalances between and within class
distributions.

The proposed improved CGAN algorithm is also com-
pared with three more common oversampling algorithms.
Experimental results show that the improved CGAN out-
performed the three common oversampling algorithms, with
an F1 score of 97.56%. This finding indicates that it is
an effective oversampling method in the field of social bot
generation.
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Future work may focus on malicious social bot detection.
Additional behavioral patterns and feature sequences of mali-
cious social bots will be further considered. We also want to
extend this work to other social networks, such as Facebook
and Instagram, with the aim of creating a model for bot
detection on social networks, network processing, network
security, and network coding.
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